
Chapter 3

Second Order Linear Differential

Equations

3.1. Introduction; Basic Terminology

Recall that a first order linear differential equation is an equation which can be written

in the form

y′ + p(x)y = q(x)

where p and q are continuous functions on some interval I. A second order linear

differential equation has an analogous form.

SECOND ORDER LINEAR DIFFERENTIAL EQUATION: A second or-

der, linear differential equation is an equation which can be written in the form

y′′ + p(x)y′ + q(x)y = f(x) (1)

where p, q, and f are continuous functions on some interval I.

The functions p and q are called the coefficients of the equation; the function

f on the right-hand side is called the forcing function or the nonhomogeneous term

. The term “forcing function” comes from the applications of second-order equations;

an explanation of the alternative term “ nonhomogeneous” is given below.

A second order equation which is not linear is said to be nonlinear .

Remarks on “Linear.” Set L[y] = y′′ + p(x)y′ + q(x)y. If we view L as

an “operator” that transforms a twice differentiable function y = y(x) into the

continuous function

L[y(x)] = y′′(x) + p(x)y′(x) + q(x)y(x),
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then, for any two twice differentiable functions y1(x) and y2(x),

L[y1(x) + y2(x)] = L[y1(x)] + L[y2(x)]

and, for any constant c,

L[cy(x)] = cL[y(x)].

As introduced in Section 2.1, L is a linear transformation, specifically, a linear

differential operator:

L : C2(I) → C(I)

where C2(I) is the vector space of twice continuously differentiable functions on I

and C(I) is the vector space of continuous functions on I. �

The first thing we need to know is that an initial-value problem has a solution,

and that it is unique.

THEOREM 1. (Existence and Uniqueness Theorem:) Given the second

order linear equation (1). Let a be any point on the interval I, and let α and β

be any two real numbers. Then the initial-value problem

y′′ + p(x) y′ + q(x) y = f(x), y(a) = α, y′(a) = β

has a unique solution.

A proof of this theorem is beyond the scope of this course.

Remark: We can solve any first order linear differential equation; Chapter 2 gives a

method for finding the general solution of any first order linear equation. In contrast,

there is no general method for solving second (or higher) order linear differential

equations. There are, however, methods for solving certain special types of second

order linear equations and we’ll consider these in this chapter. �

DEFINITION 1. (Homogeneous/Nonhomogeneous Equations) The linear

differential equation (1) is homogeneous 1 if the function f on the right side is 0

for all x ∈ I. In this case, equation (1) becomes

y′′ + p(x) y′ + q(x) y = 0. (2)

Equation (1) is nonhomogeneous if f is not the zero function on I, i.e., (1) is

nonhomogeneous if f(x) 6= 0 for some x ∈ I.

1This use of the term “homogeneous” is completely different from its use to categorize the first
order equation y′ = f(x, y) in Exercises 2.2.
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For reasons which will become clear, almost all of our attention is focused on

homogeneous equations.

Homogeneous Equations

As defined above, a second order, linear, homogeneous differential equation is an

equation that can be written in the form

y′′ + p(x) y′ + q(x) y = 0 (3)

where p and q are continuous functions on some interval I.

The Trivial Solution: The first thing to note is that the zero function, y(x) = 0

for all x ∈ I, (also denoted by y ≡ 0) is a solution of (1). The zero solution is called

the trivial solution . Obviously our main interest is in finding nontrivial solutions.

�

Let S = {y = y(x) : y is a solution of (1)}; S is a subset of C2(I).

THEOREM 2. Let y = u(x), y = v(x) ∈ S, and let C be any real number.

Then
y(x) = u(x) + v(x) ∈ S and

y(x) = Cu(x) ∈ S.

That is, S is a subspace of C2(I). Indeed, S is the null space of the linear

differential operator L. �

Theorem 1 can be restated as: If y = y1(x), y = y2(x) ∈ S and C1, C2 are

real numbers, then

C1 y1 + C2 y2 ∈ S.

The expression

C1 y1 + C2 y2

is called a linear combination of y1 and y2.

Note that the equation

y(x) = C1y1(x) + C2y2(x) (4)

where C1 and C2 are arbitrary constants, has the form of the general solution of

equation (1). So the question is: If y1 and y2 are solutions of (1), is the expression

(2) the general solution of (1)? That is, can every solution of (1) be written as a

linear combination of y1 and y2? It turns out that (2) may or not be the general

solution; it depends on the relation between the solutions y1 and y2.
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Suppose that y = y1(x) and y = y2(x) are solutions of equation (1). Under

what conditions is (2) the general solution of (1)?

Let u = u(x) be any solution of (1) and choose any point a ∈ I. Suppose that

α = u(a), β = u′(a).

Then u is a member of the two-parameter family (2) if and only if there are values

for C1 and C2 such that

C1y1(a) + C2y2(a) = α

C1y
′
1(a) + C2y

′
2(a) = β

If we multiply the first equation by y′
2(a), the second equation by −y2(a), and add,

we get

[y1(a)y′
2(a)− y2(a)y′

1(a)]C1 = αy′
2(a) − βy2(a).

Similarly, if we multiply the first equation by −y′
1(a), the second equation by y1(a),

and add, we get

[y1(a)y′
2(a)− y2(a)y′

1(a)]C2 = −αy′
1(a) + βy1(a).

We are guaranteed that this pair of equations has solutions C1, C2 if and only if

y1(a)y′
2(a) − y2(a)y′

1(a) 6= 0

in which case

C1 =
αy′

2(a) − βy2(a)

y1(a)y′
2(a)− y2(a)y′

1(a)
and C2 =

−αy′
1(a) + βy1(a)

y1(a)y′
2(a) − y2(a)y′

1(a)
.

Since a was chosen to be any point on I, we conclude that (2) is the general

solution of (1) if and only if

y1(x)y′
2(x) − y2(x)y′

1(x) 6= 0 for all x ∈ I.

DEFINITION 2. (Wronskian) Let y = y1(x) and y = y2(x) be solutions of

(1). The function W defined by

W [y1, y2](x) = y1(x)y′
2(x) − y2(x)y′

1(x)

is called the Wronskian of y1, y2.
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We use the notation W [y1, y2](x) to emphasize that the Wronskian is a function

of x that is determined by two solutions y1, y2 of equation (1). When there is no

danger of confusion, we’ll shorten the notation to W (x).

Remark Note that

W (x) =

∣∣∣∣∣
y1(x) y2(x)

y′
1(x) y′

2(x)

∣∣∣∣∣ = y1(x)y′
2(x) − y2(x)y′

1(x). �

THEOREM 3. Let y = y1(x) and y = y2(x) be solutions of equation (1), and let

W (x) be their Wronskian. Exactly one of the following holds:

(i) W (x) = 0 for all x ∈ I and y1 is a constant multiple of y2.

(ii) W (x) 6= 0 for all x ∈ I and y = C1y1(x) + C2y2(x) is the general solution of

(1)

DEFINITION 3. (Fundamental Set) A pair of solutions y = y1(x), y = y2(x)

of equation (1) forms a fundamental set of solutions if

W [y1, y2](x) 6= 0 for all x ∈ I.

Linear Dependence; Linear Independence

By Theorem 3, if y1 and y2 are solutions of equation (1) such that W [y1, y2] ≡ 0,

then y1 is a constant multiple of y2. The question as to whether or not one function

is a multiple of another function and the consequences of this are of fundamental

importance in differential equations and in linear algebra.

In this sub-section we are dealing with functions in general, not just solutions of

the differential equation (1)

DEFINITION 4. (Linear Dependence; Linear Independence) Given two

functions f = f(x), g = g(x) defined on an interval I. The functions f and g

are linearly dependent on I if and only if there exist two real numbers c1 and c2,

not both zero, such that

c1f(x) + c2g(x) ≡ 0 on I.

The functions f and g are linearly independent on I if they are not linearly

dependent. �

Linear dependence can be stated equivalently as: f and g are linearly dependent

on I if and only if one of the functions is a constant multiple of the other.
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The term Wronskian defined above for two solutions of equation (1) can be ex-

tended to any two differentiable functions f and g. Let f = f(x) and g = g(x)

be differentiable functions on an interval I. The function W [f, g] defined by

W [f, g](x) = f(x)g′(x) − g(x)f ′(x)

is called the Wronskian of f, g.

There is a connection between linear dependence/independence and Wronskian.

THEOREM 4. Let f = f(x) and g = g(x) be differentiable functions on an

interval I. If f and g are linearly dependent on I, then W (x) = 0 for all

x ∈ I (W ≡ 0 on I). �

This theorem can be stated equivalently as: Let f = f(x) and g = g(x) be

differentiable functions on an interval I. If W (x) 6= 0 for at least one x ∈ I, then

f and g are linearly independent on I.

Going back to differential equations, Theorem 4 can be restated as

Theorem 4’ Let y = y1(x) and y = y2(x) be solutions of equation (1). Exactly

one of the following holds:

(i) W (x) = 0 for all x ∈ I; y1 and y2 are linear dependent.

(ii) W (x) 6= 0 for all x ∈ I; y1 and y2 are linearly independent and y =

C1y1(x) + C2y2(x) is the general solution of (1).

The statements “y1(x), y2(x) form a fundamental set of solutions of (1)” and

“y1(x), y2(x) are linearly independent solutions of (1)” are synonymous.

The results of this section can be captured in one statement

The set S of solutions of (1), a subspace of C2(I), has dimension 2, the order of the equation.

Exercises 3.1

In Exercises 1 – 2, verify that the functions y1 and y2 are solutions of the given

differential equation. Do they constitute a fundamental set of solutions of the equa-

tion?
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1. y′′ − 4y′ + 4y = 0; y1(x) = e2x, y2(x) = xe2x.

2. x2y′′ − x(x + 2)y′ + (x + 2)y = 0; y1(x) = x, y2(x) = xex.

3. Given the differential equation y′′ − 3y′ − 4y = 0.

(a) Find two values of r such that y = erx is a solution of the equation.

(b) Determine a fundamental set of solutions and give the general solution of

the equation.

(c) Find the solution of the equation satisfying the initial conditions y(0) =

1, y′(0) = 0.

4. Given the differential equation y′′ −
(

2

x

)
y′ −

(
4

x2

)
y = 0.

(a) Find two values of r such that y = xr is a solution of the equation.

(b) Determine a fundamental set of solutions and give the general solution of

the equation.

(c) Find the solution of the equation satisfying the initial conditions y(1) =

2, y′(1) = −1.

(d) Find the solution of the equation satisfying the initial conditions y(2) =

y′(2) = 0.

5. Given the differential equation (x2 + 2x − 1)y′′ − 2(x + 1)y′ + 2y = 0.

(a) Show that the equation has a linear polynomial and a quadratic polyno-

mial as solutions.

b Find two linearly independent solutions of the equation and give the gen-

eral solution.

6. Let y = y1(x) be a solution of (1): y′′+p(x)y′+q(x)y = 0 where p and q are

continuous function on an interval I. Let a ∈ I and assume that y1(x) 6= 0

on I. Set

y2(x) = y1(x)

∫ x

a

e−
∫ t

a p(u) du

y2
1(t)

dt.

Show that y2 is a solution of (1) and that y1 and y2 are linearly independent.

Use Exercise 6 to find a fundamental set of solutions of the given equation

starting from the given solution y1.

7. y′′ − 2

x
y′ +

2

x2
y = 0; y1(x) = x.
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8. y′′ − 2x − 1

x
y′ +

x − 1

x
y = 0; y1(x) = ex.

9. Let y = y1(x) and y = y2(x) be solutions of equation (1):

y′′ + p(x)y′ + q(x)y = 0

on an interval I. Let a ∈ I and suppose that

y1(a) = α, y′
1(a) = β and y2(a) = γ, y′

2(a) = δ.

Under what conditions on α, β, γ, δ will the functions y1 and y2 be linearly

independent on I?

10. Suppose that y = y1(x) and y = y2(x) are solutions of (1). Show that if

y1(x) 6= 0 on I and W [y1, y2](x) ≡ 0 on I, then y2(x) = λy1(x) on I.

3.2. Homogenous Equations with Constant Coefficients

We have emphasized that there are no general methods for solving second (or higher)

order linear differential equations. However, there are some special cases for which

solution methods do exist. In this and the following sections we consider such a case,

linear equations with constant coefficients.

A second order, linear, homogeneous differential equation with constant coefficients

is an equation which can be written in the form

y′′ + ay′ + by = 0 (1)

where a and b are real numbers.

You have seen that the function y = e−ax is a solution of the first-order linear

equation

y′ + ay = 0,

the equation modeling exponential growth and decay. This suggests that equation

(1) may also have an exponential function y = erx as a solution.

If y = erx, then y′ = r erx and y′′ = r2 erx. Substitution into (1) gives

r2 erx + a (r erx) + b (erx) = erx
(
r2 + ar + b

)
= 0.

Since erx 6= 0 for all x, we conclude that y = erx is a solution of (1) if and only if

r2 + ar + b = 0. (2)

Thus, if r is a root of the quadratic equation (2), then y = erx is a solution

of equation (1); we can find solutions of (1) by finding the roots of the quadratic

equation (2).
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DEFINITION 1. Given the differential equation (1). The corresponding quadratic

equation (2)

r2 + ar + b = 0

is called the characteristic equation of (1); the quadratic polynomial r2 + ar + b

is called the characteristic polynomial. The roots of the characteristic equation are

called the characteristic roots . �

The nature of the solutions of the differential equation (1) depends on the nature

of the roots of its characteristic equation (2). There are three cases to consider:

(1) Equation (2) has two, distinct real roots, r1 = α, r2 = β.

(2) Equation (2) has only one real root, r = α.

(3) Equation (2) has complex conjugate roots, r1 = α + i β, r2 = α − i β, β 6= 0.

Case I: The characteristic equation has two, distinct real roots, r1 =

α, r2 = β. In this case,

y1(x) = eαx and y2(x) = eβx

are solutions of (1). Since α 6= β, y1 and y2 are not constant multiples

of each other, the pair y1, y2 forms a fundamental set of solutions of

equation (1) and

y = C1 eαx + C2 eβx

is the general solution.

Note: We can use the Wronskian to verify the independence of y1 and

y2:

W (x) = y1y
′
2−y2y

′
1 = eαx

(
β eβx

)
−eβx (αeαx) = (α−β) e(α+β)x 6= 0. �

Example 1. Find the general solution of the differential equation

y′′ + 2y′ − 8y = 0.

SOLUTION The characteristic equation is

r2 + 2r − 8 = 0

(r + 4)(r − 2) = 0
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The characteristic roots are: r1 = −4, r2 = 2. The functions y1(x) = e−4x, y2(x) =

e2x form a fundamental set of solutions of the differential equation and

y = C1 e−4x + C2 e2x

is the general solution of the equation. �

Case II: The characteristic equation has only one real root, r = α.2

Then

y1(x) = eαx and y2(x) = x eαx

are linearly independent solutions of equation (1) and

y = C1 eαx + C2 x eαx

is the general solution.

Proof: We know that y1(x) = eαx is one solution of the differential

equation; we need to find another solution which is independent of y1.

Since the characteristic equation has only one real root, α, the equation

must be

r2 + ar + b = (r − α)2 = r2 − 2αr + α2 = 0

and the differential equation (1) must have the form

y′′ − 2α y′ + α2y = 0. (*)

Now, z = C eαx, C any constant, is also a solution of (*), but z is not

independent of y1 since it is simply a multiple of y1. We replace C by

a function u which is to be determined (if possible) so that y = ueαx is

a solution of (*).3 Calculating the derivatives of y, we have

y = u eαx

y′ = α u eαx + u′ eαx

y′′ = α2u eαx + 2α u′ eαx + u′′ eαx

Substitution into (*) gives

α2u eαx + 2α u′ eαx + u′′ eαx − 2α [α u eαx + u′ eαx] + α2 u eαx = 0.

2In this case, α is said to be a double root of the characteristic equation.
3This is an application of a general method called variation of parameters. We will use the

method several times in the work that follows.
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This reduces to

u′′ eαx = 0 which becomes u′′ = 0 since eαx 6= 0.

Now, u′′ = 0 is the simplest second order, linear differential equation with

constant coefficients; the general solution is u = C1 +C2x = C1 ·1+C2 ·x
, and u1(x) = 1 and u2(x) = x form a fundamental set of solutions.

Since y = u eαx, we conclude that

y1(x) = 1 · eαx = eαx and y2(x) = x eαx

are solutions of (*). It’s easy to see that y1 and y2 form a fundamental

set of solutions of (*). This can also be checked by using the Wronskian:

W (x) = eαx [eαx + α x eαx] − α x eαx = e2αx 6= 0.

Finally, the general solution of (*) is

y = C1 eαx + C2 x eαx �

Example 2. Find the general solution of the differential equation

y′′ − 6y′ + 9y = 0.

SOLUTION The characteristic equation is

r2 − 6r + 9 = 0

(r − 3)2 = 0

There is only one characteristic root: r1 = r2 = 3. The functions y1(x) =

e3x, y2(x) = x e3x are linearly independent solutions of the differential equation

and

y = C1 e3x + C2 x e3x

is the general solution. �

Case III: The characteristic equation has complex conjugate roots:

r1 = α + i β, r2 = α + i β, β 6= 0

In this case

y1(x) = eαx cos βx and y2(x) = eαx sin βx
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are linearly independent solutions of equation (1) and

y = C1 eαx cos βx + C2 eαx sin βx = eαx [C1 cos βx + C2 sin βx]

is the general solution.

Proof: It is true that the functions z1(x) = e(α+iβ)x and z2(x) =

e(α−iβ)x are linearly independent solutions of (1), but these are complex-

valued functions and want real-valued solutions of (1). The characteristic

equation in this case is

r2 + ar + b = (r − [α + i β])(r − [α − i β]) = r2 − 2α r + α2 + β2 = 0

and the differential equation (1) has the form

y′′ − 2α y′ +
(
α2 + β2

)
y = 0. (*)

We’ll proceed in a manner similar to Case II. Set y = u eαx where u is

to be determined (if possible) so that y is a solution of (*). Calculating

the derivatives of y, we have

y = u eαx

y′ = α u eαx + u′ eαx

y′′ = α2u eαx + 2α u′ eαx + u′′ eαx

Substitution into (*) gives

α2u eαx + 2α u′ eαx + u′′ eαx − 2α [α u eαx + u′ eαx] +
(
α2 + β2

)
u eαx = 0.

