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Abstract.

1. The Space Rn

First we introduce the basic concepts that are needed to study limits and
continuity in Rn.

Recall that given x = (x1, ...,xn) ∈ Rn we set ‖x‖ =
√∑n

i=1 x2
i and we

call this the norm of x. Given two vectors, x,y in Rn the distance between
them is, d(x,y) = ‖x− y‖.

The open ball centered at x of radius r is the set B(x; r) = {y ∈ Rn :
‖x− y‖ < r}.

A subset O ⊆ Rn is called open provided that for every x ∈ O, there
exists an r > 0 such that B(x; r) ⊆ O.

Problem 1. Show that every open ball is in fact open

Problem 2. Let O ⊆ R2 be defined by O = {x = (x1,x2) : x1 > 0,x2 > 0}.
Show that O is an open set.

Given a set E ⊆ Rn a point y ∈ Rn is called a limit point of E provided
that for every r > 0 the set E ∩ B(y; r) has an element other than y. The
collection of all limit points of a set E is denoted E′.

As the name suggests limit points are exactly the points where it makes
sense to talk about taking limits.

A set is closed if it contains all of its limit points, that is , if E′ ⊆ E.

Problem 3. Find the limit points of the set O defined above.

Problem 4. Show that for any x and any r > 0, the set {y : ‖x− y‖ ≤ r}
is closed. This set is called the closed ball centered at x of radius r.

Problem 5. Show that if E is a set with only finitely many points, then E′

is the empty set. Conclude that every set with finitely many points is closed.

The following fact is very useful and some other texts use it as the defi-
nition of closed.

Theorem 6. Let O ⊆ Rn and let E denote the complement of O. Then O
is open if and only if E is closed.
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2 V. I. PAULSEN

2. Limits of Functions

Let E ⊆ Rn and let f : E → R be a function. If y ∈ E′ is a limit point of
E, then we wish to define what we mean by the limit of f as x approaches
y. First for x to approach y we would like for the distance between them
to go to 0 and for the limiting value we would like that the numbers f(x)
approach the limiting value, say L. Following is the precise ε− δ definition.

Definition 7. Let E ⊆ Rn, let f : E → R be a function and let y ∈ E′ be
a limit point of E, then we write, limx→y f(x) = L provided that for every
ε > 0 there is a δ > 0 such that whenever x ∈ E and 0 < ‖x− y‖ < δ, then
|f(x)− L| < ε.

The inequality, 0 < ‖x − y‖ is just another way to say that in limits we
require x 6= y.

Example 8. Let and let f : E → R be defined by f((x1, x2)) = x1x2

x2
1+x2

2
, then

y = (0,0) is a limit point of E but limx→0 f(x) fails to exist.

To see this, note that f((t, 0)) = 0, while, f((s, s)) = 1/2 since we can
take points of the form (t, 0) and (s, s) arbitrarily close to (0, 0), no matter
what we tried to choose for L, we could find points within δ of y so that
f(x) is not close to L.

Example 9. This shows that the limit of the function depends on the do-
main. Fix a > 0 and let E = {(at, t) : t 6= 0} and let f((x1, x2)) =
x1x2

x2
1+x2

2
be defined as before, but with a different domain. Now since for

any point in E,x = (at, t) we have f(x) = att
(at)2+t2

= a
1+a2 , and so now,

limx→(0,0) f(x) = a
1+a2 and just by changing the domain the limit exists!

The key point to the above example is that to decide if limits exist it is
important that we pay attention to the domains!

Example 10. Let E = R2/{(0, 0)} and let f : E → R2 be defined by
f((x1, x2)) = x4

1

x2
1+x2

2
. Show that limx→(0,0) f(x) = 0.

