
PART II. SEQUENCES OF REAL NUMBERS

II.1. CONVERGENCE

Definition 1. A sequence is a real-valued function f whose domain is the set positive integers
(N). The numbers f(1), f(2), · · · are called the terms of the sequence.

Notation Function notation vs subscript notation:

f(1) ≡ s1, f(2) ≡ s2, · · · , f(n) ≡ sn, · · · .

In discussing sequences the subscript notation is much more common than functional notation. We’ll
use subscript notation throughout our treatment of analysis.

Specifying a sequence There are several ways to specify a sequence.

1. By giving the function. For example:

(a) sn =
1
n

or {sn} =
{

1
n

}
. This is the sequence {1,

1
2
,

1
3
,

1
4
, . . . ,

1
n

, . . .}.

(b) sn =
n − 1

n
. This is the sequence {0,

1
2
,

2
3
,

3
4
, . . . ,

n − 1
n

, . . .}.

(c) sn = (−1)nn2. This is the sequence {−1, 4,−9, 16, . . . , (−1)nn2, . . .}.

2. By giving the first few terms to establish a pattern, leaving it to you to find the function. This
is risky – it might not be easy to recognize the pattern and/or you can be misled.

(a) {sn} = {0, 1, 0, 1, 0, 1, . . .}. The pattern here is obvious; can you devise the function? It’s

sn =
1 − (−1)n)

2
or sn =

{
0, n odd
1, n even

(b) {sn} =
{

2,
5
2
,
10
3

,
17
4

,
26
5

, . . .

}
, sn =

n2 + 1
n

.

(c) {sn} = {2, 4, 8, 16,32, . . .}. What is s6? What is the function? While you might say 64
and sn = 2n, the function I have in mind gives s6 = π/6:

sn = 2n + (n − 1)(n − 2)(n − 3)(n − 4)(n − 5)
[

π

720
− 64

120

]

3. By a recursion formula. For example:

(a) sn+1 =
1

n + 1
sn, s1 = 1. The first 5 terms are

{
1,

1
2
,
1
6
,

1
24

,
1

120
, . . .

}
. Assuming that

the pattern continues sn =
1
n!

.

(b) sn+1 =
1
2
(sn + 1), s1 = 1. The first 5 terms are {1, 1, 1, 1,1, . . .}. Assuming that the

pattern continues sn = 1 for all n; {sn} is a “constant” sequence.
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Definition 2. A sequence {sn} converges to the number s if to each ε > 0 there corresponds
a positive integer N such that

|sn − s| < ε for all n > N.

The number s is called the limit of the sequence.

Notation “{sn} converges to s” is denoted by

lim
n→∞

sn = s, or by lim sn = s, or by sn → s.

A sequence that does not converge is said to diverge.

Examples Which of the sequences given above converge and which diverge; give the limits of the
convergent sequences.

THEOREM 1. If sn → s and sn → t, then s = t. That is, the limit of a convergent sequence
is unique.

Proof: Suppose s 6= t. Assume t > s and let ε = t − s. Since sn → s, there exists a positive
integer N1 such that |s− sn| < ε/2 for all n > N1. Since sn → t, there exists a positive integer
N2 such that |t− sn| < ε/2 for all n > N2. Let N = max{N1, N2} and choose a positive integer
k > N . Then

t − s = |t − s| = |t − sk + sk − s| ≤ |t − sk| + |s − sk| <
ε

2
+

ε

2
= ε = t − s,

a contradiction. Therefore, s = t.

THEOREM 2. If {sn} converges, then {sn} is bounded.

Proof: Suppose sn → s. There exists a positive integer N such that |s− sn| < 1 for all n > N .
Therefore, it follows that

|sn| = |sn − s + s| ≤ |sn − s| + |s| < 1 + |s| for all n > N.

Let M = max{|s1|, |s2|, . . . , |sN |, 1 + |s|}. Then |sn| < M for all n. Therefore {sn} is
bounded.

THEOREM 3. Let {sn} and {an} be sequences and suppose that there is a positive number k

and a positive integer N such that

|sn| ≤ k an for all n > N.

If an → 0, then sn → 0.

Proof: Note first that an ≥ 0 for all n > N . Since an → 0, there exists a positive integer N1

such that |an| < ε/k. Without loss of generality, assume that N1 ≥ N . Then, for all n > N1,

|sn − 0| = |sn| ≤ k an < k
ε

k
= ε.
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Therefore, sn → 0.

Corollary Let {sn} and {an} be sequences and let s ∈ R. Suppose that there is a positive
number k and a positive integer N such that

|sn − s| ≤ k an for all n > N.

If an → 0, then sn → s.

Exercises 2.1

1. True – False. Justify your answer by citing a theorem, giving a proof, or giving a counter-
example.

(a) If sn → s, then sn+1 → s.

(b) If sn → s and tn → s, then there is a positive integer N such that sn = tn for all
n > N .

(c) Every bounded sequence converges

(d) If to each ε > 0 there is a positive integer N such that n > N implies sn < ε, then
sn → 0.

(e) If sn → s, then s is an accumulation point of the set S = {s1, s2, · · · }.

2. Prove that lim
3n + 1
n + 2

= 3.

3. Prove that lim
sin n

n
= 0.

4. Prove or give a counterexample:

(a) If {sn} converges, then {|sn|} converges.

(b) If {|sn|} converges, then {sn} converges.

5. Give an example of:

(a) A convergent sequence of rational numbers having an irrational limit.

(b) A convergent sequence of irrational numbers having a rational limit.

6. Give the first six terms of the sequence and then give the nth term

(a) s1 = 1, sn+1 = 1
2(sn + 1)

(b) s1 = 1, sn+1 = 1
2sn + 1

(c) s1 = 1, sn+1 = 2sn + 1

7. use induction to prove the following assertions:

(a) If s1 = 1 and sn+1 =
n + 1
2n

sn, then sn =
n

2n−1
.

(b) If s1 = 1 and sn+1 = sn − 1
n(n + 1)

, then sn =
1
n

.
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8. Let r be a real number, r 6= 0. Define a sequence {Sn} by

S1 = 1

S2 = 1 + r

S3 = 1 + r + r2

...

Sn = 1 + r + r2 + · · ·+ rn−1

...

(a) Suppose r = 1. What is Sn for Sn = 1, 2, 3, . . . ?

(b) Suppose r 6= 1. Find a formula for Sn.

9. Set an =
1

n(n + 1)
, n = 1, 2, 3, . . ., and form the sequence

S1 = a1

S2 = a1 + a2

S3 = a1 + a2 + a3

...

Sn = a1 + a2 + a3 + · · ·+ an

...

Find a formula for Sn.

II.2. LIMIT THEOREMS

THEOREM 4. Suppose sn → s and tn → t. Then:

1. sn + tn → s + t.

2. sn − tn → s − t.

3. sntn → st.

Special case: ksn → ks for any number k.

4. sn/tn → s/t provided t 6= 0 and tn 6= 0 for all n.

THEOREM 5. Suppose sn → s and tn → t. If sn ≤ tn for all n, then s ≤ t.

Proof: Suppose s > t. Let ε =
s − t

2
. Since sn → s, there exists a positive integer N1 such that

|sn − s| < ε for all n > N1. This implies that s − ε < sn < s + ε for all n > N1. Similarly, there
exists a positive integer N2 such that t− ε < tn < t + ε for all n > N2. Let N = max {N1, N2}.
Then, for all n > N , we have

tn < t + ε = t +
s − t

2
=

s + t

2
= s − ε < sn
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which contradicts the assumption sn ≤ tn for all n.

Corollary Suppose tn → t. If tn ≥ 0 for all n, then t ≥ 0.

Infinite Limits

Definition 3. A sequence {sn} diverges to +∞ (sn → +∞) if to each real number M there
is a positive integer N such that sn > M for all n > N . {sn} diverges to −∞ (sn → −∞)
if to each real number M there is a positive integer N such that sn < M for all n > N .

THEOREM 6. Suppose that {sn} and {tn} are sequences such that sn ≤ tn for all n.

1. If sn → +∞, then tn → +∞.

2. If tn → −∞, then sn → −∞.

THEOREM 7. Let {sn} be a sequence of positive numbers. Then sn → +∞ if and only if
1/sn → 0.

Proof: Suppose sn → ∞. Let ε > 0 and set M = 1/ε. Then there exists a positive integer N

such that sn > M for all n > N . Since sn > 0,

1/sn < 1/M = ε for all n > N

which implies 1/sn → 0.

Now suppose that 1/sn → 0. Choose any positive number M and let ε = 1/M . Then there
exists a positive integer N such that

0 <
1
sn

< ε =
1
M

for all n > N. that is,
1
sn

<
1
M

.