This reduces to

u′′ eαx+β2 u eαx = 0 which becomes u′′+β2 u = 0 since eαx 6= 0.

Now,

u′′ + β2 u = 0

is the equation of simple harmonic motion (for example, it models the

oscillatory motion of a weight suspended on a spring). The functions

u1(x) = cos βx and u2(x) = sin βx form a fundamental set of solutions.

(Verify this.)

Since y = u eαx, we conclude that

y1(x) = eαx cos βx and y2(x) = eαx sin βx
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are solutions of (*). It’s easy to see that y1 and y2 form a fundamental

set of solutions. This can also be checked by using the Wronskian

Finally, we conclude that the general solution of equation (1) is:

y = C1 eαx cos βx + C2e
αx sin βx = eαx [C1 cos βx + C2 sin βx] . �

Example 3. Find the general solution of the differential equation

y′′ − 4y′ + 13y = 0.

SOLUTION The characteristic equation is: r2 − 4r + 13 = 0. By the quadratic

formula, the roots are

r1, r2 =
−(−4) ±

√
(−4)2 − 4(1)(13)

2
=

4 ±
√

16 − 52

2
=

4 ±
√
−36

2
=

4 ± 6 i

2
= 2±3 i.

The characteristic roots are the complex numbers: r1 = 2+3 i, r2 = 2− 3 i. The

functions y1(x) = e2x cos 3x, y2(x) = e2x sin 3x are linearly independent solutions

of the differential equation and

y = C1 e2x cos 3x + C2 e2x sin 3x = e2x [C1 cos 3x + C2 sin 3x]

is the general solution. �

Example 4. (Important Special Case) Find the general solution of the differential

equation

y′′ + β2y = 0.

SOLUTION The characteristic equation is: r2 + β2 = 0. The characteristic roots

are the complex numbers

r1, r2 = 0 ± β i

The functions y1(x) = e0x cos βx = cos βx, y2(x) = e0 sin β3x = sin βx are linearly

independent solutions of the differential equation and

y = C1 cos βx + C2 sin βx

is the general solution. �

Recovering a Differential Equation from Solutions

You can also work backwards using the results above. That is, we can determine

a second order, linear, homogeneous differential equation with constant coefficients

that has given functions u and v as solutions. Here are some examples.
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Example 5. Find a second order, linear, homogeneous differential equation with

constant coefficients that has the functions u(x) = e2x, v(x) = e−3x as solutions.

SOLUTION Since e2x is a solution, 2 must be a root of the characteristic equation

and r−2 must be a factor of the characteristic polynomial. Similarly, e−3x a solution

means that −3 is a root and r − (−3) = r + 3 is a factor of the characteristic

polynomial. Thus the characteristic equation must be

(r − 2)(r + 3) = 0 which expands to r2 + r − 6 = 0.

Therefore, the differential equation is

y′′ + y′ − 6y = 0. �

Example 6. Find a second order, linear, homogeneous differential equation with

constant coefficients that has y(x) = ex cos 2x as a solution.

SOLUTION Since ex cos 2x is a solution, the characteristic equation must have the

complex numbers 1+2i and 1−2i as roots. (Although we didn’t state it explicitly,

ex sin 2x must also be a solution.) The characteristic equation must be

(r − [1 + 2i])(r − [1 − 2i]) = 0 which expands to r2 − 2r + 5 = 0

and the differential equation is

y′′ − 2y′ + 5y = 0. �

Exercises 3.2

Find the general solution of the given differential equation.

1. y′′ + 2y′ − 8y = 0.

2. y′′ − 13y′ + 42y = 0.

3. y′′ − 10y′ + 25y = 0.

4. y′′ + 2y′ + 5y = 0.

5. y′′ + 4y′ + 13y = 0.

6. y′′ = 0.

7. y′′ + 2y′ = 0.
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8. 2y′′ + 5y′ − 3y = 0.

9. y′′ − 9y = 0.

10. y′′ + 16y = 0.

11. y′′ − 2y′ + 2y = 0.

12. y′′ − y′ − 30y = 0.

Find the solution of the initial-value problem.

13. y′′ − 5y′ + 6y = 0; y(0) = 1, y′(0) = 1.

14. y′′ + 4y′ + 3y = 0; y(0) = y′(0) = 0.

15. y′′ + 2y′ + y = 0; y(0) = −3, y′(0) = 1.

16. y′′ + 4y = 0; y(0) = 1, y′(0) = −2.

Find a differential equation y′′ + ay′ + by = 0 that is satisfied by the given

function(s).

17. y1(x) = e2x, y2(x) = e−5x.

18. y(x) = 2xe3x.

19. y(x) = cos 2x.

20. y1(x) = 3e2x, y2(x) = −4e−6x.

21. y(x) = e−2x sin 4x.

Find a differential equation y′′ + ay′ + by = 0 whose general solution is the

given expression.

22. y = C1e
x/2 + C2e

2x.

23. y = C1e
3x + C2e

−4x.

24. y = C1e
−x cos 3x + C2e

−x sin 3x.

25. y = C1e
2x + C2xe2x.

26. y = C1 cos 4x + C2 sin 4x.

27. Find the solution y = y(x) of the initial-value problem y′′−y′−2y = 0; y(0) =

α, y′(0) = 2. Then find α such that y(x) → 0 as x → ∞.
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28. Find the solution y = y(x) of the initial-value problem 4y′′ − y = 0; y(0) =

2, y′(0) = β. Then find β such that y(x) → 0 as x → ∞.

Euler Equations: A second order linear homogeneous equation of the form

x2d2y

dx2
+ αx

dy

dx
+ βy = 0 (E)

where α and β are constants, is called an Euler equation .

29. Prove that the Euler equation (E) can be transformed into the second order

equation with constant coefficients

d2y

dz2
+ a

dy

dz
+ by = 0

where a and b are constants, by means of the change of independent variable

z = ln x.

Find the general solution of the Euler equations.

30. x2y′′ − xy′ − 8y = 0.

31. x2y′′ − 3xy′ + 4y = 0.

32. x2y′′ − xy′ + 5y = 0.

3.3. Nonhomogeneous Equations

In this section we consider the general second order, linear, nonhomogeneous equation

y′′ + p(x)y′ + q(x)y = f(x) (1)

where p, q, f are continuous functions on an interval I.

The objectives of this section are to determine the “structure” of the set of solu-

tions of (1).

As we shall see, there is a close connection between equation (1) and

y′′ + p(x)y′ + q(x)y = 0. (2)

In this context, equation (2) is called the reduced equation of equation (1).
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General Results

THEOREM 1. If z = z1(x) and z = z2(x) are solutions of equation (1), then

y(x) = z1(x) − z2(x)

is a solution of equation (2). �

Thus the difference of any two solutions of the nonhomogeneous equation (1) is a

solution of its reduced equation (2).

Our next theorem gives the “structure” of the set of solutions of (1).

THEOREM 2. Let y = y1(x) and y = y2(x) be linearly independent solutions

of the reduced equation (2) and let z = z(x) be a particular solution of (1). If

u = u(x) is any solution of (1), then there exist constants C1 and C2 such that

u(x) = C1y1(x) + C2y2(x) + z(x). �

According to Theorem 2, if y = y1(x) and y = y2(x) are linearly independent

solutions of the reduced equation (2) and z = z(x) is a particular solution of (1),

then

y = C1y1(x) + C2y2(x) + z(x) (3)

represents the set of all solutions of (1). That is, (3) is the general solution of (1).

Another way to look at (3) is: The general solution of (1) consists of the general

solution of the reduced equation (2) plus a particular solution of (1):

y︸︷︷︸
general solution of (1)

= C1y1(x) + C2y2(x)︸ ︷︷ ︸
general solution of (2)

+ z(x).︸ ︷︷ ︸
particular solution of (1)

The next result is sometimes useful in finding particular solutions of nonhomoge-

neous equations. It is known as the superposition principle.

THEOREM 3. If z = z1(x) and z = z2(x) are particular solutions of

y′′ + p(x)y′ + q(x)y = f(x) and y′′ + p(x)y′ + q(x)y = g(x),

respectively, then z(x) = z1(x) + z2(x) is a particular solution of

y′′ + p(x)y′ + q(x)y = f(x) + g(x). �
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This result can be extended to nonhomogeneous equations whose right-hand side

is the sum of an arbitrary number of functions.

COROLLARY If z = z1(x) is a particular solution of

y′′ + p(x)y′ + q(x)y = f1(x),

z = z2(x) is a particular solution of

y′′ + p(x)y′ + q(x)y = f2(x),

and so on

z = zn(x) is a particular solution of

y′′ + p(x)y′ + q(x)y = fn(x),

then z(x) = z1(x) + z2(x) + · · · + zn(x) is a particular solution of

y′′ + p(x)y′ + q(x)y = f1(x) + f2(x) + · · · + fn(x). �

The importance of Theorem 7 and its Corollary is that we need only consider

nonhomogeneous equations in which the function on the right-hand side consists of

one term only.

Variation of Parameters

By our work above, to find the general solution of (1) we need to find:

(i) a linearly independent pair of solutions y1, y2 of the reduced equation (2), and

(ii) a particular solution z of (1).

The method of variation of parameters uses a pair of linearly independent solutions

of the reduced equation to construct a particular solution of (1).

