
Chapter 4

Systems of Linear Differential

Equations

Introduction to Systems

Up to this point the entries in a vector or matrix have been real numbers. In

this section, and in the following sections, we will be dealing with vectors and matri-

ces whose entries are functions. A vector whose components are functions is called

a vector-valued function or vector function. Similarly, a matrix whose entries are

functions is called a matrix function.

The operations of vector and matrix addition, multiplication by a number and

matrix multiplication for vector and matrix functions are exactly as defined in Chap-

ter 5 so there is nothing new in terms of arithmetic. However, there are operations on

functions other than arithmetic operations, e.g., limits, differentiation, and integra-

tion, that we have to define for vector and matrix functions. These operation from

calculus are defined in a natural way.

Let v(t) = (f1(t), f2(t), . . . , fn(t)) be a vector function whose compo-

nents are defined on an interval I.

Limit: Let c ∈ I. If lim
x→c

fi(t) = αi exists for i = 1, 2, . . . n, then

lim
t→c

v(t) =
(
lim
t→c

f1(t), lim
t→c

f2(t), . . . , lim
t→c

fn(t)
)

= (α1, α2, . . . , αn) .

Limits of vector functions are calculated “component-wise.”

Derivative: If f1, f2, . . . , fn are differentiable on I, then v is
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differentiable on I, and

v′ = ((f ′
1(t), f ′

2(t), . . . , f ′
n(t)) .

That is, v′ is the vector function whose components are the derivatives

of the components of v.

Integration: Since differentiation of vector functions is done component-

wise, integration must also be component-wise. That is

∫
v(t) dt =

(∫
f1(t) dt,

∫
f2(t) dt, . . . ,

∫
fn(t) dt

)
.

Limits, differentiation and integration of matrix functions is done in ex-

actly the same way, component-wise.

4.1. Systems of Linear Differential Equations

Consider the third-order linear differential equation

y′′′ + p(t)y′′ + q(t)y′ + r(t)y = f(t)

where p, q, r, f are continuous functions on some interval I. Solving the equation

for y′′′, we get

y′′′ = −r(t)y − q(t)y′ − p(t)y′′ + f(t).

Introduce new dependent variables x1, x2, x3, as follows:

x1 = y

x2 = x′
1 (= y′)

x3 = x′
2 (= y′′)

Then

y′′′ = x′
3 = −r(t)x1 − q(t)x2 − p(t)x3 + f(t)

and the third-order equation can be written equivalently as a system of three first-

order equations:

x′
1 = x2

x′
2 = x3

x′
3 = −r(t)x1 − q(t)x2 − p(t)x3 + f(t)
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Example 1. (a) Consider the third-order nonhomgeneous equation

y′′′ − y′′ − 8y′ + 12y = 2et.

Solving the equation for y′′′, we have

y′′′ = −12y + 8y′ + y′′ + 2et.

Let x1 = y, x′
1 = x2 (= y′), x′

2 = x3 (= y′′). Then

y′′′ = x′
3 = −12x1 + 8x2 + x3 + 2et

and the equation converts to the equivalent system:

x′
1 = x2

x′
2 = x3

x′
3 = −12x1 + 8x2 + x3 + 2et

Note: This system is just a very special case of the “general” system of three,

first-order differential equations:

x′
1 = a11(t)x1 + a12(t)x2 + a13(t)x3(t) + b1(t)

x′
2 = a21(t)x1 + a22(t)x2 + a23(t)x3(t) + b2(t)

x′
3 = a31(t)x1 + a32(t)x2 + a33(t)x3(t) + b3(t)

(b) Consider the second-order homogeneous equation

t2y′′ − ty′ − 3y = 0.

Solving this equation for y′′, we get

y′′ =
3

t2
y +

1

t
y′.

To convert this equation to an equivalent system, we let x1 = y, x′
1 = x2 (= y′).

Then we have

x′
1 = x2

x′
2 =

3

t2
x1 +

1

t
x2

which is just a special case of the general system of two first-order differential equa-

tions:

x′
1 = a11(t)x1 + a12(t)x2 + b1(t)

x′
2 = a21(t)x1 + a22(t)x2 + b2(t)
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General Theory

Let a11(t), a12(t), . . . , a1n(t), a21(t), . . . , ann(t), b1(t), b2(t), . . . , bn(t) be contin-

uous functions on some interval I. The system of n first-order differential equations

x′
1 = a11(t)x1 + a12(t)x2 + · · · + a1n(t)xn(t) + b1(t)

x′
2 = a21(t)x1 + a22(t)x2 + · · · + a2n(t)xn(t) + b2(t)

...
...

x′
n = an1(t)x1 + an2(t)x2 + · · · + ann(t)xn(t) + bn(t)

(S)

is called a first-order linear differential system.

The system (S) is homogeneous if

b1(t) ≡ b2(t) ≡ · · · ≡ bn(t) ≡ 0 on I.

(S) is nonhomogeneous if the functions bi(t) are not all identically zero on I; that

is, if there is at least one point a ∈ I and at least one function bi(t) such that

bi(a) 6= 0.

Let A(t) be the n × n matrix

A(t) =




a11(t) a12(t) · · · a1n(t)

a21(t) a22(t) · · · a2n(t)
...

