PART II. SEQUENCES OF REAL NUMBERS

II.1. CONVERGENCE

Definition 1. A sequence is a real-valued function f whose domain is the set positive integers (\mathbb{N}) . The numbers $f(1), f(2), \cdots$ are called the **terms** of the sequence.

Notation Function notation vs subscript notation:

$$f(1) \equiv s_1, f(2) \equiv s_2, \cdots, f(n) \equiv s_n, \cdots$$

In discussing sequences the subscript notation is much more common than functional notation. We'll use subscript notation throughout our treatment of analysis.

Specifying a sequence There are several ways to specify a sequence.

1. By giving the function. For example:

(a)
$$s_n = \frac{1}{n}$$
 or $\{s_n\} = \left\{\frac{1}{n}\right\}$. This is the sequence $\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots, \frac{1}{n}, \dots\}$.
(b) $s_n = \frac{n-1}{n}$. This is the sequence $\{0, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \dots, \frac{n-1}{n}, \dots\}$.
(c) $s_n = (-1)^n n^2$. This is the sequence $\{-1, 4, -9, 16, \dots, (-1)^n n^2, \dots\}$.

- 2. By giving the first few terms to establish a pattern, leaving it to you to find the function. This is risky it might not be easy to recognize the pattern and/or you can be misled.
 - (a) $\{s_n\} = \{0, 1, 0, 1, 0, 1, \ldots\}$. The pattern here is obvious; can you devise the function? It's $s_n = \frac{1 (-1)^n}{2}$ or $s_n = \begin{cases} 0, & n \text{ odd} \\ 1, & n \text{ even} \end{cases}$
 - (b) $\{s_n\} = \left\{2, \frac{5}{2}, \frac{10}{3}, \frac{17}{4}, \frac{26}{5}, \ldots\right\}, \quad s_n = \frac{n^2 + 1}{n}.$
 - (c) $\{s_n\} = \{2, 4, 8, 16, 32, \ldots\}$. What is s_6 ? What is the function? While you might say 64 and $s_n = 2^n$, the function I have in mind gives $s_6 = \pi/6$:

$$s_n = 2^n + (n-1)(n-2)(n-3)(n-4)(n-5)\left[\frac{\pi}{720} - \frac{64}{120}\right]$$

- 3. By a recursion formula. For example:
 - (a) $s_{n+1} = \frac{1}{n+1} s_n$, $s_1 = 1$. The first 5 terms are $\left\{1, \frac{1}{2}, \frac{1}{6}, \frac{1}{24}, \frac{1}{120}, \ldots\right\}$. Assuming that the pattern continues $s_n = \frac{1}{n!}$.
 - (b) $s_{n+1} = \frac{1}{2}(s_n + 1)$, $s_1 = 1$. The first 5 terms are $\{1, 1, 1, 1, 1, 1, ...\}$. Assuming that the pattern continues $s_n = 1$ for all n; $\{s_n\}$ is a "constant" sequence.

Definition 2. A sequence $\{s_n\}$ converges to the number s if to each $\epsilon > 0$ there corresponds a positive integer N such that

$$|s_n - s| < \epsilon$$
 for all $n > N$.

The number s is called the **limit** of the sequence.

Notation " $\{s_n\}$ converges to s" is denoted by

$$\lim_{n \to \infty} s_n = s, \quad \text{or by} \quad \lim s_n = s, \quad \text{or by} \quad s_n \to s.$$

A sequence that does not converge is said to **diverge**.

Examples Which of the sequences given above converge and which diverge; give the limits of the convergent sequences.

THEOREM 1. If $s_n \to s$ and $s_n \to t$, then s = t. That is, the limit of a convergent sequence is unique.

Proof: Suppose $s \neq t$. Assume t > s and let $\epsilon = t - s$. Since $s_n \to s$, there exists a positive integer N_1 such that $|s - s_n| < \epsilon/2$ for all $n > N_1$. Since $s_n \to t$, there exists a positive integer N_2 such that $|t - s_n| < \epsilon/2$ for all $n > N_2$. Let $N = \max\{N_1, N_2\}$ and choose a positive integer k > N. Then

$$t - s = |t - s| = |t - s_k + s_k - s| \le |t - s_k| + |s - s_k| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon = t - s,$$

a contradiction. Therefore, s = t.

THEOREM 2. If $\{s_n\}$ converges, then $\{s_n\}$ is bounded.

Proof: Suppose $s_n \to s$. There exists a positive integer N such that $|s - s_n| < 1$ for all n > N. Therefore, it follows that

 $|s_n| = |s_n - s + s| \le |s_n - s| + |s| < 1 + |s|$ for all n > N.