Let y1(x) and y2(x) be linearly independent solutions of the reduced equation

y′′ + p(x)y′ + q(x)y = 0.

Then

y = C1y1(x) + C2y2(x)
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is the general solution. We replace the arbitrary constants C1 and C2 by functions

u = u(x) and v = v(x), which are to be determined so that

z(x) = u(x)y1(x) + v(x)y2(x)

is a particular solution of the nonhomogeneous equation (1). The replacement of the

parameters C1 and C2 by the “variables” u and v is the basis for the term

“variation of parameters.” Since there are two unknowns u and v to be determined

we shall impose two conditions on these unknowns. One condition is that z should

solve the differential equation (1). The second condition is at our disposal and we

shall choose it in a manner that will simplify our calculations.

Differentiating z we get

z′ = u y′
1 + y1 u′ + v y′

2 + y2 v′.

For our second condition on u and v, we set

y1 u′ + y2 v′ = 0. (a)

This condition is chosen because it simplifies the first derivative z′ and because it

will lead to a simple pair of equations in the unknowns u and v. With this condition

the equation for z′ becomes

z′ = u y′
1 + v y′

2 (b)

and

z′′ = u y′′
1 + y′

1 u′ + v y′′
2 + y′

2 v′.

Now substitute z, z′ (given by (b)), and z′′ into the left side of equation (1).

This gives

z′′ + pz′ + qz = (u y′′
1 + y′

1 u′ + v y′′
2 + y′

2 v′) + p(u y′
1 + v y′

2) + q(u y1 + v y2)

= u(y′′
1 + py′

1 + qy1) + v(y′′
2 + py′

2 + qy2) + y′
1 u′ + y′

2 v′.

Since y1 and y2 are solutions of (2),

y′′
1 + py′

1 + qy1 = 0 and y′′
2 + py′

2 + qy2 = 0

and so

z′′ + pz′ + qz = y′
1 u′ + y′

2 v′.

The condition that z should satisfy (1) is

y′
1 u′ + y′

2 v′ = f(x). (c)
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Equations (a) and (c) constitute a system of two equations in the two unknowns

u and v:

y1 u′ + y2 v′ = 0

y′
1 u′ + y′

2 v′ = f(x)

Obviously this system involves u′ and v′ not u and v, but if we can solve for u′

and v′, then we can integrate to find u and v. Solving for u′ and v′, we find that

u′ =
−y2 f

y1 y′
2 − y2 y′

1

and v′ =
y1 f

y1 y′
2 − y2 y′

1

We know that the denominators here are non-zero because the expression

y1(x)y′
2(x) − y2(x)y′

1(x) = W (x)

is the Wronskian of y1 and y2, and y1, y2 are linearly independent solutions of

the reduced equation.

We can now get u and v by integrating:

u =

∫ −y2(x)f(x)

W (x)
dx and v =

∫
y1(x)f(x)

W (x)
dx.

Finally

z(x) = y1(x)

∫ −y2(x)f(x)

W (x)
dx + y2(x)

∫
y1(x)f(x)

W (x)
dx (4)

is a particular solution of the nonhomogeneous equation (1).

Remark This result illustrates why the emphasis is on linear homogeneous equa-

tions. To find the general solution of the nonhomogeneous equation (1) we need a

fundamental set of solutions of the reduced equation (2) and one particular solution

of (1). But, as we have just shown, if we have a fundamental set of solutions of (2),

then we can use them to construct a particular solution of (1). Thus, all we really

need to solve (1) is a fundamental set of solutions of its reduced equation (2). �

Example 1. Find a particular solution of the nonhomogeneous equation

y′′ − 5 y′ + 6 y = 4e2x. (*)

SOLUTION The functions y1(x) = e2x, y2(x) = e3x are linearly independent

solutions of the reduced equation. The Wronskian of y1, y2 is

W (x) = y1 y′
2 − y2 y′

1 = e5x.
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By the method of variation of parameters, a particular solution of the nonhomoge-

neous equation is

z(x) = u(x) e2x + v(x) e3x

where, from (4),

u(x) =

∫ −e3x(4e2x)

e5x
dx =

∫
−4 dx = −4x

and

v(x) =

∫
e2x(4e2x)

e5x
dx =

∫
4e−x dx = −4e−x.

(NOTE: Since we are seeking only one function u and one function v we have not

included arbitrary constants in the integration steps.)

Now

z(x) = −4x e2x − 4e−x e3x = −4x e2x − 4e2x

is a particular solution of the nonhomogeneous equation (*) and

y = C1 e2x + C2 e3x− 4x e2x − 4e2x = C1 e2x + C2 e3x − 4x e2x

is the general solution (we “absorbed” −4e2x in the C1 e2x term). As you can check

−4xe2x is a solution of the nonhomogeneous equation. �

Exercises 3.3

Verify that the given functions y1 and y2 form a fundamental set of solutions

of the reduced equation of the given nonhomogeneous equation; then find a partic-

ular solution of the nonhomogeneous equation and give the general solution of the

equation.

1. y′′ − 2

x2
y = 3 − x−2; y1(x) = x2, y2(x) = x−1.

2. y′′ − 1

x
y′ +

1

x2
y =

2

x
; y1(x) = x, y2(x) = x ln x.

3. (x − 1)y′′ − xy′ + y = (x− 1)2; y1(x) = x, y2(x) = ex.

4. x2y′′ − xy′ + y = 4x ln x.

Find the general solution of the given nonhomogeneous differential equation.

5. y′′ − 4y′ + 4y = 1
3
x−1e2x.
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6. y′′ + 4y′ + 4y =
e−2x

x2
.

7. y′′ + 2y′ + y = e−x ln x.

8. The function y1(x) = x is a solution of x2y′′ + xy′ − y = 0. Find the general

solution of the differential equation

x2y′′ + xy′ − y = 2x.

9. The functions y1(x) = x2 + x ln x, y2(x) = x + x2 and y3(x) = x2 are

solutions of a second order, linear, nonhomogeneous equation. What is the

general solution of the equation?

3.4. Undetermined Coefficients

Solving a linear nonhomgeneous equation depends, in part, on finding a particular

solution of the equation. We have seen one method for finding a particular solution,

the method of variation of parameters. In this section we present another method,

the method of undetermined coefficients.

Remark: Limitations of the method. In contrast to variation of parameters,

which can be applied to any nonhomogeneous equation, the method of undetermined

coefficients can be applied only to nonhomogeneous equations of the form

y′′ + ay′ + by = f(x) (1)

where a and b are constants and the nonhomogeneous term f is a polynomial,

an exponential function, a sine, a cosine, or a combination of such functions. �

To motivate the method of undetermined coefficients, consider the linear operator

on the left side of (1):

y′′ + ay′ + by. (2)

If we calculate (2) for an exponential function z = Aerx, A a constant, we have

z = Aerx, z′ = Arerx, z′′ = Ar2erx

and

y′′ + ay′ + by = Ar2erx + a(Arerx) + b(Aerx =
(
Ar2 + aAr + bA

)
erx

= K erx where K = Ar2 + aAr + bA.
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That is, the operator (2) “transforms” Aerx into a constant multiple of erx. We

can use this result to determine a particular solution of a nonhomogeneous equation

of the form

y′′ + ay′ + by = cerx.

Here is a specific example.

Example 1. Find a particular solution of the nonhomogeneous equation

y′′ − 2y′ + 5y = 6e3x.

SOLUTION As we saw above, if we “apply” y′′− 2y′ + 5y to z(x) = Ae3x we will

get an expression of the form Ke3x. We want to determine A so that K = 6. The

constant A is called an undetermined coefficient. We have

z = Ae3x, z′ = 3Ae3x, z′′ = 9Ae3x.

Substituting z and its derivatives into the left side of the differential equation, we

get

9Ae3x − 2
(
3Ae3x

)
+ 5

(
Ae3x

)
= (9A − 6A + 5A)e3x = 8Ae3x.

We want

z′′ − 2z′ + 5z = 6e3x,

so we set

8Ae3x = 6e3x which gives 8A = 6 and A = 3
4
.

Thus, z(x) = 3
4
e3x is a particular solution of y′′ − 2y′ + 5y = 6e3x. (Verify this.)

You can also verify that

y = ex (C1 cos 2x + C2 sin 2x) + 3
4
e3x

is the general solution of the equation. �

If we set z(x) = A cos βx and calculate z′ and z′′, we get

z = Acos βx, z′ = −βA sin βx, z′′ = −β2A cos βx.

Therefore, y′′ + ay′ + by applied to z gives

z′′ + az′ + bz = −β2A cos βx + a (−βA sin βx) + b(Acos βx)

= (−β2A + bA) cos βx + (−aβA) sin βx.
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That is, y′′ + ay′ + by “transforms” z = A cos βx into an expression of the form

K cos βx + M sin βx

where K and M are constants which depend on a, b, β and A. We will get exactly

the same type of result if we apply y′′ + ay′ + by to z = B sinβx. Combining these

two results, it follows that y′′ + ay′ + by applied to

z = A cos βx + B sin βx

will produce the expression

K cos βx + M sin βx

where K and M are constants which depend on a, b, β,A, and B.

Now suppose we have a nonhomogeneous equation of the form

y′′ + ay′ + by = c cos βx or y′′ + ay′ + by = d sin βx,

or even

y′′ + ay′ + by = c cos βx + d sin βx.

