PART II. SEQUENCES OF REAL NUMBERS

II.1. CONVERGENCE

Definition 1. A sequence is a real-valued function f whose domain is the set positive integers (\mathbb{N}). The numbers $f(1), f(2), \cdots$ are called the terms of the sequence.

Notation Function notation vs subscript notation:

$$
f(1) \equiv s_{1}, f(2) \equiv s_{2}, \cdots, f(n) \equiv s_{n}, \cdots
$$

In discussing sequences the subscript notation is much more common than functional notation. We'll use subscript notation throughout our treatment of analysis.

Specifying a sequence There are several ways to specify a sequence.

1. By giving the function. For example:
(a) $s_{n}=\frac{1}{n}$ or $\left\{s_{n}\right\}=\left\{\frac{1}{n}\right\}$. This is the sequence $\left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots, \frac{1}{n}, \ldots\right\}$.
(b) $s_{n}=\frac{n-1}{n}$. This is the sequence $\left\{0, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \ldots, \frac{n-1}{n}, \ldots\right\}$.
(c) $s_{n}=(-1)^{n} n^{2}$. This is the sequence $\left\{-1,4,-9,16, \ldots,(-1)^{n} n^{2}, \ldots\right\}$.
2. By giving the first few terms to establish a pattern, leaving it to you to find the function. This is risky - it might not be easy to recognize the pattern and/or you can be misled.
(a) $\left\{s_{n}\right\}=\{0,1,0,1,0,1, \ldots\}$. The pattern here is obvious; can you devise the function? It's

$$
s_{n}=\frac{\left.1-(-1)^{n}\right)}{2} \text { or } s_{n}= \begin{cases}0, & n \text { odd } \\ 1, & n \text { even }\end{cases}
$$

(b) $\left\{s_{n}\right\}=\left\{2, \frac{5}{2}, \frac{10}{3}, \frac{17}{4}, \frac{26}{5}, \ldots\right\}, \quad s_{n}=\frac{n^{2}+1}{n}$.
(c) $\left\{s_{n}\right\}=\{2,4,8,16,32, \ldots\}$. What is s_{6} ? What is the function? While you might say 64 and $s_{n}=2^{n}$, the function I have in mind gives $s_{6}=\pi / 6$:

$$
s_{n}=2^{n}+(n-1)(n-2)(n-3)(n-4)(n-5)\left[\frac{\pi}{720}-\frac{64}{120}\right]
$$

3. By a recursion formula. For example:
(a) $s_{n+1}=\frac{1}{n+1} s_{n}, \quad s_{1}=1$. The first 5 terms are $\left\{1, \frac{1}{2}, \frac{1}{6}, \frac{1}{24}, \frac{1}{120}, \ldots\right\}$. Assuming that the pattern continues $s_{n}=\frac{1}{n!}$.
(b) $s_{n+1}=\frac{1}{2}\left(s_{n}+1\right), \quad s_{1}=1$. The first 5 terms are $\{1,1,1,1,1, \ldots\}$. Assuming that the pattern continues $s_{n}=1$ for all $n ;\left\{s_{n}\right\}$ is a "constant" sequence.

Definition 2. A sequence $\left\{s_{n}\right\}$ converges to the number s if to each $\epsilon>0$ there corresponds a positive integer N such that

$$
\left|s_{n}-s\right|<\epsilon \quad \text { for all } n>N .
$$

The number s is called the limit of the sequence.

Notation " $\left\{s_{n}\right\}$ converges to $s "$ is denoted by

$$
\lim _{n \rightarrow \infty} s_{n}=s, \quad \text { or by } \quad \lim s_{n}=s, \quad \text { or by } \quad s_{n} \rightarrow s
$$

A sequence that does not converge is said to diverge.

Examples Which of the sequences given above converge and which diverge; give the limits of the convergent sequences.

THEOREM 1. If $s_{n} \rightarrow s$ and $s_{n} \rightarrow t$, then $s=t$. That is, the limit of a convergent sequence is unique.

Proof: Suppose $s \neq t$. Assume $t>s$ and let $\epsilon=t-s$. Since $s_{n} \rightarrow s$, there exists a positive integer N_{1} such that $\left|s-s_{n}\right|<\epsilon / 2$ for all $n>N_{1}$. Since $s_{n} \rightarrow t$, there exists a positive integer N_{2} such that $\left|t-s_{n}\right|<\epsilon / 2$ for all $n>N_{2}$. Let $N=\max \left\{N_{1}, N_{2}\right\}$ and choose a positive integer $k>N$. Then

$$
t-s=|t-s|=\left|t-s_{k}+s_{k}-s\right| \leq\left|t-s_{k}\right|+\left|s-s_{k}\right|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon=t-s
$$

a contradiction. Therefore, $s=t$.
THEOREM 2. If $\left\{s_{n}\right\}$ converges, then $\left\{s_{n}\right\}$ is bounded.

Proof: Suppose $s_{n} \rightarrow s$. There exists a positive integer N such that $\left|s-s_{n}\right|<1$ for all $n>N$. Therefore, it follows that

$$
\left|s_{n}\right|=\left|s_{n}-s+s\right| \leq\left|s_{n}-s\right|+|s|<1+|s| \quad \text { for all } \quad n>N .
$$

Let $M=\max \left\{\left|s_{1}\right|,\left|s_{2}\right|, \ldots,\left|s_{N}\right|, 1+|s|\right\}$. Then $\left|s_{n}\right|<M$ for all n. Therefore $\left\{s_{n}\right\}$ is bounded.

THEOREM 3. Let $\left\{s_{n}\right\}$ and $\left\{a_{n}\right\}$ be sequences and suppose that there is a positive number k and a positive integer N such that

$$
\left|s_{n}\right| \leq k a_{n} \quad \text { for all } n>N
$$

If $a_{n} \rightarrow 0$, then $s_{n} \rightarrow 0$.

Proof: Note first that $a_{n} \geq 0$ for all $n>N$. Since $a_{n} \rightarrow 0$, there exists a positive integer N_{1} such that $\left|a_{n}\right|<\epsilon / k$. Without loss of generality, assume that $N_{1} \geq N$. Then, for all $n>N_{1}$,

$$
\left|s_{n}-0\right|=\left|s_{n}\right| \leq k a_{n}<k \frac{\epsilon}{k}=\epsilon
$$

Therefore, $s_{n} \rightarrow 0$.

Corollary Let $\left\{s_{n}\right\}$ and $\left\{a_{n}\right\}$ be sequences and let $s \in \mathbb{R}$. Suppose that there is a positive number k and a positive integer N such that

$$
\left|s_{n}-s\right| \leq k a_{n} \quad \text { for all } n>N
$$

If $a_{n} \rightarrow 0$, then $s_{n} \rightarrow s$.

Exercises 2.1

1. True - False. Justify your answer by citing a theorem, giving a proof, or giving a counterexample.
(a) If $s_{n} \rightarrow s$, then $s_{n+1} \rightarrow s$.
(b) If $s_{n} \rightarrow s$ and $t_{n} \rightarrow s$, then there is a positive integer N such that $s_{n}=t_{n}$ for all $n>N$.
(c) Every bounded sequence converges
(d) If to each $\epsilon>0$ there is a positive integer N such that $n>N$ implies $s_{n}<\epsilon$, then $s_{n} \rightarrow 0$.
(e) If $s_{n} \rightarrow s$, then s is an accumulation point of the set $S=\left\{s_{1}, s_{2}, \cdots\right\}$.
2. Prove that $\lim \frac{3 n+1}{n+2}=3$.
3. Prove that $\lim \frac{\sin n}{n}=0$.
4. Prove or give a counterexample:
(a) If $\left\{s_{n}\right\}$ converges, then $\left\{\left|s_{n}\right|\right\}$ converges.
(b) If $\left\{\left|s_{n}\right|\right\}$ converges, then $\left\{s_{n}\right\}$ converges.
5. Give an example of:
(a) A convergent sequence of rational numbers having an irrational limit.
(b) A convergent sequence of irrational numbers having a rational limit.
6. Give the first six terms of the sequence and then give the $\mathrm{n}^{\text {th }}$ term
(a) $s_{1}=1, \quad s_{n+1}=\frac{1}{2}\left(s_{n}+1\right)$
(b) $s_{1}=1, \quad s_{n+1}=\frac{1}{2} s_{n}+1$
(c) $s_{1}=1, \quad s_{n+1}=2 s_{n}+1$
7. use induction to prove the following assertions:
(a) If $s_{1}=1$ and $s_{n+1}=\frac{n+1}{2 n} s_{n}$, then $s_{n}=\frac{n}{2^{n-1}}$.
(b) If $s_{1}=1$ and $s_{n+1}=s_{n}-\frac{1}{n(n+1)}$, then $s_{n}=\frac{1}{n}$.
8. Let r be a real number, $r \neq 0$. Define a sequence $\left\{S_{n}\right\}$ by

$$
\begin{aligned}
S_{1} & =1 \\
S_{2} & =1+r \\
S_{3} & =1+r+r^{2} \\
\vdots & \\
S_{n} & =1+r+r^{2}+\cdots+r^{n-1}
\end{aligned}
$$

(a) Suppose $r=1$. What is S_{n} for $S_{n}=1,2,3, \ldots$?
(b) Suppose $r \neq 1$. Find a formula for S_{n}.
9. Set $a_{n}=\frac{1}{n(n+1)}, n=1,2,3, \ldots$, and form the sequence

$$
\begin{aligned}
S_{1} & =a_{1} \\
S_{2} & =a_{1}+a_{2} \\
S_{3} & =a_{1}+a_{2}+a_{3} \\
\vdots & \\
S_{n} & =a_{1}+a_{2}+a_{3}+\cdots+a_{n}
\end{aligned}
$$

Find a formula for S_{n}.

II.2. LIMIT THEOREMS

THEOREM 4. Suppose $s_{n} \rightarrow s$ and $t_{n} \rightarrow t$. Then:

1. $s_{n}+t_{n} \rightarrow s+t$.
2. $s_{n}-t_{n} \rightarrow s-t$.
3. $s_{n} t_{n} \rightarrow s t$.

Special case: $k s_{n} \rightarrow k s$ for any number k.
4. $s_{n} / t_{n} \rightarrow s / t$ provided $t \neq 0$ and $t_{n} \neq 0$ for all n.

THEOREM 5. Suppose $s_{n} \rightarrow s$ and $t_{n} \rightarrow t$. If $s_{n} \leq t_{n}$ for all n, then $s \leq t$.

Proof: Suppose $s>t$. Let $\epsilon=\frac{s-t}{2}$. Since $s_{n} \rightarrow s$, there exists a positive integer N_{1} such that $\left|s_{n}-s\right|<\epsilon$ for all $n>N_{1}$. This implies that $s-\epsilon<s_{n}<s+\epsilon$ for all $n>N_{1}$. Similarly, there exists a positive integer N_{2} such that $t-\epsilon<t_{n}<t+\epsilon$ for all $n>N_{2}$. Let $N=\max \left\{N_{1}, N_{2}\right\}$. Then, for all $n>N$, we have

$$
t_{n}<t+\epsilon=t+\frac{s-t}{2}=\frac{s+t}{2}=s-\epsilon<s_{n}
$$

which contradicts the assumption $s_{n} \leq t_{n}$ for all n.

Corollary Suppose $t_{n} \rightarrow t$. If $t_{n} \geq 0$ for all n, then $t \geq 0$.

Infinite Limits

Definition 3. A sequence $\left\{s_{n}\right\}$ diverges to $+\infty\left(s_{n} \rightarrow+\infty\right)$ if to each real number M there is a positive integer N such that $s_{n}>M$ for all $n>N$. $\left\{s_{n}\right\}$ diverges to $-\infty\left(s_{n} \rightarrow-\infty\right)$ if to each real number M there is a positive integer N such that $s_{n}<M$ for all $n>N$.

THEOREM 6. Suppose that $\left\{s_{n}\right\}$ and $\left\{t_{n}\right\}$ are sequences such that $s_{n} \leq t_{n}$ for all n.

1. If $s_{n} \rightarrow+\infty$, then $t_{n} \rightarrow+\infty$.
2. If $t_{n} \rightarrow-\infty$, then $s_{n} \rightarrow-\infty$.

THEOREM 7. Let $\left\{s_{n}\right\}$ be a sequence of positive numbers. Then $s_{n} \rightarrow+\infty$ if and only if $1 / s_{n} \rightarrow 0$.

Proof: Suppose $s_{n} \rightarrow \infty$. Let $\epsilon>0$ and set $M=1 / \epsilon$. Then there exists a positive integer N such that $s_{n}>M$ for all $n>N$. Since $s_{n}>0$,

$$
1 / s_{n}<1 / M=\epsilon \quad \text { for all } n>N
$$

which implies $1 / s_{n} \rightarrow 0$.
Now suppose that $1 / s_{n} \rightarrow 0$. Choose any positive number M and let $\epsilon=1 / M$. Then there exists a positive integer N such that

$$
0<\frac{1}{s_{n}}<\epsilon=\frac{1}{M} \quad \text { for all } \quad n>N . \quad \text { that is, } \quad \frac{1}{s_{n}}<\frac{1}{M} .
$$

Since $s_{n}>0$ for all $n, 1 / s_{n}<1 / M$ for all $n>N$ implies $s_{n}>M$ for all $n>N$. Therefore, $s_{n} \rightarrow \infty$.

Exercises 2.2

1. Prove or give a counterexample.
(a) If $s_{n} \rightarrow s$ and $s_{n}>0$ for all n, then $s>0$.
(b) If $\left\{s_{n}\right\}$ and $\left\{t_{n}\right\}$ are divergent sequences, then $\left\{s_{n}+t_{n}\right\}$ is divergent.
(c) If $\left\{s_{n}\right\}$ and $\left\{t_{n}\right\}$ are divergent sequences, then $\left\{s_{n} t_{n}\right\}$ is divergent.
(d) If $\left\{s_{n}\right\}$ and $\left\{s_{n}+t_{n}\right\}$ are convergent sequences, then $\left\{t_{n}\right\}$ is convergent.
(e) If $\left\{s_{n}\right\}$ and $\left\{s_{n} t_{n}\right\}$ are convergent sequences, then $\left\{t_{n}\right\}$ is convergent.
(f) If $\left\{s_{n}\right\}$ is not bounded above, then $\left\{s_{n}\right\}$ diverges to $+\infty$.
2. Determine the convergence or divergence of $\left\{s_{n}\right\}$. Find any limits that exist.
(a) $s_{n}=\frac{3-2 n}{1+n}$
(b) $s_{n}=\frac{(-1)^{n}}{n+2}$
(c) $s_{n}=\frac{(-1)^{n} n}{2 n-1}$
(d) $s_{n}=\frac{2^{3 n}}{3^{2 n}}$
(e) $s_{n}=\frac{n^{2}-2}{n+1}$
(f) $s_{n}=\frac{1+n+n^{2}}{1+3 n}$
3. Prove the following:
(a) $\lim _{n \rightarrow \infty}\left(\sqrt{n^{2}+1}-n\right)=0$.
(b) $\lim _{n \rightarrow \infty}\left(\sqrt{n^{2}+n}-n\right)=\frac{1}{2}$.
4. Prove Theorem 4.
5. Prove Theorem 6.
6. Let $\left\{s_{n}\right\},\left\{t_{n}\right\}$, and $\left\{u_{n}\right\}$ be sequnces such that $s_{n} \leq t_{n} \leq u_{n}$ for all n. Prove that if $s_{n} \rightarrow L$ and $u_{n} \rightarrow L$, then $t_{n} \rightarrow L$.

II.3. MONOTONE SEQUENCES AND CAUCHY SEQUENCES

Monotone Sequences

Definition 4. A sequence $\left\{s_{n}\right\}$ is increasing if $s_{n} \leq s_{n+1}$ for all $n ;\left\{s_{n}\right\}$ is decreasing if $s_{n} \geq s_{n+1}$ for all n. A sequence is monotone if it is increasing or if it is decreasing.

Examples

(a) $1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots, \frac{1}{n}, \ldots$ is a decreasing sequence.
(b) $2,4,8,16, \ldots, 2^{n}, \ldots$ is an increasing sequence.
(c) $1,1,3,3,5,5, \ldots, 2 n-1,2 n-1, \ldots$ is an increasing sequence.
(d) $1, \frac{1}{2}, 3, \frac{1}{4}, 5, \ldots$ is not monotonic.

Some methods for showing monotonicity:

(a) To show that a sequence is increasing, show that $\frac{s_{n+1}}{s_{n}} \geq 1$ for all n. For decreasing, show $\frac{s_{n+1}}{s_{n}} \leq 1$ for all n.
The sequence $s_{n}=\frac{n}{n+1}$ is increasing: Since

$$
\frac{s_{n+1}}{s_{n}}=\frac{(n+1) /(n+2)}{n /(n+1)}=\frac{n+1}{n+2} \cdot \frac{n+1}{n}=\frac{n^{2}+2 n+1}{n^{2}+2 n}>1
$$

(b) By induction. For example, let $\left\{s_{n}\right\}$ be the sequence defined recursively by

$$
s_{n+1}=1+\sqrt{s_{n}}, \quad s_{1}=1
$$

We show that $\left\{s_{n}\right\}$ is increasing. Let S be the set of positive integers for which $s_{k+1} \geq s_{k}$. Since $s_{2}=1+\sqrt{1}=2>1,1 \in S$. Assume that $k \in S$; that is, that $s_{k+1} \geq s_{k}$. Consider s_{k+2} :

$$
s_{k+2}=1+\sqrt{s_{k+1}} \geq 1+\sqrt{s_{k}}=s_{k+1} .
$$

Therefore, $s_{k+1} \in S$ and $\left\{s_{n}\right\}$ is increasing.

THEOREM 8. A monotone sequence is convergent if and only if it is bounded.

Proof: Let $\left\{s_{n}\right\}$ be a monotone sequence.
If $\left\{s_{n}\right\}$ is convergent, then it is bounded (Theorem 2).
Now suppose that $\left\{s_{n}\right\}$ is a bounded, monotone sequence. In particular, suppose $\left\{s_{n}\right\}$ is increasing. Let $u=\sup \left\{s_{n}\right\}$ and let ϵ be a positive number. Then there exists a positive integer N such that $u-\epsilon<s_{N} \leq u$. Since $\left\{s_{n}\right\}$ is increasing, $u-\epsilon<s_{n} \leq u$ for all $n>N$. Therefore, $\left|u-s_{n}\right|<\epsilon$ for all $n>N$ and $s_{n} \rightarrow u$.

A similar argument holds for the case $\left\{s_{n}\right\}$ decreasing.
THEOREM 9. (a) If $\left\{s_{n}\right\}$ is increasing and unbounded, then $s_{n} \rightarrow+\infty$.
(b) If $\left\{s_{n}\right\}$ is decreasing and unbounded, then $s_{n} \rightarrow-\infty$.

Proof: (a) Since $\left\{s_{n}\right\}$ is increasing, $s_{n} \geq s_{1}$ for all n. Therefore, $\left\{s_{n}\right\}$ is bounded below. Since $\left\{s_{n}\right\}$ is unbounded, it is unbounded above and to each positive number M there is a positive integer N such that $s_{N}>M$. Again, since $\left\{s_{n}\right\}$ is increasing, $s_{n} \geq s_{N}>M$ for all $n>N$. Therefore $s_{n} \rightarrow \infty$.

The proof of (b) is left as an exercise.

Cauchy Sequences

Definition 5. A sequence $\left\{s_{n}\right\}$ is a Cauchy sequence if to each $\epsilon>0$ there is a positive integer N such that

$$
m, n>N \quad \text { implies } \quad\left|s_{n}-s_{m}\right|<\epsilon
$$

THEOREM 10. Every convergent sequence is a Cauchy sequence.

Proof: Suppose $s_{n} \rightarrow s$. Let $\epsilon>0$. There exists a positive integer N such that $\left|s-s_{n}\right|<\epsilon / 2$ for all $n>N$. Let $n, m>N$. Then

$$
\left|s_{m}-s_{n}\right|=\left|s_{m}-s+s-s_{n}\right| \leq\left|s_{m}-s\right|+\left|s-s_{n}\right|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon
$$

Therefore $\left\{s_{n}\right\}$ is a Cauchy sequence.
THEOREM 11. Every Cauchy sequence is bounded.

Proof: Let $\left\{s_{n}\right\}$ be a Cauchy sequence. There exists a positive integer N such that $\left|s_{n}-s_{m}\right|<1$ whenever $n, m>M$. Therefore

$$
\left|s_{n}\right|=\left|s_{n}-s_{N+1}+s_{N+1}\right| \leq\left|s_{n}-s_{N+1}\right|+\left|s_{N+1}\right|<1+\left|s_{N+1}\right| \quad \text { for all } \quad n>N .
$$

Now let $M=\max \left\{\left|s_{1}\right|,\left|s_{2}\right|, \ldots,\left|s_{N}\right|, 1+\left|s_{N+1}\right|\right\}$. Then $\left|s_{n}\right| \leq M$ for all n.
THEOREM 12. A sequence $\left\{s_{n}\right\}$ is convergent if and only if it is a Cauchy sequence.

Exercises 2.3

1. True - False. Justify your answer by citing a theorem, giving a proof, or giving a counterexample.
(a) If a monotone sequence is bounded, then it is convergent.
(b) If a bounded sequence is monotone, then it is convergent.
(c) If a convergent sequence is monotone, then it is bounded.
(d) If a convergent sequence is bounded, then it is monotone.
2. Give an example of a sequence having the given properties.
(a) Cauchy, but not monotone.
(b) Monotone, but not Cauchy.
(c) Bounded, but not Cauchy.
3. Show that the sequence $\left\{s_{n}\right\}$ defined by $s_{1}=1$ and $s_{n+1}=\frac{1}{4}\left(s_{n}+5\right)$ is monotone and bounded. Find the limit.
4. Show that the sequence $\left\{s_{n}\right\}$ defined by $s_{1}=2$ and $s_{n+1}=\sqrt{2 s_{n}+1}$ is monotone and bounded. Find the limit.
5. Show that the sequence $\left\{s_{n}\right\}$ defined by $s_{1}=1$ and $s_{n+1}=\sqrt{s_{n}+6}$ is monotone and bounded. Find the limit.
6. Prove that a bounded decreasing sequence converges to its greatest lower bound.
7. Prove Theorem 9 (b).

II.4. SUBSEQUENCES

Definition 6. Given a sequence $\left\{s_{n}\right\}$. Let $\left\{n_{k}\right\}$ be a sequence of positive integers such that $n_{1}<n_{2}<n_{3}<\cdots$. The sequence $\left\{s_{n_{k}}\right\}$ is called a subsequence of $\left\{s_{n}\right\}$.

Examples

THEOREM 13. If $\left\{s_{n}\right\}$ converges to s, then every subsequence $\left\{s_{n_{k}}\right.$ of $\left\{s_{n}\right\}$ also converges to s.

Corollary If $\left\{s_{n}\right\}$ has a subsequence $\left\{t_{n}\right\}$ that converges to α and a subsequence $\left\{u_{n}\right\}$ that converges to β with $\alpha \neq \beta$, then $\left\{s_{n}\right\}$ does not converge.

THEOREM 14. Every bounded sequence has a convergent subsequence.

THEOREM 15. Every unbounded sequence has a monotone subsequence that diverges either to $+\infty$ or to $-\infty$.

Limit Superior and Limit Inferior

Definition 7. Let $\left\{s_{n}\right\}$ be a bounded sequence. A number α is a subsequential limit of $\left\{s_{n}\right\}$ if there is a subsequence $\left\{s_{n_{k}}\right\}$ of $\left\{s_{n}\right\}$ such that $s_{n_{k}} \rightarrow \alpha$.

Examples

Let $\left\{s_{n}\right\}$ be a bounded sequence. Let

$$
S=\left\{\alpha: \alpha \text { is a subsequential limit of }\left\{s_{n}\right\}\right.
$$

Then:

1. $S \neq \emptyset$.
2. S is a bounded set.

Definition 8. Let $\left\{s_{n}\right\}$ be a bounded sequence and let S be its set of subsequential limits. The limit superior of $\left\{s_{n}\right\}$ (denoted by $\lim \sup s_{n}$) is

$$
\lim \sup s_{n}=\sup S
$$

The limit inferior of $\left\{s_{n}\right\}$ (denoted by lim inf s_{n}) is

$$
\lim \inf s_{n}=\inf S
$$

Examples

Clearly, $\lim \inf s_{n} \leq \lim \sup s_{n}$.
Definition 9. Let $\left\{s_{n}\right\}$ be a bounded sequence. $\left\{s_{n}\right\}$ oscillates if lim inf $s_{n}<\lim$ sup s_{n}.

Exercises 2.4

1. True - False. Justify your answer by citing a theorem, giving a proof, or giving a counterexample.
(a) A sequence $\left\{s_{n}\right\}$ converges to s if and only if every subsequence of $\left\{s_{n}\right\}$ converges to s.
(b) Every bounded sequence is convergent.
(c) Let $\left\{s_{n}\right\}$ be a bounded sequence. If $\left\{s_{n}\right\}$ oscillates, then the set S of subsequential limits of $\left\{s_{n}\right\}$ has at least two points.
(d) Every sequence has a convergent subsequence.
(e) $\left\{s_{n}\right\}$ converges to s if and only if $\lim \inf s_{n}=\lim \sup s_{n}=s$.
2. Prove or give a counterexample.
(a) Every oscillating sequence has a convergent subsequence.
(b) Every oscillating sequence diverges.
(c) Every divergent sequence oscillates.
(d) Every bounded sequence has a Cauchy subsequence.
(e) Every monotone sequence has a bounded subsequence.
