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I think it is important for you to know the following results. Some proofs

are included and you should read them, but the important thing is that you

be aware of the results themselves.

1. Completeness of Rn

A set E in Rn is bounded if there is a constant M > 0 such that ||x|| ≤ M

for all x ∈ E. Equivalently, there is a (different) constant M > 0 such

that |xi| ≤ M for all x ∈ E and all i = 1, · · · , n. A set of the form

{x ∈ Rn : |xi − ci| ≤ M, i = 1, · · · , n}, where c = (c1, · · · , cn) is a given

point, will be called a hypercube with center c and width 2M in Rn.

Completeness of Rn follows from completeness of the real number system

and can be expressed in different ways. The following theorem is one way

of expressing it.

Theorem 1.1. A bounded infinite set in Rn has a limit point.

In general, the limit points need not be in the set itself. However, if

the set is closed it contains all its limit points. This leads to the following

important definition.

Definition 1.1. A nonempty set E in Rn is compact if it is bounded and

closed.
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A useful characterization of compact sets is given in the following theorem.

In more general topological spaces it is the definition of compactness. A

collection {Oα} of sets in Rn covers a set E if E ⊆ ∪
α
Oα.

Theorem 1.2 (Heine-Borel Theorem). E is compact if and only if for each

collection {Oα} of open sets that covers E, there is a finite subcollection

{Oα|α ∈ F} that covers E.

Proof. We shall prove the ”only if” direction because it is the one we need.

The other direction is not terribly difficult and is left as an exercise. Suppose

that E is covered by a collection {Oα} of open sets and is not covered by

any finite subcollection. Since E is bounded, it is contained in a hypercube

H1 of width M , say. Let x1 be any element of E. Partition H1 into 2n

congruent hypercubes of width M/2. At least one of these, say H2, has the

property that E ∩ H2 is not covered by any finite subcollection of {Oα}.

Clearly, E ∩ H2 must be an infinite set, so let x2 ∈ E ∩ H2 be different

from x1. Now subdivide H2 into 2n congruent hypercubes of width M/4.

At least one of these, say H3, has the property that E ∩H3 is not covered

by any finite subcollection of {Oα}. Clearly, E ∩ H3 is infinite, so there

is an x3 ∈ E ∩ H3 different from x1 and x2. Continuing in this manner,

we may inductively define a sequence of hypercubes H1,H2, , · · · and points

x1, x2, · · · such that:

(1) H1 ⊃ H2 ⊃ H3 ⊃ · · · .

(2) The width of Hk is M/2k−1.
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(3) xk ∈ E ∩Hk is distinct from x1, · · · , xk−1.

(4) E ∩Hk is not covered by a finite subcollection of {Oα}.

Now consider the infinite set {xk|k = 1, 2, · · · }. It is bounded, so by com-

pleteness it has a limit x. Since E is closed, x ∈ E. Indeed, x ∈ E ∩ Hk

for each k. Since {Oα} covers E, x ∈ Oα for some α. Therefore, there is an

r > 0 such that B(x; r) ⊂ Oα. Since x ∈ Hk, if we choose k large enough,

we have Hk ⊂ B(x; r) ⊂ Oα. (Choose k large enough that
√

nM/2k−1 < r.)

But then E ∩Hk is covered by a finite subcollection of {Oα}, contradicting

its definition. Therefore, the assumption that no finite subcollection of {Oα}

covers E must be false. �

There are other characterizations and consequences of compactness. Here

is one that is especially useful.

Theorem 1.3. Let E1 ⊇ E2 ⊇ E3 ⊇ · · · be a nested sequence of (nonempty)

compact sets. Then
⋂∞

k=1 Ek 6= Φ.

2. More on Continuity

Definition 2.1. Let E ⊆ Rn and let f : E −→ R. f is uniformly continuous

on E if for each ε > 0 there is a δ > 0 such that |f(x)− f(y)| < ε whenever

x, y ∈ E and ||x− y|| < δ.

Uniform continuity is stronger than continuity at each point. The follow-

ing examples illustrate this.
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Example 2.1. On E = (0, 1), the functions f(x) = 1/x and g(x) =

sin(1/x) are continuous but not uniformly continuous. The functions sinx

and xsin(1/x) are uniformly continuous.

Notice that E is the preceding example is not compact. That makes a

big difference, as the following theorem shows.

Theorem 2.1. Let E be compact and f : E −→ R continuous. Then f is

uniformly continuous on E.

Proof. Let ε > 0 be given. For each x ∈ E, there is a δx > 0 such that

if u ∈ E ∩ B(x; δx) then |f(x) − f(u)| < ε/2. The collection of open sets

{B(x; δx/2)|x ∈ E} covers E. Therefore, there is a finite subcollection

{B(x; δx/2)|x ∈ F} which covers E. Let δ = min{δx/2|x ∈ F}. Let u, v ∈ E

with d(u, v) < δ. Then there exists an x ∈ F such that d(x, u) < δx/2. By

the triangle inequality it follows that d(x, v) < δx. Hence, |f(u) − f(v)| ≤

|f(u)− f(x)|+ |f(x)− f(v)| < ε/2 + ε/2 = ε. �

In the examples above, the functions that are continuous on E but not

uniformly continuous cannot be extended continuously so that their domains

include the limit points of E. In contrast, the functions that are uniformly

continuous can be continuously extended in one and only one way to the

closure of E. This is characteristic of uniformly continuous functions defined

on non-compact domains.
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Possibly the most important connection between compactness and conti-

nuity is the following.

Theorem 2.2. Let E ⊆ Rn be compact and f : E −→ R continuous. Then

f has a maximum (and a minimum) value on E.

Proof. For each positive integer k, let Ek = {x ∈ E|f(x) ≥ k}. By conti-

nuity of f , Ek is closed, and as a subset of E it is clearly bounded, so it is

either compact or empty. We will show that for large enough k it is empty.

If this were not true, then we would have a nested sequence E1 ⊇ E2 ⊇ · · ·

of compact sets. By Theorem 1.2 above,
⋂∞

k=1 Ek 6= Φ, which implies that

there is an x ∈ E such that f(x) ≥ k for each integer k. Obviously, this

cannot happen, so Ek is empty for sufficiently large k. Thus, the values

of f have a least upper bound y. Now, for each positive integer k, let

Ek = {x ∈ E|f(x) ≥ y− 1/k}. This time, Ek is not empty by the definition

of a least upper bound and so it must be compact. Therefore, there is an

x ∈
⋂∞

k=1 Ek. Since f(x) ≥ y − 1/k for all k, f(x) = y and f achieves its

maximum value at x. �


