PART III. FUNCTIONS: LIMITS AND CONTINUITY

III.1. LIMITS OF FUNCTIONS

This chapter is concerned with functions $f: D \to \mathbb{R}$ where D is a nonempty subset of \mathbb{R} . That is, we will be considering real-valued functions of a real variable. The set D is called the *domain* of f.

Definition 1. Let $f: D \to \mathbb{R}$ and let c be an accumulation point of D. A number L is the limit of f at c if to each $\epsilon > 0$ there exists a $\delta > 0$ such that

 $|f(x) - L| < \epsilon$ whenever $x \in D$ and $0 < |x - c| < \delta$.

This definition can be stated equivalently as follows:

Definition. Let $f: D \to \mathbb{R}$ and let c be an accumulation point of D. A number L is the **limit of** f **at** c if to each neighborhood V of L there exists a deleted neighborhood U of c such that $f(U \cap D) \subseteq V$.

Notation $\lim_{x \to c} f(x) = L$.

Examples:

(a)
$$\lim_{x \to -2} (x^2 - 2x + 4) = 12.$$

(b) $\lim_{x \to 2} \frac{x^2 - 4}{x - 2} = 4.$

- (c) $\lim_{x \to 3} \frac{x^2 + 3x + 5}{x 3}$ does not exist.
- (d) $\lim_{x \to 1} \frac{|x-1|}{x-1}$ does not exist.

Example: Let f(x) = 4x - 5. Prove that $\lim_{x \to 3} f(x) = 7$.

Proof: Let $\epsilon > 0$.

$$|f(x) - 7| = |(4x - 5) - 7| = |4x - 12| = 4|x - 3|.$$

Choose $\delta = \epsilon/4$. Then

$$|f(x) - 7| = 4|x - 3| < 4\frac{\epsilon}{4} = \epsilon$$
 whenever $0 < |x - 3| < \delta$.

Two Obvious Limits:

- (a) For any constant k and any number c, $\lim k = k$.
- (b) For any number c, $\lim_{x \to c} x = c$.

THEOREM 1. Let $f : D \to \mathbb{R}$ and let c be an accumulation point of D. Then $\lim_{x\to c} f(x) = L$ if and only if for every sequence $\{s_n\}$ in D such that $s_n \to c, s_n \neq c$ for all $n, f(s_n) \to L$.

Proof: Suppose that $\lim_{x\to c} f(x) = L$. Let $\{s_n\}$ be a sequence in D which converges to $c, s_n \neq c$ for all n. Let $\epsilon > 0$. There exists $\delta > 0$ such that

$$|f(x) - L| < \epsilon$$
 whenever $0 < |x - c| < \delta$ $(x \in D)$.

Since $s_n \to c$ there exists a positive integer N such that $|c - s_n| < \delta$ for all n > N. Therefore

$$|f(s_n) - L| < \epsilon$$
 for all $n > N$ and $f(s_n) \to L$.

Now suppose that for every sequence $\{s_n\}$ in D which converges to $c, f(s_n) \to L$. Suppose that $\lim_{x\to c} f(x) \neq L$. Then there exists an $\epsilon > 0$ such that for each $\delta > 0$ there is an $x \in D$ with $0 < |x-c| < \delta$ but $f(x) - L| \ge \epsilon$. In particular, for each positive integer n there is an $s_n \in D$ such that $|c - s_n| < 1/n$ and $|f(s_n) - L| \ge \epsilon$. Now, $s_n \to c$ but $\{f(s_n)\}$ does not converge to L, a contradiction.

Corollary Let $f: D \to \mathbb{R}$ and let c be an accumulation point of D. If $\lim_{x \to c} f(x)$ exists, then it is unique. That is, f can have only one limit at c.

THEOREM 2. Let $f: D \to \mathbb{R}$ and let c be an accumulation point of D. If $\lim_{x \to c} f(x)$ does not exist, then there exists a sequence $\{s_n\}$ in D such that $s_n \to c$, but $\{f(s_n)\}$ does not converge.

Proof: Suppose that $\lim_{x\to c} f(x)$ does not exist. Suppose that for every sequence $\{s_n\}$ in D such that $s_n \to c$ $(s_n \neq c)$, $\{f(s_n)\}$ converges. Let $\{s_n\}$ and $\{t_n\}$ be sequences in D which converge to c. Then $\{f(s_n)\}$ and $\{f(t_n)\}$ are convergent sequences. Let $\{u_n\}$ be the sequence $\{s_1, t_1, s_2, t_2, \ldots\}$. Then $\{u_n\}$ converges to c and $\{f(u_n)\}$ converges to some number L. Since $\{f(s_n)\}$ and $\{f(t_n)\}$ are subsequences of $\{f(u_n)\}$, $f(s_n) \to L$ and $f(t_n) \to L$. Therefore, for every sequence $\{s_n\}$ in D such that $s_n \to c$, $s_n \neq c$ for all n, $f(s_n) \to L$ and $\lim_{x\to c} f(x) = L$.