Then we will look for a solution of the form z(x) = A cos βx + B sin βx.

Continuing with these ideas, if y′′ + ay′ + by is applied to z = Aeαx cos βx +

Beαx sin βx, then the result will have the form

Keαx cos βx + Keαx sin βx

where K and M are constants which depend on a, b, α, β,A,B. Therefore, we

expect that a nonhomogeneous equation of the form

y′′ + ay′ + by = ceαx cos βx + deαx sin βx

will have a particular solution of the form z = Aeαx cos βx + Beαx sin βx.

The following table summarizes our discussion to this point.

A particular solution of y′′ + ay′ + by = f(x)

If f(x) = try z(x) =

cerx Aerx

c cos βx + d sin βx z(x) = A cos βx + B sin βx

ceαx cos βx + deαx sin βx z(x) = Aeαx cos βx + Beαx sin βx

Note: The first line includes the case r = 0;

if f(x) = ce0x = c, then z = Ae0x = A.
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Unfortunately, the situation is not quite as simple as it appears; there is a difficulty.

Example 2. Find a particular solution of the nonhomogeneous equation

y′′ − 5y′ + 6y = 4e2x. (*)

SOLUTION According to the table, we should set z(x) = Ae2x. Calculating the

derivatives of z, we have

z = Ae2x, z′ = 2Ae2x, z′′ = 4Ae2x.

Substituting z and its derivatives into the left side of (*), we get

z′′ − 5z′ + 6z = 4Ae2x − 5(2Ae2x) + 6(Ae2x) = 0Ae2x.

Clearly the equation

0Ae2x = 4e2x which is equivalent to 0A = 4

does not have a solution. Therefore equation (*) does not have a solution of the form

z = Ae2x.

The problem here is z = Ae2x is a solution of the reduced equation

y′′ − 5y′ + 6y = 0.

(The characteristic equation is r2 − 5r + 6 = 0; the roots are r = 2, 3; and

y1 = e2x, y2 = e3x are linearly independent solutions.)

In Example 6 of the preceding section we saw that z(x) = −4xe2x is a particular

solution of (*). So, in the context here, since our trial solution z = Ae2x solves the

reduced equation, we’ll try z = Axe2x. The derivatives of this z are:

z = Axe2x, z′ = 2Axe2x + Ae2x, z′′ = 4Axe2x + 4Ae2x.

Substituting into the left side of (*), we get

z′′ − 5z′ + 6z = 4Axe2x + 4Ae2x − 5(2Axe2x + Ae2x) + 6(Axe2x)

= −Ae2x.

Setting z′′ − 5z′ + 6z = 4e2x gives

−Ae2x = 4e2x which implies A = −4.

Thus, z(x) = −4xe2x is a particular solution of (*) (as we already know). �
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We learn from this example that we have to make an adjustment if our trial

solution z (from the table) satisfies the reduced equation. Here’s another example.

Example 3. Find a particular solution of

y′′ + 6y′ + 9y = 5e−3x. (**)

SOLUTION The reduced equation, y′′ + 6y′ + 9y = 0 has characteristic equation

r2 + 6r + 9 = (r + 3)2 = 0.

Thus, r = −3 is a double root and y1(x) = e−3x, y2(x) = xe−3x form a fundamental

set of solutions.

According to our table, to find a particular solution of (**) we should try z =

Ae−3x. But this won’t work, z is a solution of the reduced equation. Based on

the result of the preceding example, we should try z = Axe−3x, but this won’t

work either; z = Axe−3x is also a solution of the reduced equation. So we’ll try

z = Ax2e−3x. You can verify that

z(x) =
5

2
x2e−3x

is a particular solution of (**).

The general solution of (**) is: y = C1e
−3x + C2xe−3x + 5

2
x2e−3x. �

Based on these examples we amend our table to read:

Table 1

A particular solution of y′′ + ay′ + by = f(x)

If f(x) = try z(x) =*

cerx Aerx

c cos βx + d sin βx z(x) = A cos βx + B sin βx

ceαx cos βx + deαx sin βx z(x) = Aeαx cos βx + Beαx sin βx

*Note: If z satisfies the reduced equation, try xz;

if xz also satisfies the reduced equation, then

x2z will give a particular solution
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Remark In practice it is a good idea to solve the homogeneous equation before

selecting the trial solution z of the nonhomogeneous equation. That way you will

not waste your time selecting a z that satisfies the reduced equation. �

Summary The method of variation of parameters can be applied to any linear

nonhomogeneous equations but it has the limitation of requiring a fundamental set

of solutions of the reduced equation.

The method of undetermined coefficients is limited to linear nonhomogeneous

equations with constant coefficients and with restrictions on the nonhomogeneous

term f .

In cases where both methods are applicable, the method of undetermined coeffi-

cients is usually simpler and, hence, the preferable method. �

Exercises 3.4

Find the general solution.

1. y′′ + 2y′ + 2y = 10ex.

2. y′′ + 6y′ + 9y = 9e3x.

3. y′′ + 4y′ + 4y = e−2x.

4. y′′ + 5y′ + 6y = e2x + 4.

5. y′′ − 2y′ − 3y = 3e2x.

6. y′′ + 2y′ = 4 sin 2x.

7. 2y′′ + 3y′ + y = x2 + 3 sin x.

8. y′′ − 6y′ + 9y = e−3x.

9. y′′ + 5y′ + 6y = 3x + 4.

10. y′′ + 6y′ + 8y = 3e−2x.

11. y′′ + y′ − 6y = 2e−3x + e2x.

Find the solution of the given initial-value problem.

12. y′′ + y′ − 2y = 2e2x; y(0) = 0, y′(0) = 1.
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13. y′′ + 4y = 3ex; y(0) = 0, y′(0) = 2.

14. y′′ − y′ − 2y = sin 2x; y(0) = 1, y′(0) = −1.

15. y′′ − 2y′ + y = e3x + 4; y(0) = 1, y′(0) = 1.

Determine a suitable form for a particular solution z = z(x) of the given

equation.

16. y′′ − 2y′ − 3y = 6 − 3e−x + 4 cos 3x.

17. y′′ + y = 3 cos x− 2 sin x.

18. y′′ − 5y′ + 6y = 2e2x cos x− 3e3x + 5.

19. y′′ − 4y′ + 4y = 2e2x + 2 cos 2x.

20. y′′ + 2y′ = 2 + 5e−3x + sin 2x.

3.5. Vibrating Mechanical Systems

Undamped Vibrations A spring of length l0 units is suspended from a support.

When an object of mass m is attached to the spring, the spring stretches to a length

l1 units. If the object is then pulled down (or pushed up) an additional y0 units at

time t = 0 and then released, what is the resulting motion of the object? That is,

what is the position y(t) of the object at time t > 0? Assume that time is measured

in seconds

We begin by analyzing the forces acting on the object at time t > 0. First, there

is the weight of the object (gravity):

F1 = mg.

This is a downward force. We choose our coordinate system so that the positive

direction is down. Next, there is the restoring force of the spring. By Hooke’s Law,

this force is proportional to the total displacement l1 +y(t) and acts in the direction

opposite to the displacement:

F2 = −k[l1 + y(t)] with k > 0.

The constant of proportionality k is called the spring constant. If we assume that the

spring is frictionless and that there is no resistance due to the surrounding medium
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(for example, air resistance), then these are the only forces acting on the object.

Under these conditions, the total force is

F = F1 + F2 = mg − k[l1 + y(t)] = (mg − kl1) − ky(t).

Before the object was displaced, the system was in equilibrium, so the force of

gravity, mg plus the force of the spring, −kl1, must have been 0:

mg − kl1 = 0.

Therefore, the total force F reduces to

F = −ky(t).

By Newton’s Second Law of Motion, F = ma (force = mass × acceleration), we

have

ma = −ky(t) and a = − k

m
y(t).

Therefore, at any time t we have

a = y′′(t) = − k

m
y(t) or y′′(t) +

k

m
y(t) = 0.

When the acceleration is a constant negative multiple of the displacement, the object

is said to be in simple harmonic motion.

Since k/m > 0, we can set ω =
√

k/m and write this equation as

y′′(t) + ω2y(t) = 0, (3)

a second order, linear homogeneous equation with constant coefficients. The charac-

teristic equation is

r2 + ω2 = 0

and the characteristic roots are ±ωi. The general solution of (1) is

y = C1 cos ωt + C2 sin ωt.

In the Exercises you are asked to show that the general solution can be written as

y = A sin (ωt + φ0), (4)

where A and φ0 are constants with A > 0 and φ0 ∈ [0, 2π). For our purposes

here, this is the preferred form. The motion is periodic with period T given by

T =
2π

ω
,
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a complete oscillation takes 2π/ω seconds. The reciprocal of the period gives the

number of oscillations per second. This is called the frequency , denoted by f :

f =
ω

2π
.

Since sin (ωt + φ0) oscillates between −1 and 1,

y(t) = A sin (ωt + φ0)

oscillates between −A and A. The number A is called the amplitude of the

motion. The number φ0 is called the phase constant or the phase shift . The figure

gives a typical graph of (2).

t

A

A
y

Figure 1

Damped Vibrations

If the spring is not frictionless or if there the surrounding medium resists the

motion of the object (for example, air resistance), then the resistance tends to dampen

the oscillations. Experiments show that such a resistant force R is approximately

proportional to the velocity v = y′ and acts in a direction opposite to the motion:

R = −cy′ with c > 0.