Since sn > 0 for all n, 1/sn < 1/M for all n > N implies sn > M for all n > N . Therefore,
sn → ∞.

Exercises 2.2

1. Prove or give a counterexample.

(a) If sn → s and sn > 0 for all n, then s > 0.

(b) If {sn} and {tn} are divergent sequences, then {sn + tn} is divergent.

(c) If {sn} and {tn} are divergent sequences, then {sntn} is divergent.

(d) If {sn} and {sn + tn} are convergent sequences, then {tn} is convergent.

(e) If {sn} and {sntn} are convergent sequences, then {tn} is convergent.

(f) If {sn} is not bounded above, then {sn} diverges to +∞.

2. Determine the convergence or divergence of {sn}. Find any limits that exist.
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(a) sn =
3 − 2n

1 + n
(b) sn =

(−1)n

n + 2

(c) sn =
(−1)nn

2n − 1
(d) sn =

23n

32n

(e) sn =
n2 − 2
n + 1

(f) sn =
1 + n + n2

1 + 3n

3. Prove the following:

(a) lim
n→∞

(√
n2 + 1 − n

)
= 0.

(b) lim
n→∞

(√
n2 + n − n

)
=

1
2
.

4. Prove Theorem 4.

5. Prove Theorem 6.

6. Let {sn}, {tn}, and {un} be sequnces such that sn ≤ tn ≤ un for all n. Prove that if
sn → L and un → L, then tn → L.

II.3. MONOTONE SEQUENCES AND CAUCHY SEQUENCES

Monotone Sequences

Definition 4. A sequence {sn} is increasing if sn ≤ sn+1 for all n; {sn} is decreasing if
sn ≥ sn+1 for all n. A sequence is monotone if it is increasing or if it is decreasing.

Examples

(a) 1, 1
2 , 1

3 , 1
4 , . . . , 1

n , . . . is a decreasing sequence.

(b) 2, 4, 8, 16, . . . , 2n, . . . is an increasing sequence.

(c) 1, 1, 3, 3, 5, 5, . . . , 2n − 1, 2n − 1, . . . is an increasing sequence.

(d) 1, 1
2 , 3, 1

4 , 5, . . . is not monotonic.

Some methods for showing monotonicity:

(a) To show that a sequence is increasing, show that
sn+1

sn
≥ 1 for all n. For decreasing, show

sn+1

sn
≤ 1 for all n.

The sequence sn =
n

n + 1
is increasing: Since

sn+1

sn
=

(n + 1)/(n + 2)
n/(n + 1)

=
n + 1
n + 2

· n + 1
n

=
n2 + 2n + 1

n2 + 2n
> 1
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(b) By induction. For example, let {sn} be the sequence defined recursively by

sn+1 = 1 +
√

sn, s1 = 1.

We show that {sn} is increasing. Let S be the set of positive integers for which sk+1 ≥ sk.
Since s2 = 1 +

√
1 = 2 > 1, 1 ∈ S. Assume that k ∈ S; that is, that sk+1 ≥ sk. Consider

sk+2:
sk+2 = 1 +

√
sk+1 ≥ 1 +

√
sk = sk+1.

Therefore, sk+1 ∈ S and {sn} is increasing.

THEOREM 8. A monotone sequence is convergent if and only if it is bounded.

Proof: Let {sn} be a monotone sequence.

If {sn} is convergent, then it is bounded (Theorem 2).

Now suppose that {sn} is a bounded, monotone sequence. In particular, suppose {sn} is
increasing. Let u = sup {sn} and let ε be a positive number. Then there exists a positive integer
N such that u− ε < sN ≤ u. Since {sn} is increasing, u− ε < sn ≤ u for all n > N . Therefore,
|u − sn| < ε for all n > N and sn → u.

A similar argument holds for the case {sn} decreasing.

THEOREM 9. (a) If {sn} is increasing and unbounded, then sn → +∞.

(b) If {sn} is decreasing and unbounded, then sn → −∞.

Proof: (a) Since {sn} is increasing, sn ≥ s1 for all n. Therefore, {sn} is bounded below.
Since {sn} is unbounded, it is unbounded above and to each positive number M there is a positive
integer N such that sN > M . Again, since {sn} is increasing, sn ≥ sN > M for all n > N .
Therefore sn → ∞.

The proof of (b) is left as an exercise.

Cauchy Sequences

Definition 5. A sequence {sn} is a Cauchy sequence if to each ε > 0 there is a positive integer
N such that

m, n > N implies |sn − sm| < ε.