To show a limit directly, requires some inequalities. Here we see that
x2

1 ≤ x2
1 + x2

2 = ‖x‖2 and hence, x4
1 ≤ (x2

1 + x2
2)

2 = ‖x‖4. Dividing this
last inequality by ‖x‖2 we see that, 0 ≤ f((x1, x2)) ≤ ‖x‖2. Thus, if we are
given any ε > 0 and we pick δ =

√
ε, then when ‖x − (0,0)‖ < δ, we have

that
|f(x)− 0| = f(x) ≤ ‖x‖2 < δ2 = ε.

These two examples, show that for quotients of polynomials in two or
more variables, deciding if limits exists, is not as simple as just dividing and
cancelling like we did in one variable.

Problem 11. Let E be as in the last example and let f(x1, x2)) = x3
1

x2
1+x2

2
.

Show that limx→(0,0) f(x) = 0.
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3. Continuity of Functions from Rn to R

Let E ⊆ Rn and let f : E → R be a function. A function is “continuous”
if whenever tow points, x,y are “close”, then the numbers, f(x), f(y) are
“close”. There are two equivalent ways to make this precise.

Definition 12. Let E ⊆ Rn, let f : E → R and let x ∈ E. Then f is
continuous at y provided that for every ε > 0 there is a δ > 0 such that
if x ∈ E with ‖x− y‖ < δ, then |f(x)− f(y)| < ε. The function f is called
continuous or continuous on E provided that it is continuous at every
point in E.

The following theorem gives an equivalent way to define continuity, that
is often used instead.

Theorem 13. Let E ⊆ Rn and let f : E → R. Then f is continuous on E
if and only if for every limit point y of E that is also in E, we have that
limx→y f(x) = f(y).

We will not be too concerned about proving whether or not functions are
continuous, but it is important to be able to recognize functions that are
continuous.

The following result is useful.

Proposition 14. Let x = (x1, ...,xn). Then any function that is a polyno-
mial or continuous function of the quantities, x1, ..., xn is continuous on all
of Rn. Functions that are quotients of such functions are continuous at any
point where the denominator is not 0.

So by the proposition, the function f((x1, x2)) = x3
1x2 +cos(x2) is contin-

uous on all of R2, while the function g((x1, x2)) = x1x2

x2
1+x2

2
would be continuous

everywhere except possibly at (0,0). In the case of g, discussing continuity
at (0,0) doesn’t even make sense, because it has no value defined there.

A slightly more subtle example, is the function, f : R2 → R defined by

f((x1, x2)) =

{
x4
1

x2
1+x2

2
(x1, x2) 6= (0, 0)

0 (x1, x2) = (0, 0)
.

Since, limx→(0,0) f(x) = 0, we have that f is continuous on all of R2.
Like for limits, determining whether or not a quotient, where both the

numerator and denominator vanish, can be given a “value” at that point
that will make things continuous is tricky.

4. Limits and Continuity for Functions from Rn to Rm

Let E ⊆ Rn and suppose that we are given m functions fi : E →
R, i = 1, ...,m, then we can build a function F : E → Rm by setting
F (x) = (f1, (x), ..., fm(x)). In this case the functions f1, ..., fm are called
the component functions of F. We will often refer to such a function as a
vector-valued function.
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In fact, it is quite easy to see, that any time we have a function, F : E →
Rm, it must be of this form.

The definitions of limits and continuity for vector-valued functions is the
same as for scalar-valued functions, except that the limits are vectors and
instead of the absolute value of the difference, we use the norm of the dif-
ference, since this is the quantity that measures the distance between two
image vectors.

For the record, we give the definitions below.

Definition 15. Let E ⊆ Rn, let F : E → Rm be a function and let x ∈ E′ be
a limit point of E, then we write, limy→x f(y) = L, where L = (L1, ...,Lm),
provided that for every ε > 0 there is a δ > 0 such that whenever y ∈ E and
0 < ‖x− y‖ < δ, then ‖F (y)− L‖ < ε.

Definition 16. Let E ⊆ Rn, let F : E → Rm be a function and let x ∈ E.
Then F is continuous at x provided that for every ε > 0 there is a δ > 0
such that if y ∈ E with ‖x− y‖ < δ, then ‖F (x)−F(y)‖ < ε. The function
F is called continuous or continuous on E provided that it is continuous
at every point in E.

