
PART III. FUNCTIONS: LIMITS AND CONTINUITY

III.1. LIMITS OF FUNCTIONS

This chapter is concerned with functions f : D → R where D is a nonempty subset of
R. That is, we will be considering real-valued functions of a real variable. The set D is
called the domain of f .

Definition 1. Let f : D → R and let c be an accumulation point of D. A number L

is the limit of f at c if to each ε > 0 there exists a δ > 0 such that

|f(x)− L| < ε whenever x ∈ D and 0 < |x − c| < δ.

This definition can be stated equivalently as follows:

Definition. Let f : D → R and let c be an accumulation point of D. A number L is
the limit of f at c if to each neighborhood V of L there exists a deleted neighborhood
U of c such that f(U ∩ D) ⊆ V .

Notation lim
x→c

f(x) = L.

Examples:

(a) lim
x→−2

(x2 − 2x + 4) = 12.

(b) lim
x→2

x2 − 4
x − 2

= 4.

(c) lim
x→3

x2 + 3x + 5
x − 3

does not exist.

(d) lim
x→1

|x− 1|
x − 1

does not exist.

Example: Let f(x) = 4x − 5. Prove that lim
x→3

f(x) = 7.

Proof: Let ε > 0.

|f(x)− 7| = |(4x− 5) − 7| = |4x − 12| = 4|x− 3|.

Choose δ = ε/4. Then

|f(x)− 7| = 4|x − 3| < 4
ε

4
= ε whenever 0 < |x − 3| < δ.

Two Obvious Limits:
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(a) For any constant k and any number c, lim
x→c

k = k.

(b) For any number c, lim
x→c

x = c.

THEOREM 1. Let f : D → R and let c be an accumulation point of D. Then
lim
x→c

f(x) = L if and only if for every sequence {sn} in D such that sn → c, sn 6= c

for all n, f(sn) → L.

Proof: Suppose that lim
x→c

f(x) = L. Let {sn} be a sequence in D which converges to
c, sn 6= c for all n. Let ε > 0. There exists δ > 0 such that

|f(x)− L| < ε whenever 0 < |x− c| < δ (x ∈ D).

Since sn → c there exists a positive integer N such that |c − sn| < δ for all n > N .
Therefore

|f(sn) − L| < ε for all n > N and f(sn) → L.

Now suppose that for every sequence {sn} in D which converges to c, f(sn) → L.
Suppose that lim

x→c
f(x) 6= L. Then there exists an ε > 0 such that for each δ > 0 there is

an x ∈ D with 0 < |x− c| < δ but f(x)−L| ≥ ε. In particular, for each positive integer
n there is an sn ∈ D such that |c− sn| < 1/n and |f(sn) − L| ≥ ε. Now, sn → c but
{f(sn)} does not converge to L, a contradiction.

Corollary Let f : D → R and let c be an accumulation point of D. If lim
x→c

f(x) exists,
then it is unique. That is, f can have only one limit at c.

THEOREM 2. Let f : D → R and let c be an accumulation point of D. If lim
x→c

f(x)

does not exist, then there exists a sequence {sn} in D such that sn → c, but {f(sn)}
does not converge.

Proof: Suppose that lim
x→c

f(x) does not exist. Suppose that for every sequence {sn} in

D such that sn → c (sn 6= c), {f(sn)} converges. Let {sn} and {tn} be sequences in D

which converge to c. Then {f(sn)} and {f(tn)} are convergent sequences. Let {un} be
the sequence {s1, t1, s2, t2, . . . }. Then {un}} converges to c and {f(un)} converges to
some number L. Since {f(sn)} and {f(tn)} are subsequences of {f(un)}, f(sn) → L

and f(tn) → L. Therefore, for every sequence {sn} in D such that sn → c, sn 6= c for
all n, f(sn) → L and lim

x→c
f(x) = L.