Taking this force into account, the force equation reads

F = −ky(t)− cy′(t).

Newton’s Second Law F = ma = my′′ then gives

my′′(t) = −ky(t)− cy′(t)

which can be written as

y′′ +
c

m
y′ +

k

m
y = 0. (c, k, m all constant) (5)
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This is the equation of motion in the presence of a damping factor.

The characteristic equation

r2 +
c

m
r +

k

m
= 0

has roots

r =
−c ±

√
c2 − 4km

2m
.

There are three cases to consider:

c2 − 4km < 0, c2 − 4km > 0, c2 − 4km = 0.

Case 1: c2 − 4km < 0. In this case the characteristic equation has

complex roots:

r1 = − c

2m
+ iω, r2 = − c

2m
− iω where ω =

√
4km − c2

2m
.

The general solution is

y = e(−c/2m)t (C1 cos ωt + C2 sin ωt)

which can also be written as

y(t) = Ae(−c/2m)t sin (ωt + φ0) (6)

where, as before, A and φ0 are constants, A > 0, φ0 ∈ [0, 2π). This

is called the underdamped case. The motion is similar to simple harmonic

motion except that the damping factor e(−c/2m)t causes y(t) → 0 as

t → ∞. The oscillations continue indefinitely with constant frequency

f = ω/2π but diminishing amplitude Ae(−c/2m)t.

The figure below illustrates this motion. �

t

y

Figure 2
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Case 2: c2 − 4km > 0. In this case the characteristic equation has two

distinct real roots:

r1 =
−c +

√
c2 − 4km

2m
, r2 =

−c −
√

c2 − 4km

2m
.

The general solution is

y(t) = y = C1e
r1t + C2e

r2t. (7)

This is called the overdamped case. The motion is nonoscillatory. Since

√
c2 − 4km <

√
c2 = c,

r1 and r2 are both negative and y(t) → 0 as t → ∞. �

Case 3: c2 − 4km = 0. In this case the characteristic equation has only

one real root:

r1 =
−c

2m
,

and the general solution is

y(t) = y = C1e
−(c/2m) t + C2t e−(c/2m) t. (8)

This is called the critically damped case. Once again, the motion is nonoscil-

latory and y(t) → 0 as t → ∞. �

In both the overdamped and critically damped cases, the object moves back to

the equilibrium position (y(t) → 0 as t → ∞). The object may move through the

equilibrium position once, but only once. Two typical examples of the motion are

shown below.

t

y

t

y

Forced Vibrations

The vibrations that we have considered thus far result from the interplay of three

forces: gravity, the restoring force of the spring, and the retarding force of friction

or the surrounding medium. Such vibrations are called free vibrations .
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The application of an external force to a freely vibrating system modifies the

vibrations and produces what are called forced vibrations . As an example we’ll

investigate the effect of a periodic external force F0 cos γt where F0 and γ are

positive constants.

In an undamped system the force equation is

F = −kx + F0 cos γt

and the equation of motion takes the form

y′′ +
k

m
y =

F0

m
cos γt.

We set ω =
√

k/m and write the equation of motion as

y′′ + ω2y =
F0

m
cos γt. (9)

As we’ll see, the nature of the motion depends on the relation between the applied

frequency , γ/2π, and the natural frequency of the system, ω/2π.

Case 1: γ 6= ω. In this case the method of undetermined coefficients

gives the particular solution

z(t) =
F0/m

ω2 − γ2
cos γt

and the general equation of motion is

y = A sin (ωt + φ0) +
F0/m

ω2 − γ2
cos γt. (10)

If ω/γ is rational, the vibrations are periodic. If ω/γ is not rational,

then the vibrations are not periodic and can be highly irregular. In either

case, the vibrations are bounded by

|A|+
∣∣∣∣

F0/m

ω2 − γ2

∣∣∣∣ . �

Case 2: γ = ω. In this case the method of undetermined coefficients

gives

z(t) =
F0

2ωm
t sin ωt

and the general solution has the form

y = A sin (ωt + φ0) +
F0

2ωm
t sin ωt. (11)
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The system is said to be in resonance . The motion is oscillatory but,

because of the t factor in the second term, it is not periodic. As t → ∞,

the amplitude of the vibrations increases without bound.

A typical illustration of the motion is given in the figure below. �

t

y

Figure 4

Exercises 3.5

1. Show that simple harmonic motion y(t) = y = C1 cos ωt + C2 sin ωt can be

written as: (a) A sin(ωt + φ0) (b) y(t) = A cos(ωt + φ1).

2. What is the effect of an increase in the resistance constant c on the amplitude

and frequency of the vibrations given by (4)?

3. Show that the motion given by (5) can pass through the equilibrium point at

most once. How many times can the motion change directions?

4. Show that if γ 6= ω, then the method of undetermined coefficients applied to

(7) gives

z =
F0/m

ω2 − γ2
cos γt.

5. Show that if γ = ω, then the method of undetermined coefficients applied to

(7) gives

z =
F0

2ωm
t sin ωt.
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3.6 Higher-Order Linear Differential Equations

This section is a continuation Sections 3.1 - 3.4. All of the “theory” that we developed

for second-order linear differential equations carries over, essentially verbatim, to

linear differential equations of order greater than two.

Recall that a first order, linear differential equation is an equation which can be

written in the form

y′ + p(x)y = q(x)

where p and q are continuous functions on some interval I. A second order, linear

differential equation has an analogous form.

y′′ + p(x)y′ + q(x)y = f(x)

where p, q, and f are continuous functions on some interval I.

In general, an nth-order linear differential equation is an equation that can be

written in the form

y(n) + pn−1(x)y(n−1) + pn−2(x)y(n−2) + · · · + p1(x)y′ + p0(x)y = f(x) (L)

where p0, p1, . . . , pn−1, and f are continuous functions on some interval I. As

before, the functions p0, p1, . . . , pn−1 are called the coefficients, and f is called

the forcing function or the nonhomogeneous term.

Equation (L) is homogeneous if the function f on the right side is 0 for all

x ∈ I. In this case, equation (L) becomes

y(n) + pn−1(x)y(n−1) + pn−2(x)y(n−2) + · · · + p1(x)y′ + p0(x)y = 0 (H)

Equation (L) is nonhomogeneous if f is not the zero function on I, i.e., (L) is

nonhomogeneous if f(x) 6= 0 for some x ∈ I. As in the case of second order linear

equations, almost all of our attention will be focused on homogeneous equations.

THEOREM 1. (Existence and Uniqueness Theorem) Given the nth- order

linear equation (L). Let a be any point on the interval I, and let α0, α1, . . . , αn−1

be any n real numbers. Then the initial-value problem

y(n) + pn−1(x)y(n−1) + pn−2(x)y(n−2) + · · · + p1(x)y′ + p0(x)y = f(x);

y(a) = α0, y′(a) = α1, . . . , y(n−1)(a) = αn−1

has a unique solution.
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Remark: We can solve any first order linear differential equation, see Section 2.1.

In contrast, there is no general method for solving second or higher order linear dif-

ferential equations. However, as we saw in our study of second order equations, there

are methods for solving certain special types of higher order linear equations and we

shall look at these later in this section. �

Homogeneous Equations

y(n) + pn−1(x)y(n−1) + pn−2(x)y(n−2) + · · · + p1(x)y′ + p0(x)y = 0. (H)

Note first that the zero function, y(x) = 0 for all x ∈ I, (also denoted by y ≡ 0)

is a solution of (H). As before, this solution is called the trivial solution . Obviously,

our main interest is in finding nontrivial solutions.

The essential facts about homogeneous equations are as follows. The proofs are

identical to those given in Section 3.2

THEOREM 2. If y = y1(x), y = y2(x), . . . , y = yk(x) are solutions of (H), and

if c1, c2, . . . , ck are any k real numbers, then

y(x) = c1y1(x) + c2y2(x) + · · · + ckyk(x)

is also a solution of (H).

Any linear combination of solutions of (H) is also a solution of (H).

Note that if k = n in the linear combination above, then the equation

y(x) = c1y1(x) + c2y2(x) + · · · + cnyn(x) (1)

has the form of a general solution of equation (H). So the question is: If y1, y2, . . . , yn

are solutions of (H), is the expression (1) the general solution of (H)? That is, can

every solution of (H) be written as a linear combination of y1, y2, . . . , yn? It turns

out that (1) may or not be the general solution; it depends on the relation between

the solutions y1, y2, . . . , yn.

Let y = y1(x), y = y2(x), . . . , y = yn(x) be n solutions of (H). The n × n

determinant

74



∣∣∣∣∣∣∣∣∣∣∣∣

y1(x) y2(x) . . . yn(x)

y′
1(x) y′

2(x) . . . y′
n(x)

y′′
1(x) y′′

2(x) . . . y′′
n(x)

...
...

...

y
(n−1)
1 (x) y

(n−1)
2 (x) . . . y

(n−1)
n (x)

∣∣∣∣∣∣∣∣∣∣∣∣

(2)

is called the Wronskian of the solutions y1, y2, . . . , yn.