For our purposes, the following characterizations of limits and continuity
of vector-valued functions is useful.

Theorem 17. Let E ⊆ Rn, let F : E → Rm be a function with component
functions, f1, ..., fm and let x ∈ E′ be a limit point of E, then, limy→x f(y) =
L, where L = (L1, ...,Lm), if and only if limy→x fi(y) = Li for i = 1, ...,m.

Theorem 18. Let E ⊆ Rn, let F : E → Rm be a function with component
functions, f1, ..., fm and let x ∈ E, then F is continuous at x if and only if
each of the component functions, f1, ..., fm is continuous at x. Consequently,
F is continuous on E if and only if f1, ...fm are all continuous on E.

Problem 19. Let v = (v1, ...,vn) and w = (w1, ...,wn) be two points in
Rn. Show that if |vi − wi| < r for all i, then ‖v −w‖ < r

√
n.

Problem 20. Give ε − δ proofs of the last two theorems, using the above
problem.

5. Partial Derivatives and Directional Derivatives

Let U ⊆ Rn be an open set, let f : U → R be a function and let x ∈ U. If

lim
t→0

f(x1, ..., xi−1, xi + t, xi+1, ..., xn)− f(x1, ..., xi−1, xi, xi+1, ..., xn)
t

exists, then we say that the i-th partial derivative of f exists at x and we
denote this value by

∂f

∂xi
(x).
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More generally, if u ∈ Rn is a unit vector, then whenever

lim
t→0

f(x + tu)− f(x)
t

exists, we say that the partial derivative of f in the direction u exists and
we denote this value by Duf(x).

Note that if we let ei denote the vector whose i-th coordinate is equal to
1 and whose remaining entries are 0, then

∂f

∂xi
(x) = Dei

f(x).

Thus, partial derivatives are just directionalderivatives inthe directions of
the coordinate axes.

More generally, if F : U → Rm, has component functions, f1, ..., fm, then
when all the corresponding partial derivatives and directional derivatives
exist, we set

∂F

∂xi
= (

∂f1

∂xi
, ...,

∂fm

∂xi
)

and
DuF (x) = (Duf1(x), ...,Dufm(x)

and we call these corresponding vectors the partial derivative and directional
derivative of F at x.

Problem 21. Get out your Calculus III text find 10 problems involving
partial and directional derivatives and do them.

Problem 22. Show that the directional derivative of F exists at x in the
direction u and is equal to the vector v if and only if

lim t → 0‖F (x + tu)− F(x)
t

− v‖ = 0.

The following example shows why just the existence of partial and direc-
tional derivatives turns out to be inadequate for many results in analysis.

Let f : R2 → R be defined by

f((x1, x2)) =

{
x1x2

2

x2
1+x4

2
(x1, x2) 6= (0, 0)

0 (x1, x2) = (0, 0)
.

If this function was continuous, then limt→0 f((t2, t)) = f(0, 0) = 0, but for
t 6= 0, f((t2, t)) = (t2)(t)2

(t2)2+(t)4
= 1/2, so this function is NOT continuous at

(0,0).
However, we will now show that Duf((0, 0)) exists for every direction u.

To see this we set u = (a,b) where a2 + b2 = 1 and compute,

lim
t→0

f((0, 0) + tu)− f((0,0))
t

= lim t → 0
f(tu)

t
= lim t → 0

(ta)(tb)2

t[(ta)2 + (tb)4]
= lim

t→0

ab2

a2 + t2b4
=

b2

a
,

as long as a 6= 0, and when a = 0, the limit is easily seen to be 0. Hence,
the directional derivative exists in every direction.
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Thus, we see that the existence of directional derivatives at a point, in
every direction isn’t even enough to guarantee that a function is continuous
at that point!

For this reason the right notion of differentiability in higher dimensions
is a slightly stronger notion.