Let $M = \max\{|s_1|, |s_2|, ..., |s_N|, 1+|s|\}$. Then $|s_n| < M$ for all *n*. Therefore $\{s_n\}$ is bounded.

THEOREM 3. Let $\{s_n\}$ and $\{a_n\}$ be sequences and suppose that there is a positive number k and a positive integer N such that

$$|s_n| \leq k a_n$$
 for all $n > N$.

If $a_n \to 0$, then $s_n \to 0$.

Proof: Note first that $a_n \ge 0$ for all n > N. Since $a_n \to 0$, there exists a positive integer N_1 such that $|a_n| < \epsilon/k$. Without loss of generality, assume that $N_1 \ge N$. Then, for all $n > N_1$,

$$|s_n - 0| = |s_n| \le k \, a_n < k \, \frac{\epsilon}{k} = \epsilon.$$

Therefore, $s_n \to 0$.

Corollary Let $\{s_n\}$ and $\{a_n\}$ be sequences and let $s \in \mathbb{R}$. Suppose that there is a positive number k and a positive integer N such that

$$|s_n - s| \le k a_n$$
 for all $n > N$.

If $a_n \to 0$, then $s_n \to s$.

Exercises 2.1

- 1. True False. Justify your answer by citing a theorem, giving a proof, or giving a counterexample.
 - (a) If $s_n \to s$, then $s_{n+1} \to s$.
 - (b) If $s_n \to s$ and $t_n \to s$, then there is a positive integer N such that $s_n = t_n$ for all n > N.
 - (c) Every bounded sequence converges
 - (d) If to each $\epsilon > 0$ there is a positive integer N such that n > N implies $s_n < \epsilon$, then $s_n \to 0$.
 - (e) If $s_n \to s$, then s is an accumulation point of the set $S = \{s_1, s_2, \dots\}$.

2. Prove that
$$\lim \frac{3n+1}{n+2} = 3$$
.

3. Prove that
$$\lim \frac{\sin n}{n} = 0.$$

- 4. Prove or give a counterexample:
 - (a) If $\{s_n\}$ converges, then $\{|s_n|\}$ converges.
 - (b) If $\{|s_n|\}$ converges, then $\{s_n\}$ converges.
- 5. Give an example of:
 - (a) A convergent sequence of rational numbers having an irrational limit.
 - (b) A convergent sequence of irrational numbers having a rational limit.
- 6. Give the first six terms of the sequence and then give the n^{th} term

(a)
$$s_1 = 1$$
, $s_{n+1} = \frac{1}{2}(s_n + 1)$
(b) $s_1 = 1$, $s_{n+1} = \frac{1}{2}s_n + 1$

- (c) $s_1 = 1$, $s_{n+1} = 2s_n + 1$
- 7. use induction to prove the following assertions:

(a) If
$$s_1 = 1$$
 and $s_{n+1} = \frac{n+1}{2n} s_n$, then $s_n = \frac{n}{2^{n-1}}$.
(b) If $s_1 = 1$ and $s_{n+1} = s_n - \frac{1}{n(n+1)}$, then $s_n = \frac{1}{n}$.

8. Let r be a real number, $r \neq 0$. Define a sequence $\{S_n\}$ by

$$S_1 = 1$$

$$S_2 = 1+r$$

$$S_3 = 1+r+r^2$$

$$\vdots$$

$$S_n = 1+r+r^2+\dots+r^{n-1}$$

$$\vdots$$

- (a) Suppose r = 1. What is S_n for $S_n = 1, 2, 3, \ldots$?
- (b) Suppose $r \neq 1$. Find a formula for S_n .

9. Set
$$a_n = \frac{1}{n(n+1)}$$
, $n = 1, 2, 3, \ldots$, and form the sequence

$$S_{1} = a_{1}$$

$$S_{2} = a_{1} + a_{2}$$

$$S_{3} = a_{1} + a_{2} + a_{3}$$

$$\vdots$$

$$S_{n} = a_{1} + a_{2} + a_{3} + \dots + a_{n}$$

$$\vdots$$

Find a formula for S_n .

II.2. LIMIT THEOREMS

THEOREM 4. Suppose $s_n \rightarrow s$ and $t_n \rightarrow t$. Then:

- 1. $s_n + t_n \rightarrow s + t$.
- 2. $s_n t_n \rightarrow s t$.
- 3. $s_n t_n \rightarrow st$.

Special case: $ks_n \rightarrow ks$ for any number k.

4. $s_n/t_n \rightarrow s/t$ provided $t \neq 0$ and $t_n \neq 0$ for all n.