Arithmetic of Limits

THEOREM 3. Let $f, g: D \to \mathbb{R}$ and let c be an accumulation point of D. If

$$\lim_{x \to c} f(x) = L \quad and \quad \lim_{x \to c} g(x) = M,$$

then

1.
$$\lim_{x \to c} [f(x) + g(x)] = L + M,$$

2. $\lim_{x \to c} [f(x) - g(x)] = L - M,$
3. $\lim_{x \to c} [f(x)g(x)] = LM, \quad \lim_{x \to c} [k f(x)] = kL, \ k \ constant,$
4. $\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{L}{M} \quad provided \ M \neq 0, \ g(x) \neq 0.$

Examples:

- (a) Since $\lim_{x\to c} x = c$, $\lim_{x\to c} x^n = c^n$ for every positive integer n, by (3).
- (b) If $p(x) = 2x^3 + 3x^2 5x + 4$, then, by (1), (2) and (3),

$$\lim_{x \to -2} p(x) = 2(-2)^3 + 3(-2)^2 - 5(-2) + 4 = 10 = p(-2).$$

(c) If
$$R(x) = \frac{x^3 - 2x^2 + x - 5}{x^2 + 4}$$
, then, by (1) – (4),
$$\lim_{x \to 2} R(x) = \frac{2^3 - 2(2)^2 + 2 - 5}{2^2 + 4} = \frac{-3}{8} = R(2).$$

THEOREM 4. ("Pinching Theorem") Let $f, g, h : D \to \mathbb{R}$ and let c be an accumulation point of D. Suppose that $f(x) \leq g(x) \leq h(x)$ for all $x \in D, x \neq c$. If

$$\lim_{x \to c} f(x) = \lim_{x \to c} h(x) = L,$$

then $\lim_{x \to c} g(x) = L.$

Proof: Let $\epsilon > 0$. There exists a positive number δ_1 such that

$$|f(x) - L| < \epsilon$$
 whenever $0 < |x - c| < \delta_1$ $(x \in D)$.

That is

$$-\epsilon < f(x) - L < \epsilon$$
 whenever $0 < |x - c| < \delta_1$.

Similarly, there exists a positive number δ_2 such that

$$-\epsilon < h(x) - L < \epsilon$$
 whenever $0 < |x - c| < \delta_2$.

Let $\delta = \min \{\delta_1, \delta_2\}$. Then

$$-\epsilon < f(x) - L \le g(x) - L \le h(x) - L < \epsilon \quad \text{whenever} \quad 0 < |x - c| < \delta.$$

Therefore, $\lim_{x \to c} g(x) = L.$

One-Sided Limits

Definition 2. Let $f: D \to \mathbb{R}$ and let c be an accumulation point of D. A number L is the **right-hand limit of** f at c if to each $\epsilon > 0$ there exists a $\delta > 0$ such that

$$|f(x) - L| < \epsilon$$
 whenever $x \in D$ and $c < x < c + \delta$.

Notation: $\lim_{x \to c^+} f(x) = L.$

A number M is the left-hand limit of f at c if to each $\epsilon > 0$ there exists a $\delta > 0$ such that

$$|f(x) - L| < \epsilon$$
 whenever $x \in D$ and $c - \delta < x < c$.

Notation: $\lim_{x \to c^-} f(x) = M.$

Examples

(a)
$$\lim_{x \to 1^{-}} \frac{|x-1|}{x-1} = -1; \quad \lim_{x \to 1^{+}} \frac{|x-1|}{x-1} = 1.$$

(b) Let $f(x) = \begin{cases} x^2 - 1, & x \le 2\\ \frac{1}{x-2}, & x > 2 \end{cases}; \quad \lim_{x \to 2^{-}} f(x) = 3, \quad \lim_{x \to 2^{+}} f(x) \text{ does not exist.} \end{cases}$

THEOREM 5. $\lim_{x\to c} f(x) = L$ if and only if each of the one-sided limits $\lim_{x\to c^+} f(x)$ and $\lim_{x\to c^-} f(x)$ exists, and

$$\lim_{x \to c+} f(x) = \lim_{x \to c^-} f(x) = L.$$

Exercises 3.1

- 1. Evaluate the following limits.
 - (a) $\lim_{x \to 2} \frac{x^2 4x + 3}{x 1}$ (b) $\lim_{x \to 1} \frac{x^2 4x + 3}{x 1}$ (c) $\lim_{x \to 2} \frac{x^2 x 6}{x + 2}$ (d) $\lim_{x \to -2} \frac{x^2 x 6}{x + 2}$ (e) $\lim_{x \to 2} \frac{x^2 x 6}{(x + 2)^2}$ (f) $\lim_{x \to 1} \frac{\sqrt{x} 1}{x 1}$ (g) $\lim_{x \to 0} \frac{x}{\sqrt{4 + x} 2}$ (h) $\lim_{x \to 1^+} \frac{1 x^2}{|x 1|}$

2. Given that $f(x) = x^3$, evaluate the following limits.

(a)
$$\lim_{x \to 3} \frac{f(x) - f(3)}{x - 3}$$
 (b) $\lim_{x \to 3} \frac{f(x) - f(2)}{x - 3}$
(c) $\lim_{x \to 3} \frac{f(x) - f(2)}{x - 2}$ (d) $\lim_{x \to 1} \frac{f(x) - f(1)}{x - 1}$

(a) $\lim_{x\to c} f(x) = L$ if and only if to each $\epsilon > 0$, there is a $\delta > 0$ such that

$$|f(x) - f(c)| < \epsilon$$
 whenever $|x - c| < \delta, x \in D.$

- (b) $\lim_{x\to c} f(x) = L$ if and only if for each deleted neighborhood U of c there is a neighborhood V of L such that $f(U \cap D) \subseteq V$.
- (c) $\lim_{x\to c} f(x) = L$ if and only if for every sequence $\{s_n\}$ in D that converges to $c, s_n \neq c$ for all n, the sequence $\{f(s_n)\}$ converges to L.
- (d) $\lim_{x\to c} f(x) = L$ if and only if $\lim_{h\to 0} f(c+h) = L$.
- (e) If f does not have a limit at c, then there exists a sequence $\{s_n\}$ in D $s_n \neq c$ for all n, such that $s_n \to c$, but $\{f(s_n)\}$ diverges.
- (f) For any polynomial P and any real number c, $\lim_{x\to c} P(x) = P(c)$.
- (g) For any polynomials P and Q, and any real number c,

$$\lim_{x \to c} \frac{P(x)}{Q(x)} = \frac{P(c)}{Q(c)}$$

- 4. Find a $\delta > 0$ such that $0 < |x-3| < \delta$ implies $|x^2 5x + 6| < \frac{1}{4}$.
- 5. Find a $\delta > 0$ such that $0 < |x 2| < \delta$ implies $|x^2 + 2x 8| < \frac{1}{10}$.
- 6. Prove that $\lim_{x \to 1} (4x + 3) = 7$.
- 7. Prove that $\lim_{x \to 3} (x^2 2x + 3) = 6.$
- 8. Determine whether or not the following limits exist:

(a)
$$\lim_{x \to 0} \left| \sin \frac{1}{x} \right|$$
.
(b) $\lim_{x \to 0} x \sin \frac{1}{x}$.

- 9. Let $f: D \to \mathbb{R}$ and let c be an accumulation point of D. Suppose that $\lim_{x \to c} f(x) = L$ and L > 0. Prove that there is a number $\delta > 0$ such that f(x) > 0 for all $x \in D$ with $0 < |x - c| < \delta$.
- 10. (a) Suppose that $\lim_{x\to c} f(x) = 0$ and $\lim_{x\to c} [f(x)g(x)] = 1$. Prove that $\lim_{x\to c} g(x)$ does not exist.

(b) Suppose that $\lim_{x\to c} f(x) = L \neq 0$ and $\lim_{x\to c} [f(x)g(x)] = 1$. Does $\lim_{x\to c} g(x)$ exist, and if so, what is it?

III.2 CONTINUOUS FUNCTIONS

Definition 3. Let $f: D \to \mathbb{R}$ and let $c \in D$. Then f is continuous at c if to each $\epsilon > 0$ there is a $\delta > 0$ such that

 $|f(x) - f(c)| < \epsilon$ whenever $|x - c| < \delta$, $x \in D$.

Let $S \subseteq D$. Then f is continuous on S if it is continuous at each point $c \in S$. f is continuous if f is continuous on D.

THEOREM 6. Characterizations of Continuity Let $f : D \to \mathbb{R}$ and let $c \in D$. The following are equivalent:

- 1. f is continuous at c.
- 2. If $\{x_n\}$ is a sequence in D such that $x_n \to c$, then $f(x_n) \to f(c)$.
- 3. To each neighborhood V of f(c), there is a neighborhood U of c such that $f(U \cap D) \subseteq V$.

Proof: See Theorem 1.

Corollary If c is an accumulation point of D, then each of the above is equivalent to

$$\lim_{x \to c} f(x) = f(c).$$

THEOREM 7. Let $f: D \to \mathbb{R}$ and let $c \in D$. Then f is discontinuous at c if and only if there is a sequence $\{x_n\}$ in D such that $x_n \to c$ but $\{f(x_n)\}$ does not converge to f(c).

Continuity of Combinations of Functions

THEOREM 8. Arithmetic: Let $f, g: D \to \mathbb{R}$ and let $c \in D$. If f and g are continuous at c, then

- 1. f + g is continuous at c.
- 2. f g is continuous at c.
- 3. fg is continuous at c; kf is continuous at c for any constant k.

4. f/g is continuous at c provided $g(c) \neq 0$.

THEOREM 9. Composition: Let $f: D \to \mathbb{R}$ and $g: E \to \mathbb{R}$ be functions such that $f(D) \subseteq E$. If f is continuous at $c \in D$ and g is continuous at $f(c) \in E$, then the composition of g with $f, g \circ f: D \to \mathbb{R}$, is continuous at c.

Proof: Let $\epsilon > 0$. Since g is continuous at $f(c) \in E$ there is a positive number δ_1 such that $|g(f(x)) - g(f(c))| < \epsilon$ whenever $|f(x) - f(c)| < \delta_1$, $f(x) \in E$. Since f is continuous at c there is a positive number δ such that $|f(x) - f(c)| < \delta_1$ whenever $|x - c| < \delta$, $x \in D$. It now follows that

$$|g(f(x)) - g(f(c))| < \epsilon$$
 whenever $|x - c| < \delta, x \in D$

and $g \circ f$ is continuous at c.

Definition 4. Let $f: D \to \mathbb{R}$, and let $G \subseteq \mathbb{R}$. The pre-image of G, denoted by $f^{-1}(G)$ is the set

$$f^{-1}(G) = \{ x \in D : f(x) \in G \}.$$

THEOREM 10. A function $f: D \to \mathbb{R}$ is continuous on D if and only if for each open set G in \mathbb{R} there is an open set H in \mathbb{R} such that $H \cap D = f^{-1}(G)$.

Proof: Suppose f is continuous on D. Let $G \subseteq \mathbb{R}$ be an open set. If $c \in f^{-1}(G)$, then $f(c) \in G$. Since G is open, there exists a neighborhood V of f(c) such that $V \subseteq G$. Therefore, there exists a neighborhood U_c of c such that $f(U_c \cap D) \subseteq V$. Let

$$H = \bigcup_{c \in f^{-1}(G)} U_c.$$

H is open and $H \cap D = f^{-1}(G)$.

Conversely, choose any $c \in D$, and let V be a neighborhood of f(c). Since V is an open set, there is an open set $H \subseteq \mathbb{R}$ such that $H \cap D = f^{-1}(V)$. Since $f(c) \in V$, $c \in H$. But H is an open set so there is a neighborhood U of c such that $U \subseteq H$. Now

$$f(U \cap D) \subseteq f(H \cap D) = v.$$

It follows that f is continuous on D by Theorem 6.

Corollary A function $f : \mathbb{R} \to \mathbb{R}$ is continuous if and only if $f^{-1}(G)$ is open in \mathbb{R} whenever G is open in \mathbb{R} .

Exercises 3.2

1. Let
$$f(x) = \frac{x^2 + 2x - 15}{x - 3}$$
. Define f at 3 so that f will be continuous at 3.

2. Each of the following functions is defined everywhere except at x = 1. Where possible, define f at 1 so that it becomes continuous at 1.

(a)
$$f(x) = \frac{x^2 - 1}{x - 1}$$

(b) $f(x) = \frac{1}{x - 1}$
(c) $f(x) = \frac{x - 1}{|x - 1|}$
(d) $f(x) = \frac{(x - 1)^2}{|x - 1|}$

3. In each of the following define f at 5 so that it becomes continuous at 5.

(a)
$$f(x) = \frac{\sqrt{x+4}-3}{x-5}$$

(b) $f(x) = \frac{\sqrt{x+4}-3}{\sqrt{x-5}}$
(c) $f(x) = \frac{\sqrt{2x-1}-3}{x-5}$
(d) $f(x) = \frac{\sqrt{x^2-7x+16}-\sqrt{6}}{(x-5)\sqrt{x+1}}$

4. Let $f(x) = \begin{cases} A^2 x^2, & x < 2\\ (1-A)x, & x \ge 2. \end{cases}$ For what values of A is f continuous at 2?

5. Give necessary and sufficient conditions on A and B for the function

$$f(x) = \begin{cases} Ax - B, & x \le 1\\ 3x, & 1 < x < 2\\ Bx^2 - A, & x \ge 2 \end{cases}$$

to be continuous at x = 1 but discontinuous at x = 2.

- 6. Let $f: D \to \mathbb{R}$ and let $c \in D$. True False. Justify your answer by citing a definition or theorem, giving a proof, or giving a counter-example.
 - (a) f is continuous at c if and only if to each ϵ there is a $\delta > 0$ such that

$$|fx) - f(c)| < \epsilon$$
 whenever $|x - c| < \delta$ and $x \in D$.

- (b) If $f(D) \subseteq \mathbb{R}$ is bounded, then f is continuous on D.
- (c) If c is an isolated point of D, then f is continuous at c.
- (d) If f is continuous at c and $\{x_n\}$ is a sequence in D, then $x_n \to c$ whenever $f(x_n) \to f(c)$.
- (e) If $\{x_n\}$ is a Cauchy sequence in D, then $\{f(x_n)\}$ is convergent.
- 7. Prove or give a counterexample.
 - (a) If f and f + g are continuous on D, then g is continuous on D.
 - (b) If f and fg are continuous on D, then g is continuous on D.

