PART II. SEQUENCES OF REAL NUMBERS

II.1. CONVERGENCE

Definition 1. A sequence is a real-valued function f whose domain is the set positive integers
(N). The numbers f(1), f(2), --- are called the terms of the sequence.

Notation Function notation vs subscript notation:

f)=s1, f2)=s2,-++, f(n)=sn, - .

In discussing sequences the subscript notation is much more common than functional notation. We’ll
use subscript notation throughout our treatment of analysis.

Specifying a sequence There are several ways to specify a sequence.

1. By giving the function. For example:

1 1 L. 1 1 1 1

(a) Sn = o {sn} = {ﬁ} This is the sequence {1,5, 3 ’E"”}'
n—1 L. 1 2 3 n—1

(b) s = m— This is the sequence {0,5, CUERREE .

(¢) s, = (—=1)"n? This is the sequence {—1,4,-9,16,...,(—1)"n?...}.

2. By giving the first few terms to establish a pattern, leaving it to you to find the function. This
is risky — it might not be easy to recognize the pattern and/or you can be misled.

(a) {sn} =1{0,1,0,1,0,1,...}. The pattern here is obvious; can you devise the function? It’s
1—-(-1)"
Sn:% . Sn_{ 0, nodd

1, n even

n

5 10 17 26 n?+1
(b) {Sn}_{2a§a§azaga"'}; Sn = .

(c) {sn}=1{2,4,8,16,32,...}. What is s¢? What is the function? While you might say 64
and s, = 2", the function I have in mind gives sg = 7/6:

T 64
n=2" 4+ (n—1)(n—2)(n—-3)(n—4)(n—5) | — -
s =2 (= Do =20 =B~ i —5) | 7~ 1]
3. By a recursion formula. For example:
(a) ! 1. The first 5 terms are 111 L1 Assuming that
Snt1 = Sn, S1=1. r rms ar R i umin
T ! 26’247 120 &
1
the pattern continues s, = -
n!

1
(b) Spt1 = §(sn + 1), s1 =1. The first 5 terms are {1,1,1,1,1,...}. Assuming that the

pattern continues s, =1 for all n; {s,} isa “constant” sequence.
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Definition 2. A sequence {s,} converges to the number s if to each € > 0 there corresponds
a positive integer N such that

|sn, —s| <€ foralln> N.

The number s is called the limit of the sequence.

Notation “{s,} converges to s’ is denoted by

lim s, =s, orby lims,=s, orby s,—s.
n—oo

A sequence that does not converge is said to diverge.
Examples Which of the sequences given above converge and which diverge; give the limits of the
convergent sequences.
THEOREM 1. If s, —s and s, —t, then s=1t. That is, the limit of a convergent sequence

18 unique.

Proof: Suppose s #t. Assume t > s and let e =¢—s. Since s, — s, there exists a positive
integer N; such that |s—s,| <¢e/2 for all n > Nj. Since s, — t, there exists a positive integer
Ny such that |t —s,| <e€/2 forall n> Ny. Let N =max{N;, N2} and choose a positive integer
k> N. Then

€
—=€e=t—s

€
t—s:|t—s|:|t—sk+sk—s|§|t—sk|+|s—sk|<§+2 ,

a contradiction. Therefore, s =1t¢.

THEOREM 2. If {s,} converges, then {s,} is bounded.

Proof: Suppose s, — s. There exists a positive integer N such that |s—s,| <1 forall n > N.
Therefore, it follows that

[sn|=lsn — s+ 8| <l|sp—s|+|s|] <1+4]|s| forall n>N.

Let M = max{|s1], |s2], .-, |sn], 1+ |s|}. Then |s,| < M for all n. Therefore {s,} is
bounded.

THEOREM 3. Let {s,} and {a,} be sequences and suppose that there is a positive number k
and a positive integer N such that

|sn| < kay, foralln > N.

If a, — 0, then s, — 0.

Proof: Note first that a, >0 for all n > N. Since a,, — 0, there exists a positive integer N
such that |a,| < ¢/k. Without loss of generality, assume that N; > N. Then, for all n > Ny,

|sn—0|:|sn|§kan<k£:e.
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Therefore, s, — 0.