6. The Total Derivative and Linear Approximation

First let’s look at the one dimensional derivative from a different view-
point. So suppose that f : R → R has a derivative at the point x with
f ′(x) = a. Then we have that, limh→0

f(x+h)−f(x)
h − a = 0. Putting this ex-

pression over a common denominator, this is equivalent to limh→0
f(x+h)−f(x)−ah

h =
0. Thus, not only does |f(x + h)− (f(x) + ah)| → 0 as |h| → 0, but it does
it so rapidly, that even after dividing by |h|, the ratio still tends to 0. This
tells us that for h sufficiently small f(x) + ah is a very good approximation
to f(x+h). In fact this is what we called the tangent line approximation to
f(x+h) in calculus.

We wish to use this to motivate a definition of derivative in multi-dimensions.
So let F : Rn → Rm so that x,h ∈ Rn are now vectors and F (x),F(x+h) ∈
Rm are vectors. If we wish to approximate F (x + h) by a quantity of the
form F (x) + Ah, then we need A : Rn → Rm. If we also want to do this in
a ”linear” fashion, then we need A to be an m×n matrix. This is all meant
to motivate the following definition.

Definition 23. Let U ⊆ Rn be an open set, let F : U → Rm be a function
and let x ∈ U. We say that F is differentiable at x provided that there is an
m× n matrix A such that

lim
h→0

‖F (x + h)− F(x)−Ah‖
‖h‖

= 0.

In this case, we set F ′(x) = A and we call A the derivative of F at x.

Some books refer to A as the total derivative of F at x. However, since
it is the only concept of the derivative at a point that is used, we find the
extra word ”total” redundant.

The following result relates the derivative of F to partial derivatives.

Proposition 24. Let U ⊆ Rn be an open set, let F : U → Rm, with
component functions f1, ..., fm, and let x ∈ U. If F is differentiable at x,
then ∂fi

∂xj
(x) exists for all i and j is equal to the (i,j)-th entry of the matrix

F ′(x).

Thus, when the derivative exists, we have that, in matrix notation,

F ′(x) =


∂f1

∂x1
(x) . . . ∂f1

∂xn
(x)

...
...

∂fm

∂x1
(x) . . . ∂fm

∂xn
(x)

 .
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One immediate advantage of this definition of differentiability is the fol-
lowing.

Proposition 25. Let U ⊆ Rn, let F : U → Rm and let x ∈ U. If F is
differentiable at x, then F is continuous at x.

By the two results above, we see that a necessary condition for F to be
differentiable at x is that all of the partial derivatives exist at x. However,
by the example of the last section, we see that a function can have all of its
partial derivatives exist at a point and still not be continuous at that point,
which by the last result means that it can’t be differentiable at that point.

Thus, while existence of all the partial derivatives are necessary for a
function to be differentiable, their existence is not sufficient. This makes it
very hard in general to tell exactly when a function is differentiable. For
this reason the following concept is very important.

Definition 26. Let U ⊆ Rn be an open set and let F : U → Rm have
component functions, fi : U → R. If for all i and j, ∂fi

∂xj
exists at every point

in U and is a continuous function on U , then we say that F is continuously
differentiable on U, or is of class C1 on U . We let C1(U ; Rm) denote the set
of all such functions.

Theorem 27. Let U ⊆ Rn be an open set and let F : U → Rm. If F is
continuously differentiable on U, then F is differentiable at every point of
U.

By analogy with the one variable case, we refer to the quantity,

F (x) + F′(x)h

as the tangent approximation to F (x + h) or as the linear approximation to
F (x + h).

Note that for the purposes of matrix multiplication it is useful to think
of vectors as column vectors, even though for the purposes of these notes it
is more convenient to write vectors as rows. For this reason to emphasize
this distinction we will often write a vector as h = (h1, ...,hn)t with the
superscript indicating the transpose, which converts a row vector into a
column.