Arithmetic of Limits

THEOREM 3. Let f, g : D → R and let c be an accumulation point of D. If

lim
x→c

f(x) = L and lim
x→c

g(x) = M,

then
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1. lim
x→c

[f(x) + g(x)] = L + M ,

2. lim
x→c

[f(x)− g(x)] = L − M ,

3. lim
x→c

[f(x)g(x)] = LM, lim
x→c

[k f(x)] = kL, k constant,

4. lim
x→c

f(x)
g(x)

=
L

M
provided M 6= 0, g(x) 6= 0.

Examples:

(a) Since lim
x→c

x = c, lim
x→c

xn = cn for every positive integer n, by (3).

(b) If p(x) = 2x3 + 3x2 − 5x + 4, then, by (1), (2) and (3),

lim
x→−2

p(x) = 2(−2)3 + 3(−2)2 − 5(−2) + 4 = 10 = p(−2).

(c) If R(x) =
x3 − 2x2 + x − 5

x2 + 4
, then, by (1) – (4),

lim
x→2

R(x) =
23 − 2(2)2 + 2 − 5

22 + 4
=

−3
8

= R(2).

THEOREM 4. (“Pinching Theorem”) Let f, g, h : D → R and let c be an
accumulation point of D. Suppose that f(x) ≤ g(x) ≤ h(x) for all x ∈ D, x 6= c. If

lim
x→c

f(x) = lim
x→c

h(x) = L,

then lim
x→c

g(x) = L.

Proof: Let ε > 0. There exists a positive number δ1 such that

|f(x)− L| < ε whenever 0 < |x− c| < δ1 (x ∈ D).

That is
−ε < f(x) − L < ε whenever 0 < |x − c| < δ1.

Similarly, there exists a positive number δ2 such that

−ε < h(x) − L < ε whenever 0 < |x − c| < δ2.

Let δ = min {δ1, δ2}. Then

−ε < f(x)− L ≤ g(x)− L ≤ h(x)− L < ε whenever 0 < |x− c| < δ.

Therefore, lim
x→c

g(x) = L.

One-Sided Limits
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Definition 2. Let f : D → R and let c be an accumulation point of D. A number L

is the right-hand limit of f at c if to each ε > 0 there exists a δ > 0 such that

|f(x)− L| < ε whenever x ∈ D and c < x < c + δ.

Notation: lim
x→c+

f(x) = L.

A number M is the left-hand limit of f at c if to each ε > 0 there exists a
δ > 0 such that

|f(x)− L| < ε whenever x ∈ D and c − δ < x < c.

Notation: lim
x→c−

f(x) = M.

Examples

(a) lim
x→1−

|x− 1|
x − 1

= −1; lim
x→1+

|x− 1|
x − 1

= 1.

(b) Let f(x) =





x2 − 1, x ≤ 2

1
x − 2

, x > 2
; lim

x→2−
f(x) = 3, lim

x→2+
f(x) does not exist.

THEOREM 5. lim
x→c

f(x) = L if and only if each of the one-sided limits lim
x→c+

f(x) and

lim
x→c−

f(x) exists, and

lim
x→c+

f(x) = lim
x→c−

f(x) = L.

Exercises 3.1

1. Evaluate the following limits.

(a) lim
x→2

x2 − 4x + 3
x − 1

(b) lim
x→1

x2 − 4x + 3
x − 1

(c) lim
x→2

x2 − x − 6
x + 2

(d) lim
x→−2

x2 − x − 6
x + 2

(e) lim
x→2

x2 − x − 6
(x + 2)2

(f) lim
x→1

√
x − 1

x − 1

(g) lim
x→0

x√
4 + x − 2

(h) lim
x→1+

1 − x2

|x− 1|

2. Given that f(x) = x3, evaluate the following limits.
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(a) lim
x→3

f(x) − f(3)
x − 3

(b) lim
x→3

f(x) − f(2)
x − 3

(c) lim
x→3

f(x) − f(2)
x − 2

(d) lim
x→1

f(x) − f(1)
x − 1

3. True – False. Justify your answer by citing a theorem, giving a proof, or giving a
counter-example.

(a) limx→c f(x) = L if and only if to each ε > 0, there is a δ > 0 such that

|f(x)− f(c)| < ε whenever |x− c| < δ, x ∈ D.

(b) limx→c f(x) = L if and only if for each deleted neighborhood U of c there is
a neighborhood V of L such that f(U ∩ D) ⊆ V .

(c) limx→c f(x) = L if and only if for every sequence {sn} in D that converges
to c, sn 6= c for all n, the sequence {f(sn)} converges to L.

(d) limx→c f(x) = L if and only if limh→0 f(c + h) = L.

(e) If f does not have a limit at c, then there exists a sequence {sn} in D

sn 6= c for all n, such that sn → c, but {f(sn)} diverges.

(f) For any polynomial P and any real number c, lim
x→c

P (x) = P (c).

(g) For any polynomials P and Q, and any real number c,

lim
x→c

P (x)
Q(x)

=
P (c)
Q(c)

.

4. Find a δ > 0 such that 0 < |x− 3| < δ implies |x2 − 5x + 6| < 1
4 .

5. Find a δ > 0 such that 0 < |x− 2| < δ implies |x2 + 2x − 8| < 1
10 .

6. Prove that lim
x→1

(4x + 3) = 7.

7. Prove that lim
x→3

(x2 − 2x + 3) = 6.

8. Determine whether or not the following limits exist:

(a) lim
x→0

∣∣∣∣sin
1
x

∣∣∣∣.

(b) lim
x→0

x sin
1
x

.

9. Let f : D → R and let c be an accumulation point of D. Suppose that lim
x→c

f(x) = L

and L > 0. Prove that there is a number δ > 0 such that f(x) > 0 for all x ∈ D

with 0 < |x− c| < δ.

10. (a) Suppose that lim
x→c

f(x) = 0 and limx→c [f(x)g(x)] = 1. Prove that limx→c g(x)
does not exist.
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(b) Suppose that lim
x→c

f(x) = L 6= 0 and limx→c [f(x)g(x)] = 1. Does limx→c g(x)
exist, and if so, what is it?

III.2 CONTINUOUS FUNCTIONS

Definition 3. Let f : D → R and let c ∈ D. Then f is continuous at c if to each
ε > 0 there is a δ > 0 such that

|f(x)− f(c)| < ε whenever |x − c| < δ, x ∈ D.

Let S ⊆ D. Then f is continuous on S if it is continuous at each point c ∈ S. f is
continuous if f is continuous on D.

THEOREM 6. Characterizations of Continuity Let f : D → R and let c ∈ D.
The following are equivalent:

1. f is continuous at c.

2. If {xn} is a sequence in D such that xn → c, then f(xn) → f(c).

3. To each neighborhood V of f(c), there is a neighborhood U of c such that
f(U ∩ D) ⊆ V .

Proof: See Theorem 1.

Corollary If c is an accumulation point of D, then each of the above is equivalent to

lim
x→c

f(x) = f(c).

THEOREM 7. Let f : D → R and let c ∈ D. Then f is discontinuous at c if and
only if there is a sequence {xn} in D such that xn → c but {f(xn)} does not converge
to f(c).

Continuity of Combinations of Functions

THEOREM 8. Arithmetic: Let f, g : D → R and let c ∈ D. If f and g are
continuous at c, then

1. f + g is continuous at c.

2. f − g is continuous at c.

3. fg is continuous at c; kf is continuous at c for any constant k.
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4. f/g is continuous at c provided g(c) 6= 0.

THEOREM 9. Composition: Let f : D → R and g : E → R be functions such that
f(D) ⊆ E. If f is continuous at c ∈ D and g is continuous at f(c) ∈ E, then the
composition of g with f , g ◦ f : D → R, is continuous at c.

Proof: Let ε > 0. Since g is continuous at f(c) ∈ E there is a positive number δ1

such that |g(f(x))− g(f(c))| < ε whenever |f(x) − f(c)| < δ1, f(x) ∈ E. Since f is
continuous at c there is a positive number δ such that |f(x) − f(c)| < δ1 whenever
|x − c| < δ, x ∈ D. It now follows that

|g(f(x))− g(f(c))| < ε whenever |x − c| < δ, x ∈ D

and g ◦ f is continuous at c.

Definition 4. Let f : D → R, and let G ⊆ R. The pre-image of G, denoted by f−1(G)
is the set

f−1(G) = {x ∈ D : f(x) ∈ G}.

THEOREM 10. A function f : D → R is continuous on D if and only if for each open
set G in R there is an open set H in R such that H ∩ D = f−1(G).

Proof: Suppose f is continuous on D. Let G ⊆ R be an open set. If c ∈ f−1(G), then
f(c) ∈ G. Since G is open, there exists a neighborhood V of f(c) such that V ⊆ G.
Therefore, there exists a neighborhood Uc of c such that f(Uc ∩ D) ⊆ V . Let

H = ∪c∈f−1(G) Uc.

H is open and H ∩ D = f−1(G).

Conversely, choose any c ∈ D, and let V be a neighborhood of f(c). Since V is an
open set, there is an open set H ⊆ R such that H ∩D = f−1(V ). Since f(c) ∈ V, c ∈ H .
But H is an open set so there is a neighborhood U of c such that U ⊆ H . Now

f(U ∩ D) ⊆ f(H ∩ D) = v.

It follows that f is continuous on D by Theorem 6.

Corollary A function f : R → R is continuous if and only if f−1(G) is open in R
whenever G is open in R.

Exercises 3.2

1. Let f(x) =
x2 + 2x− 15

x − 3
. Define f at 3 so that f will be continuous at 3.
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2. Each of the following functions is defined everywhere except at x = 1. Where possible,
define f at 1 so that it becomes continuous at 1.

(a) f(x) =
x2 − 1
x − 1

(b) f(x) =
1

x − 1

(c) f(x) =
x − 1
|x− 1| (d) f(x) =

(x − 1)2

|x − 1|

3. In each of the following define f at 5 so that it becomes continuous at 5.

(a) f(x) =
√

x + 4 − 3
x − 5

(b) f(x) =
√

x + 4 − 3√
x − 5

(c) f(x) =
√

2x − 1 − 3
x − 5

(d) f(x) =
√

x2 − 7x + 16 −
√

6
(x − 5)

√
x + 1

4. Let f(x) =

{
A2x2, x < 2

(1− A)x, x ≥ 2.
For what values of A is f continuous at 2?

5. Give necessary and sufficient conditions on A and B for the function

f(x) =





Ax − B, x ≤ 1
3x, 1 < x < 2

Bx2 − A, x ≥ 2

to be continuous at x = 1 but discontinuous at x = 2.

6. Let f : D → R and let c ∈ D. True – False. Justify your answer by citing a
definition or theorem, giving a proof, or giving a counter-example.

(a) f is continuous at c if and only if to each ε there is a δ > 0 such that

|fx)− f(c)| < ε whenever |x − c| < δ and x ∈ D.

(b) If f(D) ⊆ R is bounded, then f is continuous on D.

(c) If c is an isolated point of D, then f is continuous at c.

(d) If f is continuous at c and {xn} is a sequence in D, then xn → c whenever
f(xn) → f(c).

(e) If {xn} is a Cauchy sequence in D, then {f(xn)} is convergent.

7. Prove or give a counterexample.

(a) If f and f + g are continuous on D, then g is continuous on D.

(b) If f and fg are continuous on D, then g is continuous on D.
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(c) If f and g are not continuous on D, then f + g is not continuous on D.

(d) If f and g are not continuous on D, then fg is not continuous on D.

(e) If f2 is continuous on D, then f is continuous on D.

(f) If f is continuous on D, then f(D) is a bounded set.

8. Let f : D → R.

(a) Prove that if f is continuous at c, then |f | is continuous at c.

(b) Suppose that |f | is continuous at c. Does it follow that f is continuous at c?
Justify your answer.