Corollary Let {s,} and {a,} be sequences and let s € R. Suppose that there is a positive
number k£ and a positive integer N such that

|sn — s| < ka, foralln> N.

If a, — 0, then s, — s.

Exercises 2.1

1. True — False. Justify your answer by citing a theorem, giving a proof, or giving a counter-
example.
(a) If s, — s, then s,41 — s.

(b) If s, — s and t, — s, then there is a positive integer N such that s, =t, for all
n > N.

(¢) Every bounded sequence converges

(d) If to each € > 0 there is a positive integer N such that n > N implies s, <¢, then

Ssn — 0.
(e) If s, — s, then s is an accumulation point of the set S = {s1, s2, ---}.
3 1
9. Prove that lim > — = 3.
n+2
3. Prove that lim ——— = 0.
n

4. Prove or give a counterexample:

(a) If {s,} converges, then {|s,|} converges.

(b) If {|sn|} converges, then {s,} converges.
5. Give an example of:

(a) A convergent sequence of rational numbers having an irrational limit.

(b) A convergent sequence of irrational numbers having a rational limit.
6. Give the first six terms of the sequence and then give the n'* term

(a) s1 =1, sp41 = %(sn +1)

(b) s1 =1, spy1= %sn +1

(¢) s1=1, Spt1=2s,+1
7. use induction to prove the following assertions:

n+1 n
Tsn, then Sp = ﬁ

1
(b) If S1 =1 and Sn+1:Sn—m,

(a) If s1 =1 and s,41 =

1
then s, = —.
n
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8. Let 7 be a real number, r # 0. Define a sequence {S,} by

S =1

Sy = 1+4r

Sy = 147472

Sy = 1+r+ri4. 4t

(a) Suppose r=1. Whatis S, for S,=1,2,3,...7
(b) Suppose r # 1. Find a formula for S,.

9. Set a, = m, n=1,2,3,..., and form the sequence
S = o
So = ai+as
S3 = ai;+az+as
Sn = ar+tar+az+---+an

Find a formula for S,,.

II.2. LIMIT THEOREMS

THEOREM 4. Suppose s, — s and t, —t. Then:

1. sy, +t, > s+t.
2. 8 —tp > s—1t.

3. sptn, — st.

Special case: ks, — ks for any number k.

4. S$p/tn — s/t provided t#0 and t, #0 for all n.

THEOREM 5. Suppose s, — s and t, —t. If s, <t, forall n, then s <t.

—t
Proof: Suppose s >t. Let e = ST Since s, — s, there exists a positive integer N; such that
|sn, —s| < e for all n > Ny. This implies that s —e < s, < s+¢ for all n > N;j. Similarly, there
exists a positive integer Ny such that ¢t —e < ¢, <t+e forall n> Ny. Let N =max{Ny, Na}.
Then, for all n > N, we have
s—t s+t

tn<t+e:t+T: 5 =s—€< S,
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which contradicts the assumption s, <t, for all n.

Corollary Suppose t, —t. If t, >0 forall n, then t > 0.

Infinite Limits

Definition 3. A sequence {s,} divergesto +oo (s, — +00) if to each real number M there
is a positive integer N such that s, > M for all n> N. {s,} diverges to —co (s, — —00)
if to each real number M there is a positive integer N such that s, < M for all n > N.

THEOREM 6. Suppose that {s,} and {t,} are sequences such that s, <t, for all n.

1. If s, — +o00, then t, — +oo.
2. If t, — —o0, then s, — —0.

THEOREM 7. Let {s,} be a sequence of positive numbers. Then s, — +oo if and only if
1/sp, — 0.

Proof: Suppose s, — co. Let ¢ >0 and set M = 1/e. Then there exists a positive integer N
such that s, > M for all n > N. Since s, >0,

1/sp <1/M =€ foralln>N
which implies 1/s, — 0.

Now suppose that 1/s, — 0. Choose any positive number M and let ¢ = 1/M. Then there
exists a positive integer N such that

1 1 . 1 1
O<;<€—M forall n > N. that is, ;<M

Since s, >0 for all n, 1/s, <1/M for all n > N implies s, > M for all n > N. Therefore,

Sp — 0.