THEOREM 5. Suppose $s_n \to s$ and $t_n \to t$. If $s_n \leq t_n$ for all n, then $s \leq t$.

Proof: Suppose s > t. Let $\epsilon = \frac{s-t}{2}$. Since $s_n \to s$, there exists a positive integer N_1 such that $|s_n - s| < \epsilon$ for all $n > N_1$. This implies that $s - \epsilon < s_n < s + \epsilon$ for all $n > N_1$. Similarly, there exists a positive integer N_2 such that $t - \epsilon < t_n < t + \epsilon$ for all $n > N_2$. Let $N = \max\{N_1, N_2\}$. Then, for all n > N, we have

$$t_n < t + \epsilon = t + \frac{s-t}{2} = \frac{s+t}{2} = s - \epsilon < s_n$$

which contradicts the assumption $s_n \leq t_n$ for all n.

Corollary Suppose $t_n \to t$. If $t_n \ge 0$ for all n, then $t \ge 0$.

Infinite Limits

Definition 3. A sequence $\{s_n\}$ diverges to $+\infty$ $(s_n \to +\infty)$ if to each real number M there is a positive integer N such that $s_n > M$ for all n > N. $\{s_n\}$ diverges to $-\infty$ $(s_n \to -\infty)$ if to each real number M there is a positive integer N such that $s_n < M$ for all n > N.

THEOREM 6. Suppose that $\{s_n\}$ and $\{t_n\}$ are sequences such that $s_n \leq t_n$ for all n.

- 1. If $s_n \to +\infty$, then $t_n \to +\infty$.
- 2. If $t_n \to -\infty$, then $s_n \to -\infty$.

THEOREM 7. Let $\{s_n\}$ be a sequence of positive numbers. Then $s_n \to +\infty$ if and only if $1/s_n \to 0$.

Proof: Suppose $s_n \to \infty$. Let $\epsilon > 0$ and set $M = 1/\epsilon$. Then there exists a positive integer N such that $s_n > M$ for all n > N. Since $s_n > 0$,

$$1/s_n < 1/M = \epsilon$$
 for all $n > N$

which implies $1/s_n \to 0$.

Now suppose that $1/s_n \to 0$. Choose any positive number M and let $\epsilon = 1/M$. Then there exists a positive integer N such that

$$0 < \frac{1}{s_n} < \epsilon = \frac{1}{M} \quad \text{for all} \quad n > N. \quad \text{that is,} \quad \frac{1}{s_n} < \frac{1}{M}.$$

Since $s_n > 0$ for all n, $1/s_n < 1/M$ for all n > N implies $s_n > M$ for all n > N. Therefore, $s_n \to \infty$.

Exercises 2.2

- 1. Prove or give a counterexample.
 - (a) If $s_n \to s$ and $s_n > 0$ for all n, then s > 0.
 - (b) If $\{s_n\}$ and $\{t_n\}$ are divergent sequences, then $\{s_n + t_n\}$ is divergent.
 - (c) If $\{s_n\}$ and $\{t_n\}$ are divergent sequences, then $\{s_n t_n\}$ is divergent.
 - (d) If $\{s_n\}$ and $\{s_n + t_n\}$ are convergent sequences, then $\{t_n\}$ is convergent.
 - (e) If $\{s_n\}$ and $\{s_nt_n\}$ are convergent sequences, then $\{t_n\}$ is convergent.
 - (f) If $\{s_n\}$ is not bounded above, then $\{s_n\}$ diverges to $+\infty$.
- 2. Determine the convergence or divergence of $\{s_n\}$. Find any limits that exist.

(a)
$$s_n = \frac{3-2n}{1+n}$$

(b) $s_n = \frac{(-1)^n}{n+2}$
(c) $s_n = \frac{(-1)^n n}{2n-1}$
(d) $s_n = \frac{2^{3n}}{3^{2n}}$
(e) $s_n = \frac{n^2 - 2}{n+1}$
(f) $s_n = \frac{1+n+n^2}{1+3n}$

3. Prove the following:

(a)
$$\lim_{n \to \infty} \left(\sqrt{n^2 + 1} - n \right) = 0.$$

(b)
$$\lim_{n \to \infty} \left(\sqrt{n^2 + n} - n \right) = \frac{1}{2}.$$

- 4. Prove Theorem 4.
- 5. Prove Theorem 6.
- 6. Let $\{s_n\}$, $\{t_n\}$, and $\{u_n\}$ be sequeces such that $s_n \leq t_n \leq u_n$ for all n. Prove that if $s_n \to L$ and $u_n \to L$, then $t_n \to L$.