Example 28. Let F : R2 → R3 be the function whose components are
given by f1(x1, x2) = x1cos(x2) + sin(x1x2) + 3, f2(x1, x2) = x1 + 2x2 +
1, f3(x1, x2) = x3

1 + x2
2 + 2x1 + 5. Assuming that F ′(0), exists compute this

matrix and use it to find the tangent approximation to F ((.1, .3)).

We have that ∂f1

∂x1
= cos(x2)+x2cos(x1x2), ∂f1

∂x2
= −x1sin(x2)+x1cos(x1x2), ∂f2

∂x1
=

1, ∂f2

∂x2
= 2, ∂f3

∂x1
= 3x2

1 + 2, ∂f3

∂x2
= 2x2. Evaluating these at 0 we obtain that,

F ′(0) =

1 0
1 2
2 0

 .



8 V. I. PAULSEN

Hence the tangent approximation is

F ((.1, .3)) u F (0) + f ′(0)
[
.1
.3

]
=

3
1
5

+

.1
.7
.2

 =

3.1
1.7
5.2

 .

Problem 29. Let F : R2 → R3 be defined by f1((x1, x2)) = 2x1+x1x2, f2((x1, x2)) =
3x1 + 2x2 + x1x2, f3((x1, x2)) = x1 + 3x2 + x3

1. Assuming that F is differ-
entiable at 0, compute F ′(0), the tangent approximation to F (0 + h) for
h = (h1,h2)t and the error, F (0 + h)− F(0)− F′(0)h.

Problem 30. Show that if F : Rn → Rm is differentiable at x then the
directional derivative of f exists in every direction u and that DuF (x) is
the product of the matrix, F ′(x) times the vector u.

The formulation of the derivative as a matrix is also good for understand-
ing the chain rule.

Theorem 31 (Chain Rule). Let U ⊆ Rn, V ⊆ Rm, let F : U → Rm and
let G : V → Rp with F (U) ⊆ V so that the function, G ◦ F : U → Rp

is defined. If F is differentiable at x and G is differentiable at F (x), then
G ◦ F is differentiable at x and (G ◦ F )′(x) is equal to the matrix product,
G′(F (x))F′(x).

Problem 32. Let F : R2 → R2 and G : R2 → R2 have component functions,
f1(x1, x2) = x2

1+3x2, f2(x1, x2) = 5x1+x3
2, g1(y1, y2) = y3

1 +4y2, g2(y1, y2) =
2y1 +3y2. Compute, (G◦F )′((1, 2)), two ways. First, by finding the function
G ◦ F explicitly and differentiating it and second, by using the chain rule.

7. Newton’s Method and Roots of Equations

As one application we take a look at a multi-variable version of Newton’s
method. Suppose that we have a function, F : Rn → Rn and we wish to
find a solution to the equation, F (x) = 0.

As in the one-variable version of Newton’s method. Given an initial guess
x0 to a solution, for x1 sufficiently close to x0, we have that F (x1) u
F(x0) + F′(x0)(x1 − x0). Thus, if we want F (x1) = 0, then assuming that
u is really ”=”, leads to, 0 = F(x0) + F′(x0)(x1 − x0). Solving this last
equation for x1, leads to,

x1 = x0 − F′(x0)−1F(x0),

where F ′(x0)−1 denotes the inverse of the matrix F ′(x0)(which we need to
assume exists).

This formula leads to Newton’s algorithm for finding the root of an equa-
tion:

Given an initial guess for a solution, x0, inductively define,

xn+1 = xn − F′(xn)−1F(xn),
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assuming that the inverses of these matrices exist. We call this sequence of
vectors(when it exists) the sequence of Newton approximants starting from
x0.

The following theorem tells us that under certain assumptions the se-
quence of vectors given by Newton’s algorithm converges to an actual root
of the equation.

Theorem 33 (Newton’s Algorithm). Let F : Rn → Rn and assume that
z ∈ Rn is a point that satisfies, F (z) = 0. If F is continuously differentiable
in a neighborhood of z and F ′(z) is invertible, then there is r > 0, such
that for any x0 with ‖z − x0‖ < r, the sequence of Newton’s approximants
starting from x0 will converge to z, that is, limn→+∞ ‖z− xn‖ = 0.