9. Let f : D → R be continuous at c ∈ D. Prove that if f(c) > 0, then there is an
α > 0 and a neighborhood U of c such that f(x) > α for all x ∈ U ∩ D.

10. Let f : D → R be continuous at c ∈ D. Prove that there exists an M > 0 and a
neighborhood U of c such that |f(x)| ≤ M for all x ∈ U ∩ D.

III.3. PROPERTIES OF CONTINUOUS FUNCTIONS

Definition 5. A function f : D → R is bounded if there exists a number M such that
|f(x)| ≤ M for all x ∈ D. That is, f is bounded if f(D) is a bounded subset of R.

THEOREM 11. Let f : D → R be continuous. If D is compact, then f(D) is compact.
(The continuous image of a compact set is compact.)

Proof: Let G = {Gα} be an open cover of f(D). Since f is continuous, for each
open set Gα in G there is an open set Hα such that Hα ∩ D = f−1(Gα). Also, since
f(D) ⊆ ∪Gα, it follows that

D ⊆ ∪ f−1(Gα) ⊆ ∪Hα.

Thus, the collection {Hα} is an open cover of D. Since D is compact this open cover
has a finite subcover Hα1, Hα1, . . . , Hαn . Now,

D ⊆ (Hα1 ∩ D) ∪ (Hα2 ∩ D) ∪ · · · ∪ (Hαn ∩ D)

and
f(D) ⊆ Gα1 ∪ Gα2 ∪ · · · ∪ Gαn .

Therefore, the open cover G has a finite subcover and f(D) is compact.

Definition 6. Let f : D → R. f(x0) is the minimum value of f on D if f(x0) ≤ f(x)
for all x ∈ D. f(x1) is the maximum value of f on D if f(x) ≤ f(x1) for all
x ∈ D.
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COROLLARY 1. If f : D → R is continuous and D is compact, then f has a
maximum value and a minimum value. That is, there exist points x0, x1 ∈ D such that
f(x0) ≤ f(x) ≤ f(x1) for all x ∈ D.

COROLLARY 2. If f : D → R is continuous and D is compact, then f(D) is closed
and bounded.

THEOREM 12. Let f : [a, b] → R be continuous. If f(a) and f(b) have opposite
sign, then there is at least one point c ∈ (a, b) such that f(c) = 0.

Proof: Suppose that f(a) < 0 and f(b) > 0. Since f(a) < 0 we know from the
continuity of f that there is an interval [a, δ) such that f(x) < 0 on [a, δ). (See
Exercises 3.2, #9) Let

c = sup {δ : f is negative on [a, δ)}.

Clearly c ≤ b.

We cannot have f(c) > 0 for then f(x) > 0 on some interval to the left of c, and
we know that to the left of c, f(x) < 0. This also shows that c < b.

We cannot have f(c) < 0 for then f(x) < 0 on some interval [a, t), with t > c which
contradicts the definition of c.

It follows that f(c) = 0.

THEOREM 13. Intermediate Value Theorem Let f : [a, b] → R be continuous.
Suppose that f(a) 6= f(b). If k is a number between f(a) and f(b), then there is at
least one number c ∈ (a, b) such that f(c) = k.

COROLLARY If f : D → R is continuous and I ⊆ D is an interval, then f(I) is an
interval.

THEOREM 14. Suppose that f : D → R is continuous. If I ⊆ D is a compact interval,
then f(I) is a compact interval.

Exercises 3.3

1. Show that the equation x3 − 4x + 2 = 0 has three distinct roots in [−3, 3] and
locate the roots between consecutive integers.

2. Prove that sin x + 2 cos x = x2 for some x ∈ [0, π/2].

3. Prove that there exists a positive number c such that c2 = 2.
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4. True – False. Justify your answer by citing a theorem, giving a proof, or giving a
counter-example.

(a) Suppose that f : D → R is continuous. Then there exists a point x1 ∈ D such
that f(x) ≤ f(x1) for all x ∈ D.