THEOREM 10. Every convergent sequence is a Cauchy sequence.

Proof: Suppose sn → s. Let ε > 0. There exists a positive integer N such that |s − sn| < ε/2
for all n > N . Let n, m > N . Then

|sm − sn| = |sm − s + s − sn| ≤ |sm − s| + |s − sn| <
ε

2
+

ε

2
= ε.

Therefore {sn} is a Cauchy sequence.

THEOREM 11. Every Cauchy sequence is bounded.
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Proof: Let {sn} be a Cauchy sequence. There exists a positive integer N such that |sn−sm| < 1
whenever n, m > M . Therefore

|sn| = |sn − sN+1 + sN+1| ≤ |sn − sN+1| + |sN+1| < 1 + |sN+1| for all n > N.

Now let M = max {|s1|, |s2|, . . . , |sN |, 1 + |sN+1|}. Then |sn| ≤ M for all n.

THEOREM 12. A sequence {sn} is convergent if and only if it is a Cauchy sequence.

Exercises 2.3

1. True – False. Justify your answer by citing a theorem, giving a proof, or giving a counter-
example.

(a) If a monotone sequence is bounded, then it is convergent.

(b) If a bounded sequence is monotone, then it is convergent.

(c) If a convergent sequence is monotone, then it is bounded.

(d) If a convergent sequence is bounded, then it is monotone.

2. Give an example of a sequence having the given properties.

(a) Cauchy, but not monotone.

(b) Monotone, but not Cauchy.

(c) Bounded, but not Cauchy.

3. Show that the sequence {sn} defined by s1 = 1 and sn+1 = 1
4 (sn + 5) is monotone and

bounded. Find the limit.

4. Show that the sequence {sn} defined by s1 = 2 and sn+1 =
√

2sn + 1 is monotone and
bounded. Find the limit.

5. Show that the sequence {sn} defined by s1 = 1 and sn+1 =
√

sn + 6 is monotone and
bounded. Find the limit.

6. Prove that a bounded decreasing sequence converges to its greatest lower bound.

7. Prove Theorem 9 (b).

II.4. SUBSEQUENCES

Definition 6. Given a sequence {sn}. Let {nk} be a sequence of positive integers such that
n1 < n2 < n3 < · · · . The sequence {snk} is called a subsequence of {sn}.

Examples

THEOREM 13. If {sn} converges to s, then every subsequence {snk of {sn} also converges
to s.
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Corollary If {sn} has a subsequence {tn} that converges to α and a subsequence {un} that
converges to β with α 6= β, then {sn} does not converge.

THEOREM 14. Every bounded sequence has a convergent subsequence.

THEOREM 15. Every unbounded sequence has a monotone subsequence that diverges either to
+∞ or to −∞.

Limit Superior and Limit Inferior

Definition 7. Let {sn} be a bounded sequence. A number α is a subsequential limit of {sn}
if there is a subsequence {snk} of {sn} such that snk → α.

Examples

Let {sn} be a bounded sequence. Let

S = {α : α is a subsequential limit of {sn}.

Then:

1. S 6= ∅.

2. S is a bounded set.

Definition 8. Let {sn} be a bounded sequence and let S be its set of subsequential limits. The
limit superior of {sn} (denoted by lim sup sn) is

lim sup sn = sup S.

The limit inferior of {sn} (denoted by lim inf sn) is

lim inf sn = inf S.

Examples

Clearly, lim inf sn ≤ lim sup sn.

Definition 9. Let {sn} be a bounded sequence. {sn} oscillates if lim inf sn < lim sup sn.

Exercises 2.4

1. True – False. Justify your answer by citing a theorem, giving a proof, or giving a counter-
example.

(a) A sequence {sn} converges to s if and only if every subsequence of {sn} converges to
s.
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(b) Every bounded sequence is convergent.

(c) Let {sn} be a bounded sequence. If {sn} oscillates, then the set S of subsequential
limits of {sn} has at least two points.

(d) Every sequence has a convergent subsequence.

(e) {sn} converges to s if and only if lim inf sn = lim sup sn = s.

2. Prove or give a counterexample.

(a) Every oscillating sequence has a convergent subsequence.

(b) Every oscillating sequence diverges.

(c) Every divergent sequence oscillates.

(d) Every bounded sequence has a Cauchy subsequence.

(e) Every monotone sequence has a bounded subsequence.
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