- (c) If f and g are not continuous on D, then f + g is not continuous on D.
- (d) If f and g are not continuous on D, then fg is not continuous on D.
- (e) If f^2 is continuous on D, then f is continuous on D.
- (f) If f is continuous on D, then f(D) is a bounded set.
- 8. Let $f: D \to \mathbb{R}$.
 - (a) Prove that if f is continuous at c, then |f| is continuous at c.
 - (b) Suppose that |f| is continuous at c. Does it follow that f is continuous at c? Justify your answer.
- 9. Let $f: D \to \mathbb{R}$ be continuous at $c \in D$. Prove that if f(c) > 0, then there is an $\alpha > 0$ and a neighborhood U of c such that $f(x) > \alpha$ for all $x \in U \cap D$.
- 10. Let $f: D \to \mathbb{R}$ be continuous at $c \in D$. Prove that there exists an M > 0 and a neighborhood U of c such that $|f(x)| \leq M$ for all $x \in U \cap D$.

III.3. PROPERTIES OF CONTINUOUS FUNCTIONS

Definition 5. A function $f: D \to \mathbb{R}$ is **bounded** if there exists a number M such that $|f(x)| \leq M$ for all $x \in D$. That is, f is bounded if f(D) is a bounded subset of \mathbb{R} .

THEOREM 11. Let $f: D \to \mathbb{R}$ be continuous. If D is compact, then f(D) is compact. (The continuous image of a compact set is compact.)

Proof: Let $\mathcal{G} = \{\mathcal{G}_{\alpha}\}$ be an open cover of f(D). Since f is continuous, for each open set G_{α} in \mathcal{G} there is an open set H_{α} such that $H_{\alpha} \cap D = f^{-1}(G_{\alpha})$. Also, since $f(D) \subseteq \bigcup G_{\alpha}$, it follows that

$$D \subseteq \cup f^{-1}(G_{\alpha}) \subseteq \cup H_{\alpha}.$$

Thus, the collection $\{H_{\alpha}\}$ is an open cover of D. Since D is compact this open cover has a finite subcover $H_{\alpha_1}, H_{\alpha_1}, \ldots, H_{\alpha_n}$. Now,

$$D \subseteq (H_{\alpha_1} \cap D) \cup (H_{\alpha_2} \cap D) \cup \cdots \cup (H_{\alpha_n} \cap D)$$

and

$$f(D) \subseteq G_{\alpha_1} \cup G_{\alpha_2} \cup \cdots \cup G_{\alpha_n}.$$

Therefore, the open cover \mathcal{G} has a finite subcover and f(D) is compact.

Definition 6. Let $f: D \to \mathbb{R}$. $f(x_0)$ is the minimum value of f on D if $f(x_0) \leq f(x)$ for all $x \in D$. $f(x_1)$ is the maximum value of f on D if $f(x) \leq f(x_1)$ for all $x \in D$. **COROLLARY 1.** If $f: D \to \mathbb{R}$ is continuous and D is compact, then f has a maximum value and a minimum value. That is, there exist points $x_0, x_1 \in D$ such that $f(x_0) \leq f(x) \leq f(x_1)$ for all $x \in D$.

COROLLARY 2. If $f: D \to \mathbb{R}$ is continuous and D is compact, then f(D) is closed and bounded.

THEOREM 12. Let $f : [a,b] \to \mathbb{R}$ be continuous. If f(a) and f(b) have opposite sign, then there is at least one point $c \in (a,b)$ such that f(c) = 0.

Proof: Suppose that f(a) < 0 and f(b) > 0. Since f(a) < 0 we know from the continuity of f that there is an interval $[a, \delta)$ such that f(x) < 0 on $[a, \delta)$. (See Exercises 3.2, #9) Let

 $c = \sup \{ \delta : f \text{ is negative on } [a, \delta) \}.$

Clearly $c \leq b$.

We cannot have f(c) > 0 for then f(x) > 0 on some interval to the left of c, and we know that to the left of c, f(x) < 0. This also shows that c < b.

We cannot have f(c) < 0 for then f(x) < 0 on some interval [a, t), with t > c which contradicts the definition of c.

It follows that f(c) = 0.

THEOREM 13. Intermediate Value Theorem Let $f : [a,b] \to \mathbb{R}$ be continuous. Suppose that $f(a) \neq f(b)$. If k is a number between f(a) and f(b), then there is at least one number $c \in (a,b)$ such that f(c) = k.

COROLLARY If $f: D \to \mathbb{R}$ is continuous and $I \subseteq D$ is an interval, then f(I) is an interval.

THEOREM 14. Suppose that $f: D \to \mathbb{R}$ is continuous. If $I \subseteq D$ is a compact interval, then f(I) is a compact interval.

Exercises 3.3

- 1. Show that the equation $x^3 4x + 2 = 0$ has three distinct roots in [-3, 3] and locate the roots between consecutive integers.
- 2. Prove that $\sin x + 2\cos x = x^2$ for some $x \in [0, \pi/2]$.
- 3. Prove that there exists a positive number c such that $c^2 = 2$.