Problem 34. Let F : R2 → R2 have component functions, f1(x, y) = x2 +
y2−4, f2(x, y) = 2x−3y. Sketch the graphs of the sets satisfying f1(x, y) = 0
and of f2(x, y) = 0, to show that there are exactly two points in R2 with
F (z) = 0. Using an initial guess for the root, of x0 = (1,1), compute x1,x2.
Based on this(flimsy) evidence, which root does it appear that the sequence
of Newton approximants starting from (1,1) will converge to?

8. The Inverse Function Theorem

We first discuss inverse functions in several variables with an explicit ex-
ample. Let F : R2 → R2 be defined by f1(x1, x2) = x2

1+x2
2 = y1, f2(x1, x2) =

x2
1 − x2

2 = y2. An inverse of this funcion would be a function that expressed
the xi’s as functions of the yi’s. Note that on the whole of R2 this would
be impossible since F ((x1, x2)) = F ((±x1,±x2)). Thus, every point in the
range of F has four pre-images. However, if we set U = {(x1, x2) : x1 >
0, x2 > 0} and V = {(y1, y2) : y1 > y2, y1 > 0}, then we will show that
F maps U one-to-one and onto V and hence there is a unique function
G : V → U such that G(F ((x1, x2))) = (x1, x2).

To find G, note that if (y1, y2) is in the range of F , then y1 > 0 and

y1+y2 = 2x2
1 > 0, so that x1 =

√
y1+y2

2 = g1(y1, y2). Also, y1−y2 = 2x2
2 > 0,

so that y1 > y2 and x2 =
√

y1−y2

2 = g2(y1, y2).
Now it is easily checked that for any (x1, x2) ∈ U,F ((x1, x2)) ∈ V and

G(F ((x1, x2))) = (x1, x2), while for any (y1, y2) ∈ V,G((y1, y2)) ∈ U and
F (G((y1, y2))) = (y1, y2). These two equations combined show that V is the
image of U under F , that U is the image of V under G, that F maps U
one-to-one onto V and that G maps V one-to-one onto U.

Finally, if H((x1, x2)) = (x1, x2) is the identity function, then it is easily

seen that H ′((x1, x2)) =
[
1 0
0 1

]
= I2, the 2 × 2 identity matrix. Thus,

applying the chain rule to the function G ◦ F = H we see that

G′(F ((x1, x2))F ′((x1, x2)) = H ′((x1, x2)) = I2,
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and so we have that,

G′(F ((x1, x2)) = [F ′((x1, x2))]−1.

That is, if G is the inverse mapping of F , then the derivative of G is the
matrix inverse of the derivative of F .

In general, we aren’t so lucky as to be able to compute inverse functions
so explicitly. This is why the following theorem that tells us that they exist
and that their derivatives obey this rule is so important.

Theorem 35 (Inverse Function Theorem). Let U ⊆ Rn be open and let
F : URn be continuously differentiable on U. If x0 ∈ U and the matrix
F ′(x0) is invertible, then there is an open set U0 with x0 ∈ U0, an open set
V0 with F (x0) ∈ V0 and a continuously differentiable function, G : V0 → U0

such that G(F (x)) = x for all x ∈ U0 and F (G(y)) = y for every y ∈ V0.
Moreover, for every x ∈ U0,F′(x) is invertible, for every y ∈ V0,G′(y) is
invertible and G′(F (x)) = [F′(x)]−1.

We show one of the practical applications of this theorem. Let F : R2 →
R2, have component functions, f1(x1, x2) = x1x

2
2, f2(x1, x2) = x2

1 +x2. Note
that F ((1,−1)) = (1, 0). Find a “good” approximate solution to the pair of
equations, x1x

2
2 = 1.1, x2

1 + x2 = .2 that is near to the point (1,-1).
To solve this note that if we let G denote the inverse of the function F,

then G((1, 0)) = (1,−1), since (1.1, .2) is near to (1, 0), namely, (1.1, .2) =
(1, 0) = (.1, .2), the tangent approximation is

G((1.1, .2)) u G((1, 0)) + G′((1, 0))
[
.1
.2

]
.