II.3. MONOTONE SEQUENCES AND CAUCHY SEQUENCES

Monotone Sequences

Definition 4. A sequence $\{s_n\}$ is increasing if $s_n \leq s_{n+1}$ for all n; $\{s_n\}$ is decreasing if $s_n \geq s_{n+1}$ for all n. A sequence is monotone if it is increasing or if it is decreasing.

Examples

- (a) $1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots, \frac{1}{n}, \ldots$ is a decreasing sequence.
- (b) 2, 4, 8, 16, \ldots , 2^n , \ldots is an increasing sequence.
- (c) 1, 1, 3, 3, 5, 5, ..., 2n-1, 2n-1, ... is an increasing sequence.
- (d) 1, $\frac{1}{2}$, 3, $\frac{1}{4}$, 5, ... is not monotonic.

Some methods for showing monotonicity:

(a) To show that a sequence is increasing, show that $\frac{s_{n+1}}{s_n} \ge 1$ for all n. For decreasing, show $\frac{s_{n+1}}{s_n} \le 1$ for all n. The sequence $s_n = \frac{n}{n+1}$ is increasing: Since $\frac{s_{n+1}}{s_n} = \frac{(n+1)/(n+2)}{n/(n+1)} = \frac{n+1}{n+2} \cdot \frac{n+1}{n} = \frac{n^2+2n+1}{n^2+2n} > 1$ (b) By induction. For example, let $\{s_n\}$ be the sequence defined recursively by

$$s_{n+1} = 1 + \sqrt{s_n}, \quad s_1 = 1.$$

We show that $\{s_n\}$ is increasing. Let S be the set of positive integers for which $s_{k+1} \ge s_k$. Since $s_2 = 1 + \sqrt{1} = 2 > 1$, $1 \in S$. Assume that $k \in S$; that is, that $s_{k+1} \ge s_k$. Consider s_{k+2} :

$$s_{k+2} = 1 + \sqrt{s_{k+1}} \ge 1 + \sqrt{s_k} = s_{k+1}.$$

Therefore, $s_{k+1} \in S$ and $\{s_n\}$ is increasing.

THEOREM 8. A monotone sequence is convergent if and only if it is bounded.

Proof: Let $\{s_n\}$ be a monotone sequence.

If $\{s_n\}$ is convergent, then it is bounded (Theorem 2).

Now suppose that $\{s_n\}$ is a bounded, monotone sequence. In particular, suppose $\{s_n\}$ is increasing. Let $u = \sup\{s_n\}$ and let ϵ be a positive number. Then there exists a positive integer N such that $u - \epsilon < s_N \le u$. Since $\{s_n\}$ is increasing, $u - \epsilon < s_n \le u$ for all n > N. Therefore, $|u - s_n| < \epsilon$ for all n > N and $s_n \to u$.

A similar argument holds for the case $\{s_n\}$ decreasing.

THEOREM 9. (a) If $\{s_n\}$ is increasing and unbounded, then $s_n \to +\infty$.

(b) If $\{s_n\}$ is decreasing and unbounded, then $s_n \to -\infty$.

Proof: (a) Since $\{s_n\}$ is increasing, $s_n \ge s_1$ for all n. Therefore, $\{s_n\}$ is bounded below. Since $\{s_n\}$ is unbounded, it is unbounded above and to each positive number M there is a positive integer N such that $s_N > M$. Again, since $\{s_n\}$ is increasing, $s_n \ge s_N > M$ for all n > N. Therefore $s_n \to \infty$.

The proof of (b) is left as an exercise.

Cauchy Sequences

Definition 5. A sequence $\{s_n\}$ is a **Cauchy sequence** if to each $\epsilon > 0$ there is a positive integer N such that

m, n > N implies $|s_n - s_m| < \epsilon$.

THEOREM 10. Every convergent sequence is a Cauchy sequence.

Proof: Suppose $s_n \to s$. Let $\epsilon > 0$. There exists a positive integer N such that $|s - s_n| < \epsilon/2$ for all n > N. Let n, m > N. Then

$$|s_m - s_n| = |s_m - s + s - s_n| \le |s_m - s| + |s - s_n| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

Therefore $\{s_n\}$ is a Cauchy sequence.

THEOREM 11. Every Cauchy sequence is bounded.

Proof: Let $\{s_n\}$ be a Cauchy sequence. There exists a positive integer N such that $|s_n - s_m| < 1$ whenever n, m > M. Therefore

 $|s_n| = |s_n - s_{N+1} + s_{N+1}| \le |s_n - s_{N+1}| + |s_{N+1}| < 1 + |s_{N+1}|$ for all n > N.