- 4. True False. Justify your answer by citing a theorem, giving a proof, or giving a counter-example.
 - (a) Suppose that $f: D \to \mathbb{R}$ is continuous. Then there exists a point $x_1 \in D$ such that $f(x) \leq f(x_1)$ for all $x \in D$.
 - (b) If $D \subseteq \mathbb{R}$ is bounded and $f: D \to \mathbb{R}$ is continuous, then f(D) is bounded.
 - (c) Let $f : [a, b] \to \mathbb{R}$ be continuous and suppose that $f(a) \le k \le f(b)$. Then there exists a point $c \in [a, b]$ such that f(c) = k.
 - (d) Let $f: (a, b) \to \mathbb{R}$ be continuous. Then there is a point $x_1 \in (a, b)$ such that $f(x) \leq f(x_1)$ for all $x \in (a, b)$.
 - (e) If $f: D \to \mathbb{R}$ is continuous and bounded on D, then f has a maximum value and a minimum value on D.
- 5. Let $f: D \to \mathbb{R}$ be continuous. For each of the following, prove or give a counterexample.
 - (a) If D is open, then f(D) is open.
 - (b) If D is closed, then f(D) is closed.
 - (c) If D is not open, then f(D) is not open.
 - (d) If D is not closed, then f(D) is not closed.
 - (e) If D is not compact, then f(D) is not compact.
 - (f) If D is not bounded, then f(D) is not bounded.
 - (g) If D is an interval, then f(D) is an interval.
 - (h) If D is an interval and $f(D) \subseteq \mathcal{Q}$ (the rational numbers), then f is constant.
- 6. Prove that every polynomial of odd degree has at least one real root.
- 7. Prove Theorem 13.
- 8. Prove Theorem 14.
- 9. Suppose that $f: [a, b] \to [a, b]$ is continuous. Prove that there is at least one point $c \in [a, b]$ such that f(c) = c. (Such a point is called a *fixed point of* f.)
- 10. Suppose that $f, g: [a, b] \to \mathbb{R}$ are continuous, and suppose that $f(a) \leq g(a), f(b) \geq g(b)$. Prove that there is at least one point $c \in [a, b]$ such that f(c) = g(c).

III.4. THE DERIVATIVE

DEFINITION 1. Let I be an interval, let $f : I \to \mathbb{R}$, and let $c \in I$. f is differentiable at c if

$$\lim_{x \to c} \frac{f(x) - f(c)}{x - c} = m$$

exists. f is differentiable on I if it is differentiable at each point of I.

Notation: If f is differentiable at c, then the limit m is called the **derivative of** f at c and is denoted by f'(c).

An equivalent definition of differentiability is:

Definition. f is differentiable at c if

$$\lim_{h \to 0} \frac{f(c+h) - f(c)}{h} = m$$

exists.

Two basic derivatives

(a) Let $f(x) \equiv k, x \in \mathbb{R}, k$ constant. For any $c \in \mathbb{R}, f'(c) = 0$

$$\lim_{x \to c} \frac{f(x) - f(c)}{x - c} = \lim_{x \to c} \frac{k - k}{x - c} = \lim_{x \to c} 0 = 0.$$

(b) Let $f(x) = x, x \in \mathbb{R}$. For any $c \in \mathbb{R}, f'(c) = 1$

$$\lim_{x \to c} \frac{f(x) - f(c)}{x - c} = \lim_{x \to c} \frac{x - c}{x - c} = \lim_{x \to c} 1 = 1.$$

Examples:

(a) Let $f(x) = x^2 + 3x - 1$ on \mathbb{R} . Then for any $c \in \mathbb{R}$, we have $\lim_{x \to c} \frac{f(x) - f(c)}{x - c} = \lim_{x \to c} \frac{x^2 + 3x - 1 - (c^2 + 3c - 1)}{x - c}$

$$= \lim_{x \to c} \frac{x^2 - c^2 + 3(x - c)}{x - c} = \lim_{x \to c} \frac{(x - c)(x + c + 3)}{x - c}$$
$$= \lim_{x \to c} (x + c + 3) = 2c + 3$$

Thus f'(c) = 2c + 3.

(b) Same function using the alternative definition.

$$\lim_{h \to 0} \frac{f(c+h) - f(c)}{h} = \lim_{h \to 0} \frac{(c+h)^2 + 3(c+h) - 1 - (c^2 + 3c - 1)}{x - c}$$
$$= \lim_{h \to 0} \frac{c^2 + 2ch + h^2 + 3c + 3h - c^2 - 3c}{h} = \lim_{h \to 0} \frac{2ch + h^2 + 3h}{h}$$
$$= \lim_{h \to 0} (2c + h + 3) = 2c + 3$$

Note: The alternative definition is usually easier to use when calculating the derivative of a given function because it's usually easier to expand an expression than it is to factor. For example:

(c) Let $f(x) = \sin x$ on \mathbb{R} , and let $c \in \mathbb{R}$. Then

$$\lim_{x \to c} \frac{f(x) - f(c)}{x - c} = \lim_{x \to c} \frac{\sin x - \sin c}{x - c} = ????$$