By the inverse function theorem, since F ((1,−1)) = (1, 0), we have that

G′((1, 0)) = [F ′((1,−1))]−1 =
[

(−1)2 2(1)
2(1)(−1) 1

]−1

=
1
5

[
1 −2
2 1

]
.

Thus, the approximation is given by

G((1.1, .2) u
[

1
−1

]
+

1
5

[
1 −2
2 1

] [
.1
.2

]
=
[

.94
−.92

]
Thus, F ((.94,−.92)) u (1.1, .2).

Problem 36. Let F : R2 → R2 have component functions f1(x1, x2) =
x2

1 + x2
2, f2(x1, x2) = x1 + 2x2. We have that F ((1, 1)) = (2, 3). Use the

inverse function theorem to give an approximate solution to f1(x1, x2) =
2.2, f2(x1, x2) = 3.3.

9. The Implicit Function Theorem

Recall that an equation like, x2 + y2 − 1 = 0, implicitly defines y as
a function of x and that we can compute dy

dx by implicit differentiation,
obtaining, 2x + 2y dy

dx = 0.
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In a similar fashion, the set of equations,

f1(x1, x2, y1, y2) = 3x2 − y2
1 − y2

2 − x2
1 = 0,

f2(x1, x2, y1, y2) = 2x2
2 + 4y2

1 + y2
2 + 6x2

1 − 13 = 0,

implicitly define y1, y2 as functions of x1, x2, so we would like to be able to
compute the four partial derivatives, ∂yi

∂xj
.

As one practical application of having such partial derivatives, note that
(x1, x2, y1, y2) = (−1, 1, 1,−1) satisfies the above equations. If we know the
partial derivatives, then we will be able to give the tangent approximation
to the values of y1, y2 that satisfy these equations when x1 = −1.1, x2 = 1.3.

The implicit function theorem answers when the y’s can be given as func-
tions of the x’s in such a case and tells how to compute the derivative.

To explain it, we first focus on the above example. Computing partial
derivatives, with respect to x1, yields

0− 2y1
∂y1

∂x1
− 2y2

∂y2

∂x1
− 2x1 = 0,

8y1
∂y1

∂x1
+ 2y2

∂y2

∂x1
+ 12x1 = 0.

While partial derivatives with respect to x2 yield,

3− 2y1
∂y1

∂x2
− 2y2

∂y2

∂x2
= 0,

4x2 + 8y1
∂y1

∂x2
+ 2y2

∂y2

∂x2
= 0.

Writing this system of four equations in four unknowns, in matrix notation
yields: (

−2y1 −2y2

8y1 2y2

)( ∂y1

∂x1

∂y1

∂x2
∂y2

∂x1

∂y2

∂x2

)
+
(
−2x1 3
12x1 4x2

)
=
(

0 0
0 0

)
.

Thus, the solution is given by,(
∂y1

∂x1

∂y1

∂x2
∂y2

∂x1

∂y2

∂x2

)
= −

(
−2y1 −2y2

8y1 2y2

)−1(−2x1 3
12x1 4x2

)
and we see that for a solution to exist we need the matrix to be invertible.

At the point (−1, 1, 1,−1), we have that(
∂y1

∂x1

∂y1

∂x2
∂y2

∂x1

∂y2

∂x2

)
= −

(
−2 2
8 −2

)−1( 2 3
−12 4

)
=
(
−5/3 7/6
−2/3 8/3

)
.