(b) If D ⊆ R is bounded and f : D → R is continuous, then f(D) is bounded.

(c) Let f : [a, b] → R be continuous and suppose that f(a) ≤ k ≤ f(b). Then
there exists a point c ∈ [a, b] such that f(c) = k.

(d) Let f : (a, b) → R be continuous. Then there is a point x1 ∈ (a, b) such that
f(x) ≤ f(x1) for all x ∈ (a, b).

(e) If f : D → R is continuous and bounded on D, then f has a maximum value
and a minimum value on D.

5. Let f : D → R be continuous. For each of the following, prove or give a counterex-
ample.

(a) If D is open, then f(D) is open.

(b) If D is closed, then f(D) is closed.

(c) If D is not open, then f(D) is not open.

(d) If D is not closed, then f(D) is not closed.

(e) If D is not compact, then f(D) is not compact.

(f) If D is not bounded, then f(D) is not bounded.

(g) If D is an interval, then f(D) is an interval.

(h) If D is an interval and f(D) ⊆ Q (the rational numbers), then f is constant.

6. Prove that every polynomial of odd degree has at least one real root.

7. Prove Theorem 13.

8. Prove Theorem 14.

9. Suppose that f : [a, b] → [a, b] is continuous. Prove that there is at least one point
c ∈ [a, b] such that f(c) = c. (Such a point is called a fixed point of f .)

10. Suppose that f, g : [a, b] → R are continuous, and suppose that f(a) ≤ g(a), f(b) ≥
g(b). Prove that there is at least one point c ∈ [a, b] such that f(c) = g(c).
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III.4. THE DERIVATIVE

DEFINITION 1. Let I be an interval, let f : I → R, and let c ∈ I. f is
differentiable at c if

lim
x→c

f(x) − f(c)
x − c

= m

exists. f is differentiable on I if it is differentiable at each point of I.

Notation: If f is differentiable at c, then the limit m is called the derivative of f

at c and is denoted by f ′(c).

An equivalent definition of differentiability is:

Definition. f is differentiable at c if

lim
h→0

f(c + h) − f(c)
h

= m

exists.

Two basic derivatives

(a) Let f(x) ≡ k, x ∈ R, k constant. For any c ∈ R, f ′(c) = 0

lim
x→c

f(x) − f(c)
x − c

= lim
x→c

k − k

x − c
= lim

x→c
0 = 0.

(b) Let f(x) = x, x ∈ R. For any c ∈ R, f ′(c) = 1

lim
x→c

f(x) − f(c)
x − c

= lim
x→c

x − c

x − c
= lim

x→c
1 = 1.

Examples:

(a) Let f(x) = x2 + 3x− 1 on R. Then for any c ∈ R, we have

lim
x→c

f(x) − f(c)
x − c

= lim
x→c

x2 + 3x − 1− (c2 + 3c − 1)
x − c

= lim
x→c

x2 − c2 + 3(x − c)
x − c

= lim
x→c

(x − c)(x + c + 3
x − c

= lim
x→c

(x + c + 3) = 2c + 3

Thus f ′(c) = 2c + 3.
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(b) Same function using the alternative definition.

lim
h→0

f(c + h) − f(c)
h

= lim
h→0

(c + h)2 + 3(c + h)− 1 − (c2 + 3c− 1)
x − c

= lim
h→0

c2 + 2ch + h2 + 3c + 3h − c2 − 3c

h
= lim

h→0

2ch + h2 + 3h

h

= lim
h→0

(2c + h + 3) = 2c + 3

Note: The alternative definition is usually easier to use when calculating the deriva-
tive of a given function because it’s usually easier to expand an expression than it is
to factor. For example:

(c) Let f(x) = sin x on R, and let c ∈ R. Then

lim
x→c

f(x) − f(c)
x − c

= lim
x→c

sin x − sin c

x − c
=????