THEOREM 3. Let y = y1(x), y = y2(x), . . . , y = yn(x) be solutions of equation

(H), and let W (x) be their Wronskian. Exactly one of the following holds:

(i) W (x) = 0 for all x ∈ I and y1, y2, . . . , yn are linearly dependent.

(ii) W (x) 6= 0 for all x ∈ I which implies that y1, y2, . . . , yn are linearly

independent and

y(x) = c1y1(x) + c2y2(x) + · · · + cnyn(x)

is the general solution of (H).

DEFINITION 1. (Fundamental Set) A set of n linearly independent solutions

y = y1(x), y = y2(x), . . . , y = yn(x) of (H) is called a fundamental set of solutions.

A set of solutions y1, y2, . . . , yn of (H) is a fundamental set if and only if

W [y1, y2, . . . , yn](x) 6= 0 for all x ∈ I.

Homogeneous Equations with Constant Coefficients

An nth-order linear homogeneous differential equation with constant coefficients is an

equation which can be written in the form

y(n) + an−1y
(n−1) + an−2y

(n−2) + · · · + a1y
′ + a0y = 0 (3)

where a0, a1, . . . , an−1 are real numbers.

We have seen that first- and second-order equations with constant coefficients have

solutions of the form y = erx. Thus, we’ll look for solutions of (3) of this form

If y = erx, then

y′ = r erx, y′′ = r2erx, . . . , y(n−1) = rn−1rrx, y(n) = rnerx.
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Substituting y and its derivatives into (3) gives

rn erx + an−1r
n−1 erx + · · · + a1r erx + a0 erx = 0

or

erx
(
rn + an−1r

n−1 + · · · + a1r + a0

)
= 0.

Since erx 6= 0 for all x, we conclude that y = erx is a solution of (3) if and only if

rn + an−1r
n−1 + · · · + a1r + a0 = 0. (4)

DEFINITION 2. Given the differential equation (3). The corresponding polyno-

mial equation

p(r) = rn + an−1r
n−1 + · · · + a1r + a0 = 0.

is called the characteristic equation of (3); the nth-degree polynomial p(r) is called

the characteristic polynomial. The roots of the characteristic equation are called the

characteristic roots.

Thus, we can find solutions of the equation if we can find the roots of the corre-

sponding characteristic polynomial. Appendix 1 gives the basic facts about polyno-

mials with real coefficients.

In Chapter 3 we proved that if r1 6= r2, then y1 = er1x and y2 = er2x are

linearly independent. We also showed that y3(x) = erx and y4(x) = xerx are

linearly independent. Here is the general result.

THEOREM 4. 1. If r1, r2, . . . , rk are distinct numbers (real or complex),

then the distinct exponential functions y1 = er1x, y2 = er2x, . . . , yk = erkx are

linearly independent.

2. For any real number α the functions y1(x) = eαx, y2(x) = xeαx, . . . , yk(x) =

xk−1eαx are linearly independent.

Proof: In each case, the Wronskian W [y1, y2, . . . , yk](x) 6= 0.

Since all of the ground work for solving linear equations with constant coefficients

was established in Section 3.2, we’ll simply give some examples here. Theorem 4 will

be useful in showing that our sets of solutions are linearly independent.

Example 1. Find the general solution of

y′′′ + 3y′′ − y′ − 3y = 0
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given that r = 1 is a root of the characteristic polynomial.

SOLUTION The characteristic equation is

r3 + 3r2 − r − 3 = 0

(r − 1)(r2 + 4r + 3) = 0

(r − 1)(r + 1)(r + 3) = 0

The characteristic roots are: r1 = 1, r2 = −1, r3 = −3. The functions y1(x) =

ex, y2(x) = e−x, y3(x) = e−3x are solutions. Since these are distinct exponential

functions, the solutions form a fundamental set and

y = C1 e4x + C2 e−x + C3e
−3x

is the general solution of the equation. �

Example 2. Find the general solution of

y(4) − 4y′′′ + 3y′′ + 4y′ − 4y = 0

given that r = 2 is a root of multiplicity 2 of the characteristic polynomial.

SOLUTION The characteristic equation is

r4 − 4r3 + 3r2 + 4r − 4 = 0

(r − 2)2(r2 − 1) = 0

(r − 2)2(r − 1)(r + 1) = 0

The characteristic roots are: r1 = 1, r2 = −1, r3 = r4 = 2. The functions y1(x) =

ex, y2(x) = e−x, y3(x) = e2x are solutions. Based on our work in Chapter 3, we

conjecture that y4 = xe2x is also a solution since r = 2 is a “double” root. You can

verify that this is the case. Since y4 is distinct from y1, y2, and is independent of

y3, these solutions form a fundamental set and

y = C1 ex + C2 e−x + C3e
2x + C4xe2x

is the general solution of the equation. �

Example 3. Find the general solution of

y(4) − 2y′′′ + y′′ + 8y′ − 20y = 0

given that r = 1 + 2i is a root of the characteristic polynomial.
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SOLUTION The characteristic equation is

p(r) = r4 − 2r3 + r2 + 8r − 20 = 0.

Since 1 + 2i is a root of p(r), 1 − 2i is also a root, and r2 − 2r + 5 is a factor of

p(r). Therefore

r4 − 2r3 + r2 + 8r − 20 = 0

(r2 − 2r + 5)(r2 − 4) = 0

(r2 − 2r + 5)(r − 2)(r + 2) = 0

The characteristic roots are: r1 = 1 + 2i, r2 = 1 − 2i, r3 = 2, r4 = −2. Since these

roots are distinct, the corresponding exponential functions are linearly independent.

Again based on our work in Chapter 3, we convert the complex exponentials

u1 = e(1+2i)x and u2(x) = e(1−2i)x into y1 = ex cos 2x and y2 = ex sin 2x.

Then, y1, y2, y3 = e2x, y4 = e−2x form a fundamental set and

y = C1 ex cos 2x + C2 ex sin 2x + C3e
2x + C4e

−2x

is the general solution of the equation. �

Recovering a Homogeneous Differential Equation from Its Solutions

Once you understand the relationship between the homogeneous equation, the char-

acteristic equation, the roots of the characteristic equation and the solutions of the

differential equation, it is easy to go from the differential equation to the solutions

and from the solutions to the differential equation. Here are some examples.

Example 4. Find a fourth order, linear, homogeneous differential equation with

constant coefficients that has the functions y1(x) = e2x, y2(x) = e−3x and y3(x) =

e2x cos x as solutions.

SOLUTION Since e2x is a solution, 2 must be a root of the characteristic equation

and r−2 must be a factor of the characteristic polynomial; similarly, e−3x a solution

means that −3 is a root and r − (−3) = r + 3 is a factor of the characteristic

polynomial. The solution e2x cos x indicates that 2+i is a root of the characteristic

equation. So 2−i must also be a root (and y4(x) = e2x sin x must also be a solution).

Thus the characteristic equation must be

(r−2)(r+3)(r−[2+i)](r−[2−i]) = (r2+r−6)(r2−4r+5) = r4−3r3−5r2+29r−30 = 0.

Therefore, the differential equation is

y(4) − 3y′′′ − 5y′′ + 29y′ − 30y = 0. �

78



Example 5. Find a third order, linear, homogeneous differential equation with

constant coefficients that has

y = C1 e−4x + C2 x e−4x + C3e
2x

as its general solution.

SOLUTION Since e−4x and xe−4x are solutions, −4 must be a double root of

the characteristic equation; since e2x is a solution, 2 is a root of the characteristic

equation. Therefore, the characteristic equation is

(r + 4)2(r − 2) = 0 which expands to r3 + 6r2 − 32 = 0

and the differential equation is

y′′′ + 6y′′ − 32y = 0. �

Nonhomogeneous Equations

Now we’ll consider linear nonhomogeneous equations:

y(n) + pn−1(x)y(n−1) + pn−2(x)y(n−2) + · · · + p1(x)y′ + p0(x)y = f(x) (N)

where p0, p1, . . . , pn−1, f are continuous functions on an interval I.

Continuing the analogy with second order linear equations, the corresponding

homogeneous equation

y(n) + pn−1(x)y(n−1) + pn−2(x)y(n−2) + · · · + p1(x)y′ + p0(x)y = 0. (H)

is called the reduced equation of equation (N).

The following theorems are exactly the same as Theorems 1 and 2 in Section 3.3,

and exactly the same proofs can be used.

THEOREM 5. If z = z1(x) and z = z2(x) are solutions of (N), then

y(x) = z1(x) − z2(x)

is a solution of equation (H).

the difference of any two solutions of the nonhomogeneous equation (N) is a solu-

tion of its reduced equation (H).

The next theorem gives the “structure” of the set of solutions of (N).
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THEOREM 6. Let y = y1(x), y2(x), . . . , yn(x) be a fundamental set of solutions

of the reduced equation (H) and let z = z(x) be a particular solution of (N). If

u = u(x) is any solution of (N), then there exist constants c1, c2, . . . , cn such that

u(x) = c1y1(x) + c2y2(x) + · · · + cnyn(x) + z(x)

According to Theorem68, if {y1(x), y2(x), . . . , yn(x)} is a fundamental set of

solutions of the reduced equation (H) and if z = z(x) is a particular solution of (N),

then

y = C1y1(x) + C2y2(x) + · · · + Cnyn(x) + z(x) (5)

represents the set of all solutions of (N). That is, (5) is the general solution of (N).