On the other hand

$$\lim_{h \to 0} \frac{f(c+h) - f(c)}{h} = \lim_{h \to 0} \frac{\sin(c+h) - \sin c}{h}$$
$$= \lim_{h \to 0} \frac{\sin c \cos h + \cos c \sin h - \sin c}{h}$$
$$= \lim_{h \to 0} \frac{\sin c [\cos h - 1] + \cos c \sin h}{h}$$
$$= \lim_{h \to 0} \sin c \left[\frac{\cos h - 1}{h}\right] + \lim_{h \to 0} \cos c \left[\frac{\sin h}{h}\right] = \cos c.$$

Therefore $f'(c) = \cos c$. Here we used the important trigonometric limits:

$$\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1 \quad \text{and} \quad \lim_{\theta \to 0} \frac{\cos \theta - 1}{\theta} = 0.$$

(c) Let $f(x) = \sqrt{x}$, $x \ge 0$ and let c > 0.

$$\lim_{h \to 0} \frac{f(c+h) - f(c)}{h} = \lim_{h \to 0} \frac{\sqrt{c+h} - \sqrt{c}}{h} = \lim_{h \to 0} \frac{\sqrt{c+h} - \sqrt{c}}{h} \frac{\sqrt{c+h} + \sqrt{c}}{\sqrt{c+h} + \sqrt{c}}$$
$$= \lim_{h \to 0} \frac{h}{h (\sqrt{c+h} + \sqrt{c})} = \lim_{h \to 0} \frac{1}{(\sqrt{c+h} + \sqrt{c})} = \frac{1}{2\sqrt{c}}$$
Thus, $f'(c) = \frac{1}{2\sqrt{c}}$.

NOTE: In each of the examples we started with a function f and "derived" a new function f' which is called the **derivative** of f. If we start with a function of x, then it

is standard to denote the derivative as a function of x. For example, if $f(x) = x^2 + 3x - 1$, then f'(x) = 2x + 3; if $f(x) = \sin x$, then $f'(x) = \cos x$; if $f(x) = \sqrt{x}$, then $f'(x) = 1/2\sqrt{x}$

Example: A function that fails to be differentiable at a point c.

Set

$$f(x) = \begin{cases} x^2 + 1, & x \le 1 \\ 3 - x, & x > 1 \end{cases}$$

You can verify that f is continuous for all x; in particular, f continuous at x = 1. We show that f is not differentiable at 1.

For h < 0,

$$\frac{f(1+h) - f(1)}{h} = \frac{(1+h)^2 + 1 - (2)}{h} = \frac{2h + h^2}{h} = 2 + h$$

and

$$\lim_{h \to 0^{-}} \frac{f(1+h) - f(1)}{h} = \lim_{h \to 0^{-}} (2+h) = 2.$$

For h > 0,

$$\frac{f(1+h) - f(1)}{h} = \frac{3 - (1+h) - (2)}{h} = \frac{-h}{h} = -1$$

and

$$\lim_{h \to 0^+} \frac{f(1+h) - f(1)}{h} = \lim_{h \to 0^+} (-1) = -1.$$

Therefore,

$$\lim_{h \to 0} \frac{f(1+h) - f(1)}{h}$$

does not exist.

THEOREM 15. If $f: I \to \mathbb{R}$ is differentiable at $c \in I$, then f is continuous at c.

Proof: For $x \in I$, $x \neq c$, we have

$$f(x) = (x - c) \frac{f(x) - f(c)}{x - c} + f(c).$$

Since f is differentiable at c,

$$\lim_{x \to c} \frac{f(x) - f(c)}{x - c} = f'(c)$$

exists. Therefore,

$$\lim_{x \to c} f(x) = \left[\lim_{x \to c} (x - c)\right] \lim_{x \to c} \left[\frac{f(x) - f(c)}{x - c}\right] + \lim_{x \to c} f(c) = 0 \cdot f'(c) + f(c) = f(c)$$

By the Corollary to Theorem 6, f is continuous at c.

Differentiability of Combinations of Functions

THEOREM 16. Arithmetic: Let $f, g: I \to \mathbb{R}$ and let $c \in I$. If f and g are differentiable at c, then

(a) f + g is differentiable at c and

$$(f+g)'(c) = f'(c) + g'(c).$$

(b) f - g is differentiable at c and

$$(f-g)'(c) = f'(c) - g'(c).$$

(c) fg is differentiable at c and

$$(fg)'(c) = f(c)g'(c) + g(c)f'(c).$$

For any constant k, kf is differentiable at c and (kf)'(c) = kf'(c).