Exercises 2.2

1. Prove or give a counterexample.

(a
(b

If s, s and s, >0 forall n, then s> 0.
If {s,} and {t,} are divergent sequences, then {s, +¢,} is divergent.

c) If {sp,} and {t,} are divergent sequences, then {s,t,} is divergent.

)
)
()
(d) If {s,} and {s, +t,} are convergent sequences, then {t,} is convergent.
)
)

(e) If {sp} and {s,t,} are convergent sequences, then {¢,} is convergent.
(f

2. Determine the convergence or divergence of {s,}. Find any limits that exist.

If {s,} is not bounded above, then {s,} diverges to +oc.
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n — b n —

(a) s T (b) s s
(=1)"™n 23n

(¢) sn= (d) s, =
2n —1 32n
2_2 1 2

(©) =" () = —o
n+1 1+3n

3. Prove the following:

(a) nlirrgo (\/n2+1—n) =0
(b) nlirrgo (\/nQ—i—n—n) = %

4. Prove Theorem 4.
5. Prove Theorem 6.

6. Let {s,}, {tn}, and {u,} be sequnces such that s, <t, <u, for all n. Prove that if
$p — L and u, — L, then t, — L.

II.3. MONOTONE SEQUENCES AND CAUCHY SEQUENCES

Monotone Sequences

Definition 4. A sequence {s,} isincreasing if s, < sp41 for all n; {s,} is decreasing if

Sn > Spa1 for all m. A sequence is monotone if it is increasing or if it is decreasing.

Examples

(a) 1,%, %, %, cee %, ... is a decreasing sequence.

(b) 2, 4, 8, 16, ..., 2™, ... is an increasing sequence.

(¢) 1,1,3,3,5, 5, ..., 2n—1, 2n— 1, ... is an increasing sequence.
(d) 1, %, 3, %, 5, ... is not monotonic.

Some methods for showing monotonicity:

a) To show that a sequence is increasing, show that ntl > 1 for all n. For decreasing, show
g g
Sn
Entl <1 forall n.
Sn

n

The sequence s, = is increasing: Since

sppr . (n+1)/(n+2) n+1 n+17n2+2n+1>1
s,  n/(n+1)  n+2 n nZ+2n
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(b) By induction. For example, let {s,} be the sequence defined recursively by

Sp+1 =1+ /50, s1=1.

We show that {s,} isincreasing. Let S be the set of positive integers for which sgy1 > si.
Since so =14++v1=2>1, 1€ S. Assume that k € S; that is, that Sk+1 > Sk. Consider

Sk+2:
Spy2 =L+ /Spy1 = 1+ /s = Sp41.

Therefore, sgy1 € S and {s,} is increasing.
THEOREM 8. A monotone sequence is convergent if and only if it is bounded.

Proof: Let {s,} be a monotone sequence.
If {s,} is convergent, then it is bounded (Theorem 2).

Now suppose that {s,} is a bounded, monotone sequence. In particular, suppose {s,} is
increasing. Let w=sup{s,} andlet e be a positive number. Then there exists a positive integer
N such that u—e€ < sy <wu. Since {s,} is increasing, v —e¢ < s, < u for all n > N. Therefore,
|u—sp| <e forall n>N and s, — u.

A similar argument holds for the case {s,} decreasing.

THEOREM 9. (a) If {sn,} is increasing and unbounded, then s, — +o00.

(b) If {sn} is decreasing and unbounded, then s, — —oo.

Proof: (a) Since {s,} is increasing, s, > s; for all n. Therefore, {s,} is bounded below.
Since {s,} is unbounded, it is unbounded above and to each positive number M there is a positive
integer N such that sy > M. Again, since {s,} is increasing, s, > sy > M for all n > N.

Therefore s, — oco.

The proof of (b) is left as an exercise.

Cauchy Sequences

Definition 5. A sequence {s,} is a Cauchy sequence if to ecach € > 0 there is a positive integer
N such that

m, n >N implies |sn — Sm| < €.
THEOREM 10. Every convergent sequence is a Cauchy sequence.