On the other hand

lim
h→0

f(c + h) − f(c)
h

= lim
h→0

sin (c + h) − sin c

h

= lim
h→0

sin c cos h + cos c sin h − sin c

h

= lim
h→0

sin c[cos h − 1] + cos c sin h

h

= lim
h→0

sin c

[
cos h − 1

h

]
+ lim

h→0
cos c

[
sin h

h

]
= cos c.

Therefore f ′(c) = cos c. Here we used the important trigonometric limits:

lim
θ→0

sin θ

θ
= 1 and lim

θ→0

cos θ − 1
θ

= 0.

(c) Let f(x) =
√

x, x ≥ 0 and let c > 0.

lim
h→0

f(c + h) − f(c)
h

= lim
h→0

√
c + h −

√
c

h
= lim

h→0

√
c + h −

√
c

h

√
c + h +

√
c√

c + h +
√

c

= lim
h→0

h

h
(√

c + h +
√

c
) = lim

h→0

1(√
c + h +

√
c
) =

1
2
√

c

Thus, f ′(c) =
1

2
√

c
.

NOTE: In each of the examples we started with a function f and “derived” a new
function f ′ which is called the derivative of f . If we start with a function of x, then it
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is standard to denote the derivative as a function of x. For example, if f(x) = x2 +3x− 1,
then f ′(x) = 2x + 3; if f(x) = sin x, then f ′(x) = cos x; if f(x) =

√
x, then

f ′(x) = 1/2
√

x

Example: A function that fails to be differentiable at a point c.

Set

f(x) =

{
x2 + 1, x ≤ 1

3− x, x > 1

You can verify that f is continuous for all x; in particular, f continuous at x = 1. We
show that f is not differentiable at 1.

For h < 0,

f(1 + h) − f(1)
h

=
(1 + h)2 + 1− (2)

h
=

2h + h2

h
= 2 + h

and
lim

h→0−

f(1 + h) − f(1)
h

= lim
h→0−

(2 + h) = 2.

For h > 0,
f(1 + h) − f(1)

h
=

3 − (1 + h) − (2)
h

=
−h

h
= −1

and
lim

h→0+

f(1 + h) − f(1)
h

= lim
h→0+

(−1) = −1.

Therefore,

lim
h→0

f(1 + h) − f(1)
h

does not exist.

THEOREM 15. If f : I → R is differentiable at c ∈ I, then f is continuous at c.

Proof: For x ∈ I, x 6= c, we have

f(x) = (x − c)
f(x) − f(c)

x − c
+ f(c).

Since f is differentiable at c,

lim
x→c

f(x) − f(c)
x − c

= f ′(c)

exists. Therefore,

lim
x→c

f(x) =
[
lim
x→c

(x− c)
]

lim
x→c

[
f(x) − f(c)

x − c

]
+ lim

x→c
f(c) = 0 · f ′(c) + f(c) = f(c)

By the Corollary to Theorem 6, f is continuous at c.

Differentiability of Combinations of Functions
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THEOREM 16. Arithmetic: Let f, g : I → R and let c ∈ I. If f and g are
differentiable at c, then

(a) f + g is differentiable at c and

(f + g)′(c) = f ′(c) + g′(c).

(b) f − g is differentiable at c and

(f − g)′(c) = f ′(c)− g′(c).

(c) fg is differentiable at c and

(fg)′(c) = f(c)g′(c) + g(c)f ′(c).

For any constant k, kf is differentiable at c and (kf)′(c) = kf ′(c).

(d) If g(c) 6= 0, then f/g is differentiable at c and
(

f

g

)′
(c) =

g(c)f ′(c)− f(c)g′(c)
g2(c)

.

Proof: (c)

f(x)g(x)− f(c)g(c)
x − c

=
f(x)g(x)− f(x)g(c) + f(x)g(c)− f(c)g(c)

x − c

= f(x)
g(x)− g(c)

x − c
+ g(c)

f(x)− f(c)
x − c

.

Since f is continuous at c, lim
x→c

f(x) = f(c). Therefore, since f and g are continuous
at c,

lim
x→c

f(x)g(x)− f(c)g(c)
x − c

= f(c)g′(c) + g(c)f ′(c).