Another way to look at (5) is: The general solution of (N) consists of the general

solution of the reduced equation (H) plus a particular solution of (N):

y︸︷︷︸
general solution of (N)

= C1y1(x) + C2y2(x) + · · · + Cnyn(x)︸ ︷︷ ︸
general solution of (H)

+ z(x).︸ ︷︷ ︸
particular solution of (N)

Finding a Particular Solution

The method of variation of parameters can be extended to higher-order linear nonho-

mogeneous equations but the calculations become quite involved. Instead we’ll look

at the special equations for which the method of undetermined coefficients can be

used.

As we saw in Section 3.4, the method of undetermined coefficients can be applied

only to nonhomogeneous equations of the form

y(n) + an−1y
(n−1) + an−2y

(n−2) + · · · + a1y
′ + a0(x)y = f(x),

where a0, a1, . . . , an−1 are constants and the nonhomogeneous term f is a poly-

nomial, an exponential function, a sine, a cosine, or a combination of such functions.

Here is the basic table from Section 3.4, modified to apply to equations of order

greater than 2:
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Table 1

A particular solution of y(n) + an−1y
(n−1) + · · · + a1y

′ + a0y = f(x)

If f(x) = try z(x) =*

cerx Aerx

c cos βx + d sin βx z(x) = A cos βx + B sin βx

ceαx cos βx + deαx sin βx z(x) = Aeαx cos βx + Beαx sin βx

*Note: If z satisfies the reduced equation, then xkz, where k is the least integer such that

xkz does not satisfy the reduced equation, will give a particular solution

The method of undetermined coefficients is applied in exactly the same manner

as in Section 3.4.

Example 6. Find the general solution of

y′′′ − 2y′′ − 5y′ + 6y = 4 − 2e2x. (*)

SOLUTION First we solve the reduced equation

y′′′ − 2y′′ − 5y′ + 6y = 0.

The characteristic equation is

r3 − 2r2 − 5r + 6 = (r − 1)(r + 2)(r − 3) = 0.

The roots are r1 = 1, r2 = −2, r3 = 3 and the corresponding solutions of the reduced

equation are y1 = ex, y2 = e−2x, y3 = e3x. Since these are distinct exponential

functions, they are linearly independent and

y = C1e
x + C2e

−2x + C3e
3x

is the general solution of the reduced equation.

Next we find a particular solution of the nonhomogeneous equation. The table

indicates that we should look for a solution of the form

z = A + Be2x.

The derivatives of z are:

z = A + Be2x, z′ = 2Be2x, z′′ = 4Be2x, z′′′ = 8Be2x.
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Substituting into the left side of (*), we get

z′′′ − 2z′′ − 5z′ + 6z = 8Be2x − 2
(
4Be2x

)
− 5

(
2Be2x

)
+ 6

(
A + Be2x

)

= 6A − 4Be2x.

Setting z′′ + 6z′ + 9z = 4 − 2e2x gives

6A = 4 and − 4B = −2 which implies A = 2
3

and B = 1
2
.

Thus, z(x) = 2
3

+ 1
2
e2x is a particular solution of (*).

The general solution of (*) is

y = C1e
x + C2e

−2x + C3e
3x + 2

3
+ 1

2
e2x. �

Example 7. Find the general solution of

y(4) + y′′′ − 3y′′ − 5y′ − 2y = 6e−x (**)

SOLUTION First we solve the reduced equation

y(4) + y′′′ − 3y′′ − 5y′ − 2y = 0.

The characteristic equation is

r4 + r3 − 3r2 − 5r − 2 = (r + 1)3(r − 2) = 0.

The roots are r1 = r2 = r3 = −1, r4 = 2 and the corresponding solutions of the re-

duced equation are y1 = e−x, y2 = xe−x, y3 = x2e−x, y4 = e2x. Since distinct powers

of x are linearly independent, it follows that y1, y2, y3 are linearly independent;

and since e2x and e−x are independent, we can conclude that y1, y2, y3, y4 are

linearly independent. Thus, the general solution of the reduced equation is

y = C1e
−x + C2xe−x + C3x

2e−x + C4e
2x.

Next we find a particular solution of the nonhomogeneous equation. The table

indicates that we should look for a solution of the form

z = Ax3e−x.

The derivatives of z are:

z = Ax3e−x

z′ = 3Ax2e−x − Ax3e−x

z′′ = 6Axe−x − 6Ax2e−x + Ax3e−x

z′′′ = 6Ae−x − 18Axe−x + 9Ax2e−x − Ax3e−x

z(4) = −24Ae−x + 36Axe−x − 12Ax2e−x + Ax3e−x
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Substituting z and its derivatives into the left side of (**), we get

z(4) + z′′′ − 3z′′ − 5z′ − 2z = −18Ae−x.

Thus, we have −18Ae−x = 6e−x which implies A = −1
3

and z = −1
3
x2e−x is a

particular solution of (**).

The general solution of (**) is

y = C1e
−x + C2xe−x + C3x

2e−x + C4e
2x − 1

3
x3e−x. �

Example 8. Give the form of a particular solution of

y′′′ − 3y′′ + 3y′ − y = 4ex − 3 cos 2x.

SOLUTION To get the proper form for a particular solution of the equation we need

to find the solutions of the reduced equation:

y′′′ − 3y′′ + 3y′ − y = 0.

The characteristic equation is

r3 − 3r3 + 3r − 1 = (r − 1)3 = 0.

Thus, the roots are r1 = r2 = r3 = 1, and the corresponding solutions are y1 =

ex, y2 = xex, y3 = x2ex. The table indicates that the form of a particular solution z

of the nonhomogeneous equation is

z = Ax3ex + B cos 2x + C sin 2x. �

Example 9. Give the form of a particular solution of

y(4) − 16y = 4e2x − 2e3x + 5 sin 2x + 2 cos 2x.

SOLUTION To get the proper form for a particular solution of the equation we need

to find the solutions of the reduced equation:

y(4) − 16y = 0.

The characteristic equation is

r4 − 16 = (r2 − 4)(r2 + 4) = (r − 2)(r + 2)(r2 + 4) = 0.

Thus, the roots are r1 = 2, r2 = −2, r3 = 2i, r4 = −2i, and the corresponding

solutions are y1 = e2x, y2 = e−2x, y3 = cos 2x, y4 = sin 2x. The table indicates

that the form of a particular solution z of the nonhomogeneous equation is

z = Axe2x + Be3x + Cx cos 2x + Dx sin 2x. �
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Exercises 3.6

Find the general solution of the homogeneous equation

1. y′′′ − 6y′′ + 11y′ − 6y = 0, r1 = 1 is a root of the characteristic equation.

2. y′′′ + y′ + 10y = 0, r1 = −2 is a root of the characteristic equation.

3. y(4) − 2y′′′ + y′′ + 8y′ − 20y = 0, r1 = 1 + 2i is a root of the characteristic

equation.

4. y(4) − 3y′′ − 4y = 0, r1 = i is a root of the characteristic equation.

5. y(4)−4y′′′+14y′′−4y′+13y = 0, r1 = i is a root of the characteristic equation.

6. y′′′ + y′′ − 4y′ − 4y = 0, r1 = −1 is a root of the characteristic equation.

7. y(6) − y′′ = 0.

8. y(5) − 3y(4) + 3y′′′ − 3y′′ + 2y′ = 0.

Find the solution of the initial-value problem.

9. y(4) − 4y′′′ + 4y′′ = 0; y(0) = −1, y′(0) = 2, y′′(0) = 0, y′′′(0) = 0.

10. y′′′ + y′ = 0; y(0) = 0, y′(0) = 1, y′′(0) = 2.

11. y′′′ − y′′ + 9y′ − 9y = 0; y(0) = y′(0) = 0, y′′(0) = 2.

12. 2y(4) − y′′′ − 9y′′ + 4y′ + 4y = 0; y(0) = 0, y′(1) = 2, y′′(0) = 2, y′′′(0) = 0.

Find the homogeneous equation with constant coefficients that has the given

general solution.

13. y = C1e
−3x + C2xe−3x + C3e

x cos 3x + C4e
x sin 3x.

14. y = C1e
4x + C2x + C3 + C4e

x cos 2x + C5e
x sin 2x.

15. y = C1e
3x + C2e

−x + C3 cos x + C4 sin x + C5.

16. y = C1e
2x + C2xe2x + C3x

2e2x + C4.

Find the homogeneous equation with constant coefficients of least order that

has the given function as a solution.

17. y = 2e2x + 3 sin x − x.
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18. y = 3xe−x + e−x cos 2x + 1.

19. y = 2ex − 3e−x + 2x.

20. y = 3e3x − 2 cos 2x + 4 sin x− 3.

Find the general solution of the nonhomogeneous equation.

21. y′′′ + y′′ + y′ + y = ex + 4.

22. y(4) − y = 2ex + cos 2x.

23. y(4) + 2y′′ + y = 6 + cos 2x.

24. y′′′ − y′′ − y′ + y = 2e−x + 4e2x.

Find the solution of the initial-value problem.

25. y′′′ − 8y = e2x; y(0) = y′(0) = y′′(0) = 0.

26. y′′′ − 2y′′ − 5y′ + 6y = 2ex; y(0) = 2, y′(0) = 0, y′′(0) = −1.
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