Proof: Suppose s, — s. Let e > 0. There exists a positive integer N such that |s— s,| < €/2
for all n > N. Let n, m > N. Then
€ €
[$m — Sn|=lsm —s+s—sn| <|sm—8|+|s—sn| <=+ ==¢

2 2

Therefore {s,} is a Cauchy sequence.

THEOREM 11. Every Cauchy sequence is bounded.
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Proof: Let {s,} be a Cauchy sequence. There exists a positive integer N such that |s,—sn,| <1
whenever n, m > M. Therefore

[$n] = |sn — sn+1 + Sn+1| < |$n — Sn41] + [sn+1] < 1+ |syy1| forall n> N.
Now let M =max {|s1], |s2], ..., |sn|, 1+ |sn41|}. Then |s,| < M forall n.

THEOREM 12. A sequence {s,} is convergent if and only if it is a Cauchy sequence.

Exercises 2.3

1. True — False. Justify your answer by citing a theorem, giving a proof, or giving a counter-

example.
(a) If a monotone sequence is bounded, then it is convergent.
(b

(c

(d) If a convergent sequence is bounded, then it is monotone.

If a bounded sequence is monotone, then it is convergent.

If a convergent sequence is monotone, then it is bounded.

)
)
)
)

2. Give an example of a sequence having the given properties.

(a) Cauchy, but not monotone.
(b) Monotone, but not Cauchy.
(¢) Bounded, but not Cauchy.

3. Show that the sequence {s,} defined by s; =1 and s,4+1 = %(sn +5) is monotone and
bounded. Find the limit.

4. Show that the sequence {s,} defined by s; =2 and s,41 = v2s, + 1 is monotone and
bounded. Find the limit.

5. Show that the sequence {s,} defined by s; =1 and s,41 = /s, +6 is monotone and
bounded. Find the limit.

6. Prove that a bounded decreasing sequence converges to its greatest lower bound.

7. Prove Theorem 9 (b).

I1.4. SUBSEQUENCES

Definition 6. Given a sequence {s,}. Let {nr} be a sequence of positive integers such that
ny <mng <ng<---. The sequence {sp,} 1s called a subsequence of {s,}.

Examples

THEOREM 13. If {s,} converges to s, then every subsequence {sn, of {sn} also converges
to s.
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Corollary If {s,} has a subsequence {¢,} that converges to « and a subsequence {u,} that
converges to [ with « # 3, then {s,} does not converge.

THEOREM 14. Every bounded sequence has a convergent subsequence.

THEOREM 15. FEvery unbounded sequence has a monotone subsequence that diverges either to

+0o0 orto —oo.

Limit Superior and Limit Inferior

Definition 7. Let {s,} be a bounded sequence. A number « is a subsequential limit of {s,}

if there is a subsequence {sn,} of {sn} such that s, — a.

Examples

Let {s,} be a bounded sequence. Let
S = {a: a is a subsequential limit of {s,}.

Then:

1. S#0.
2. S is a bounded set.

Definition 8. Let {s,} be a bounded sequence and let S be its set of subsequential limits. The
limit superior of {s,} (denoted by lim sup s,) is

lim sup s, = sup S.
The limit inferior of {s,} (denoted by lim infs,) is

lim inf sp, = inf S.
Examples
Clearly, lim inf s, <lim sup s,,.

Definition 9. Let {s,} be a bounded sequence. {s,} oscillates if lim inf s, < lim sup s,.

Exercises 2.4

1. True — False. Justify your answer by citing a theorem, giving a proof, or giving a counter-

example.

(a) A sequence {s,} convergesto s if and only if every subsequence of {s,} converges to

S.
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(b) Every bounded sequence is convergent.

(c) Let {sp} be a bounded sequence. If {s,} oscillates, then the set S of subsequential
limits of {s,} has at least two points.

(d) Every sequence has a convergent subsequence.

(e) {sn} converges to s if and only if lim inf s, = lim sup s,, = s.
2. Prove or give a counterexample.

a) Every oscillating sequence has a convergent subsequence.

(
(b) Every oscillating sequence diverges.
(
(d

)
)
¢) Every divergent sequence oscillates.
) Every bounded sequence has a Cauchy subsequence.
)

(e) Every monotone sequence has a bounded subsequence.
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