Now let $M = \max \{ |s_1|, |s_2|, \dots, |s_N|, 1 + |s_{N+1}| \}$. Then $|s_n| \le M$ for all n.

THEOREM 12. A sequence $\{s_n\}$ is convergent if and only if it is a Cauchy sequence.

Exercises 2.3

- 1. True False. Justify your answer by citing a theorem, giving a proof, or giving a counterexample.
 - (a) If a monotone sequence is bounded, then it is convergent.
 - (b) If a bounded sequence is monotone, then it is convergent.
 - (c) If a convergent sequence is monotone, then it is bounded.
 - (d) If a convergent sequence is bounded, then it is monotone.
- 2. Give an example of a sequence having the given properties.
 - (a) Cauchy, but not monotone.
 - (b) Monotone, but not Cauchy.
 - (c) Bounded, but not Cauchy.
- 3. Show that the sequence $\{s_n\}$ defined by $s_1 = 1$ and $s_{n+1} = \frac{1}{4}(s_n + 5)$ is monotone and bounded. Find the limit.
- 4. Show that the sequence $\{s_n\}$ defined by $s_1 = 2$ and $s_{n+1} = \sqrt{2s_n + 1}$ is monotone and bounded. Find the limit.
- 5. Show that the sequence $\{s_n\}$ defined by $s_1 = 1$ and $s_{n+1} = \sqrt{s_n + 6}$ is monotone and bounded. Find the limit.
- 6. Prove that a bounded decreasing sequence converges to its greatest lower bound.
- 7. Prove Theorem 9 (b).

II.4. SUBSEQUENCES

Definition 6. Given a sequence $\{s_n\}$. Let $\{n_k\}$ be a sequence of positive integers such that $n_1 < n_2 < n_3 < \cdots$. The sequence $\{s_{n_k}\}$ is called a subsequence of $\{s_n\}$.

Examples

THEOREM 13. If $\{s_n\}$ converges to s, then every subsequence $\{s_{n_k} \text{ of } \{s_n\}\ also converges to <math>s$.

Corollary If $\{s_n\}$ has a subsequence $\{t_n\}$ that converges to α and a subsequence $\{u_n\}$ that converges to β with $\alpha \neq \beta$, then $\{s_n\}$ does not converge.

THEOREM 14. Every bounded sequence has a convergent subsequence.

THEOREM 15. Every unbounded sequence has a monotone subsequence that diverges either to $+\infty$ or to $-\infty$.

Limit Superior and Limit Inferior

Definition 7. Let $\{s_n\}$ be a bounded sequence. A number α is a subsequential limit of $\{s_n\}$ if there is a subsequence $\{s_{n_k}\}$ of $\{s_n\}$ such that $s_{n_k} \to \alpha$.

Examples

Let $\{s_n\}$ be a bounded sequence. Let

 $S = \{ \alpha : \alpha \text{ is a subsequential limit of } \{s_n\}.$

Then:

1. $S \neq \emptyset$.

2. S is a bounded set.

Definition 8. Let $\{s_n\}$ be a bounded sequence and let S be its set of subsequential limits. The limit superior of $\{s_n\}$ (denoted by lim sup s_n) is

 $lim \ sup \ s_n = sup \ S.$

The limit inferior of $\{s_n\}$ (denoted by lim inf s_n) is

$$lim inf s_n = inf S.$$

Examples

Clearly, $\liminf s_n \leq \limsup s_n$.

Definition 9. Let $\{s_n\}$ be a bounded sequence. $\{s_n\}$ oscillates if $\liminf s_n < \limsup s_n$.

Exercises 2.4

- 1. True False. Justify your answer by citing a theorem, giving a proof, or giving a counterexample.
 - (a) A sequence $\{s_n\}$ converges to s if and only if every subsequence of $\{s_n\}$ converges to s.

- (b) Every bounded sequence is convergent.
- (c) Let $\{s_n\}$ be a bounded sequence. If $\{s_n\}$ oscillates, then the set S of subsequential limits of $\{s_n\}$ has at least two points.
- (d) Every sequence has a convergent subsequence.
- (e) $\{s_n\}$ converges to s if and only if $\liminf s_n = \limsup s_n = s$.
- 2. Prove or give a counterexample.
 - (a) Every oscillating sequence has a convergent subsequence.
 - (b) Every oscillating sequence diverges.
 - (c) Every divergent sequence oscillates.
 - (d) Every bounded sequence has a Cauchy subsequence.
 - (e) Every monotone sequence has a bounded subsequence.