(d) We show first that [
1

g(c)

]′
=

−g′(c)
g2(c)

.

Since g is continuous at c and g(c) 6= 0, there is an interval I containing c such
that g(c) 6= 0 on I . Now

1
g(x)

− 1
g(c)

x − c
=

1
g(x)g(c)

g(c)− g(x)
x − c

= − 1
g(x)g(c)

g(x)− g(c)
x − c

.

Since g is continuous at c, lim
x toc

g(x) = g(c). Therefore

lim
x→c

1
g(x)

− 1
g(c)

x − c
= − 1

g2(c)
g′(c) =

−g′(c)
g2(c)
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(d) now follows by differentiating the product f(x)
1

g(x)
using (c).

Example: If f(x) = xn, n an integer, then f ′(x) = nxn−1.

Proof: Assume first that n is a positive integer, and use induction. Let S be the set
of positive integers for which the statement holds. Then 1 ∈ S since if f(x) = x, then
f ′(x) = 1 = 1 x0. Now assume that the positive integer k ∈ S and set f(x) = xk+1. Since

xk+1 = xk x

we have, by the product rule,

f ′(x) = xk 1 + x k xk−1 = (k + 1)xk

and so k + 1 ∈ S and the statement holds for all positive integers n.

If n is a negative integer, then, for x 6= 0,

f(x) = xn =
1

x−n

where −n is a positive integer. By the quotient rule,

f ′(x) =
x−n(0)− (−n)x−n − 1

(x−n)2
=

n x−(n+1)

x−2n
= nxn−1.

Finally, if f(x) = x0 ≡ 1, then f ′(x) = 0 = 0
1
x
. There is slight difficulty with x = 0

in this case; 00 is a so-called indeterminate form.

THEOREM 17. (The Chain Rule) Suppose that f : I → R and g : J → R, and
suppose that g(J) ⊂ I. If g is differentiable at c ∈ I and f is differentiable at
g(c) inJ, then f(g) is differentiable at c and

(f [g(c)])′ = f ′[g(c)] g′(c).

Pseudo-proof:

f [g(x)]− f(g(c)]
x − c

=
f [g(x)]− f [g(c)]

g(x)− g(c)
f [g(x)]− f(g(c)]

x − c
.

Set u = g(x) and a = g(c). Then, as x → x, u → a since g is continuous at c. Thus

lim
x→c

f [g(x)]− f(g(c)]
x − c

= lim
u→a

f(u) − f(a)
u − a

lim
x→c

f [g(x)]− f(g(c)]
x − c

= f ′(a)g′(c) = f ′[g(c)]g′(c).

The problem with this proof is that while we know x−c 6= 0, we don’t know that u−a 6= 0;
that is, we don’t know that g(x) 6= g(c). This proof can be modified to take care of that
contingency.
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Exercises 3.4

1. Use either of the definitions of the derivative to find the derivative of each of the
following functions.

(a) f(x) =
1
x

.

(b) f(x) =
√

x.

(c) f(x) =
1√
x

.

(d) f(x) = x1/3.

(e) f(x) = cos x.

2. Determine the values of x for which the given function is differentiable and find the
derivative.

(a) f(x) = |x− 3|.

(b) f(x) = |x2 − 1|.

(c) f(x) = x |x|.

3. Set f(x) =

{
x2, if x ≥ 0
0, x < 0

(a) Sketch the graph of f and show that f is differentiable at 0.

(b) Find f ′ and sketch the graph of f ′.

(c) Is f ′ differentiable at 0?

4. Set f(x) =

{
x sin (1/x), if x 6= 0

0, x = 0
Determine whether or not f is differentiable

at 0.

5. Set g(x) =

{
x2 sin (1/x), if x 6= 0

0, x = 0

(a) Calculate the derivative of g at any number c 6= 0.

(b) Use the definition to show that g is differentiable at 0 and find g′(0).

(c) Is g′ continuous at 0?
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