(d) If $g(c) \neq 0$, then f/g is differentiable at c and

$$\left(\frac{f}{g}\right)'(c) = \frac{g(c)f'(c) - f(c)g'(c)}{g^2(c)}.$$

Proof: (c)

$$\frac{f(x)g(x) - f(c)g(c)}{x - c} = \frac{f(x)g(x) - f(x)g(c) + f(x)g(c) - f(c)g(c)}{x - c}$$
$$= f(x)\frac{g(x) - g(c)}{x - c} + g(c)\frac{f(x) - f(c)}{x - c}.$$

Since f is continuous at c, $\lim_{x\to c} f(x) = f(c)$. Therefore, since f and g are continuous at c, at c, f(x) = f(c)g(c)

$$\lim_{x \to c} \frac{f(x)g(x) - f(c)g(c)}{x - c} = f(c)g'(c) + g(c)f'(c).$$

(d) We show first that

$$\left[\frac{1}{g(c)}\right]' = \frac{-g'(c)}{g^2(c)}.$$

Since g is continuous at c and $g(c) \neq 0$, there is an interval I containing c such that $g(c) \neq 0$ on I. Now

$$\frac{\frac{1}{g(x)} - \frac{1}{g(c)}}{x - c} = \frac{1}{g(x)g(c)} \frac{g(c) - g(x)}{x - c} = -\frac{1}{g(x)g(c)} \frac{g(x) - g(c)}{x - c}.$$

Since g is continuous at c, $\lim_{x \text{ toc}} g(x) = g(c)$. Therefore

$$\lim_{x \to c} \frac{\frac{1}{g(x)} - \frac{1}{g(c)}}{x - c} = -\frac{1}{g^2(c)} g'(c) = \frac{-g'(c)}{g^2(c)}$$

(d) now follows by differentiating the product $f(x) \frac{1}{g(x)}$ using (c).

Example: If $f(x) = x^n$, n an integer, then $f'(x) = nx^{n-1}$.

Proof: Assume first that n is a positive integer, and use induction. Let S be the set of positive integers for which the statement holds. Then $1 \in S$ since if f(x) = x, then $f'(x) = 1 = 1 x^0$. Now assume that the positive integer $k \in S$ and set $f(x) = x^{k+1}$. Since

$$x^{k+1} = x^k x$$

we have, by the product rule,

$$f'(x) = x^k \, 1 + x \, k \, x^{k-1} = (k+1)x^k$$

and so $k+1 \in S$ and the statement holds for all positive integers n.

If *n* is a negative integer, then, for $x \neq 0$,

$$f(x) = x^n = \frac{1}{x^{-n}}$$

where -n is a positive integer. By the quotient rule,

$$f'(x) = \frac{x^{-n}(0) - (-n)x - n - 1}{(x^{-n})^2} = \frac{n x^{-(n+1)}}{x^{-2n}} = n x^{n-1}.$$

Finally, if $f(x) = x^0 \equiv 1$, then $f'(x) = 0 = 0 \frac{1}{x}$. There is slight difficulty with x = 0 in this case; 0^0 is a so-called *indeterminate form*.

THEOREM 17. (The Chain Rule) Suppose that $f: I \to \mathbb{R}$ and $g: J \to \mathbb{R}$, and suppose that $g(J) \subset I$. If g is differentiable at $c \in I$ and f is differentiable at g(c) in J, then f(g) is differentiable at c and

$$(f[g(c)])' = f'[g(c)]g'(c).$$

Pseudo-proof:

$$\frac{f[g(x)] - f(g(c)]}{x - c} = \frac{f[g(x)] - f[g(c)]}{g(x) - g(c)} \frac{f[g(x)] - f(g(c)]}{x - c}$$

Set u = g(x) and a = g(c). Then, as $x \to x$, $u \to a$ since g is continuous at c. Thus

$$\lim_{x \to c} \frac{f[g(x)] - f(g(c)]}{x - c} = \lim_{u \to a} \frac{f(u) - f(a)}{u - a} \lim_{x \to c} \frac{f[g(x)] - f(g(c)]}{x - c} = f'(a)g'(c) = f'[g(c)]g'(c).$$

The problem with this proof is that while we know $x-c \neq 0$, we don't know that $u-a \neq 0$; that is, we don't know that $g(x) \neq g(c)$. This proof can be modified to take care of that contingency.

Exercises 3.4

- 1. Use either of the definitions of the derivative to find the derivative of each of the following functions.
 - (a) $f(x) = \frac{1}{x}$. (b) $f(x) = \sqrt{x}$. (c) $f(x) = \frac{1}{\sqrt{x}}$. (d) $f(x) = x^{1/3}$. (e) $f(x) = \cos x$.
- 2. Determine the values of x for which the given function is differentiable and find the derivative.
 - (a) f(x) = |x 3|.

(b)
$$f(x) = |x^2 - 1|$$

- (c) f(x) = x |x|.
- 3. Set $f(x) = \begin{cases} x^2, & \text{if } x \ge 0 \\ 0, & x < 0 \end{cases}$
 - (a) Sketch the graph of f and show that f is differentiable at 0.
 - (b) Find f' and sketch the graph of f'.
 - (c) Is f' differentiable at 0?
- 4. Set $f(x) = \begin{cases} x \sin(1/x), & \text{if } x \neq 0 \\ 0, & x = 0 \end{cases}$ Determine whether or not f is differentiable at 0.

5. Set
$$g(x) = \begin{cases} x^2 \sin(1/x), & \text{if } x \neq 0 \\ 0, & x = 0 \end{cases}$$

- (a) Calculate the derivative of g at any number $c \neq 0$.
- (b) Use the definition to show that g is differentiable at 0 and find g'(0).
- (c) Is g' continuous at 0?