Thus, to find the tangent approximation for x1 = −1.1, x2 = 1.3, we have
that ∆x1 = −1.1− (−1) = −.1,∆x2 = 1.3− 1 = .3, and so(

y1

y2

)
u
(

1
−1

)
+
(
−5/3 7/6
−2/3 8/3

)(
−.1
.3

)
=
(

31/60
26/30

)
.
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To put this problem into the format of the implicit function theorem, note
that the pair of equations can be thought of as the component functions of
a function F : R4 → R2. Only in this case, we wish to regard the domain as
R2 ×R2, writing a point in the domain as x = (x1,x2),y = (y1,y2). Thus,
the equation becomes, F (x,y) = 0. Now assuming that y1 = h1(x1, x2), y2 =
h2(x1, x2), we have that

f1(x1, x2, h1(x1, x2), h2(x1, x2)) = 3x2 − h1(x1, x2)2 − h2(x1, x2)2 − x2
1 = 0,

f2(x1, x2, h1(x1, x2), h2(x1, x2)) = 2x2
2+4h1(x1, x2)2+h2(x1, x2)2+6x2

1−13 = 0,

or F (x,H(x)) = 0. Hence, the derivative of this composite function must
be 0.

Separating the partial deriviatives of F into their parts depending on x
and y, we can write the 2 × 4 matrix as, F ′ = (Fx, Fy), where Fx and Fy

are 2× 2 matrices.
A careful application of the chain rule, yields

Fx + FyH
′ = 0,

and so the solution is, H ′ = −F−1
y Fx.

This hopefully clarifies the statement of the implicit function theorem.

Theorem 37 (Implicit Function Theorem). Write a vector in Rn × Rm as
(x,y) with x ∈ Rn,y ∈ Rm, let F : Rn × Rm → Rm be continuously differ-
entiable and let F (x0,y0) = 0. If Fy0 is invertible, then there is a neighbor-
hood U of x0 and a continuously differentiable function, H : U → Rm with
H(x0) = y0 and satisfying, F (x,H(x)) = 0, for all x ∈ U. Moreover, in
this case,

H ′(x0) = −F′y(y0)−1Fx(x0).

10. The Jacobian and Local Max-Min

A critical point of a function f : Rn → R is a point where either
f ′(x) = 0 or the derivative fails to exist. In this section we discuss the
multi-variable analogue of the second derivative test for classifying local
maxima and minima. We will need some concepts and results from linear
algebra.

An n×n matrix P = (pi,j) is called positive definite, provided that for
every non-zero vector, x = (x1, ..., xn), we have that

n∑
i,j=1

xixjpi,j > 0.

The following result is useful for determining whether or not a matrix
is positive definite. Given an n × n matrix P = (pi,j)n

i,j=1, the matrices,
Pk = (pi,j)k

i,j=1, k = 1, 2, ..., n are called the principal submatrices of P.

Proposition 38. Let P = (pi,j) be an n×n matrix. Then the following are
equivalent:
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• P is positive definite,
• P = P t and every eigenvalue of P is strictly positive,
• P = P t and det(Pk) > 0, k = 1, 2, ..., n.

Theorem 39. Let f : Rn → R have continuous 2nd order partial deriva-
tives. If f ′(x0) = 0 and ( ∂2f

∂xi∂xj
(x0) is positive definite, then x0 is a local

minimum of f. If the negative of this matrix is positive definite, then x0 is
a local maximum.

The matrix ( ∂2f
∂xi∂xj

) is called the Jacobian of f. When the Jacobian
matrix is neither positive definite nor the negative of a positive definite,
then we say that the 2nd derivative test fails. generally, this means that the
point x0 is a saddle point, that is the graph of the function is cupped up
in some directions and cupped down in other directions. These directions
are determined, respectively, by the eigenvectors corresponding to strictly
positive and strictly negative eigenvalues of the Jacobian matrix.

Problem 40. Find and classify all the critical points of

f(x, y) = −x4−y4+6x3−2x2y2−16x2+28x+6xy2−8y2+4y+2x2y−8xy+2y3−12.

Problem 41. Let A = (ai,j) be an n× n matrix. Show that −A is positive
definite if and only if A = At and det(Ak) is strictly positive for k even and
strictly negative for k odd.

Consequently, to test for a local maximum, we need
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