...
...

an1(t) an2(t) · · · ann(t)




and let x and b be the vectors

x =




x1

x2

...

xn




, b =




b1

b2

...

bn




.

Then (S) can be written in the vector-matrix form

x′ = A(t)x + b. (S)

The matrix A(t) is called the matrix of coefficients or the coefficient matrix.

Example 2. The vector-matrix form of the system in Example 1(a) is:

x′ =




0 1 0

0 0 1

−12 8 1


x +




0

0

2et


,
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a nonhomogeneous system.

The vector-matrix form of the system in Example 1(b) is:

x′ =

(
0 1

3/t2 1/t

)
x +

(
0

0

)
=

(
0 1

3/t2 1/t

)
x, where x =

(
x1

x2

)
,

a homogeneous system.

A solution of the linear differential system (S) is a differentiable vector function

x(t) =




x1(t)

x2(t)
...

xn(t)




that satisfies (S) on the interval I.

Example 3. Verify that x(t) =




e2t

2e2t

4e2t


 +




1
2
et

1
2
et

1
2
et


 is a solution of the nonho-

mogeneous system

x′ =




0 1 0

0 0 1

−12 8 1


x +




0

0

2et




of Example 2.

91



SOLUTION

x′ =







e2t

2e2t

4e2t


+




1
2
et

1
2
et

1
2
et







′

=




2e2t

4e2t

8e2t


+




1
2
et

1
2
et

1
2
et




?
=




0 1 0

0 0 1

−12 8 1










e2t

2e2t

4e2t


+




1
2
et

1
2
et

1
2
et





 +




0

0

2et




?
=




0 1 0

0 0 1

−12 8 1







e2t

2e2t

4e2t


+




0 1 0

0 0 1

−12 8 1







1
2
et

1
2
et

1
2
et


+




0

0

2et




=




2e2t

4e2t

8e2t


+




1
2
et

1
2
et

−3
2
et


+




0

0

2et




=




2e2t

4e2t

8e2t


+




1
2
et

1
2
et

1
2
et


.

x is a solution.

THEOREM 1. (Existence and Uniqueness Theorem) Let a be any point on the

interval I, and let α1, α2, . . . , αn be any n real numbers. Then the initial-value

problem

x′ = A(t)x + b(t), x(a) =




α1

α2

...

αn




has a unique solution.

Exercises 4.1

Convert the differential equation into a system of first-order equations.

1. y′′ − ty′ + 3y = sin 2t.
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2. y′′ + y = 2e−2t.

3. y′′′ − y′′ + y = et.

4. my′′ + cy′ + ky = cos λt, m, c, k, λ are constants.

Write the system in vector-matrix form.

5.

x′
1 = −2x1 + x2 + sin t

x′
2 = x1 − 3x2 − 2 cos t

6.

x′
1 = etx1 − e2tx2

x′
2 = e−tx1 − 3etx2

7.

x′
1 = 2x1 + x2 + 3x3 + 3e2t

x′
2 = x1 − 3x2 − 2 cos t

x′
3 = 2x1 − x2 + 4x3 + t

8.

x′
1 = t2x1 + x2 − tx3 + 3

x′
2 = −3etx2 + 2x3 − 2e−2t

x′
3 = 2x1 + t2x2 + 4x3

9. Verify that u(t) =

(
t−1

−t−2

)
is a solution of the system in Example 1 (b).

10. Verify that u(t) =




e−3t

−3e−3t

9e−3t


 +




1
2
et

1
2
et

1
2
et


 is a solution of the system in

Example 1 (a).

11. Verify that w(t) =




te2t

e2t + 2te2t

4e2t + 4te2t


 is a solution of the homogeneous system

associated with the system in Example 1 (a).
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12. Verify that x(t) =

(
− sin t

− cos t − 2 sin t

)
is a solution of the system

x′ =

(
−2 1

−3 2

)
x +

(
0

2 sin t

)
.

13. Verify that x(t) =




−2e−2t

0

3e−2t


 is a solution of the system

x′ =




1 −3 2

0 −1 0

0 −1 −2


x.

4.2. Homogeneous Systems

In this section we give the basic theory for linear homogeneous systems. This “theory”

is simply a repetition results given in Sections 3.2 and 3.6, phrased this time in terms

of the system

x′
1 = a11(t)x1 + a12(t)x2 + · · · + a1n(t)xn(t)

x′
2 = a21(t)x1 + a22(t)x2 + · · · + a2n(t)xn(t)

...
...

x′
n = an1(t)x1 + an2(t)x2 + · · · + ann(t)xn(t)

(H)

or

x′ = A(t)x. (H)

Note first that the zero vector z(t) ≡ 0 =




0

0
...

0




is a solution of (H). As before,

this solution is called the trivial solution. Of course, we are interested in finding

nontrivial solutions.

THEOREM 1. If x1, x2, . . . , xk are solutions of (H), and if c1, c2, . . . , ck are

real numbers, then

c1x1 + c2x2 + · · · + ckxk

is a solution of (H); any linear combination of solutions of (H) is also a solution of

(H).
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DEFINITION 1. Let

x1 =




x11(t)

x21(t)
...

xn1(t)




, x2 =




x12(t)

x22(t)
...

xn2(t)




, . . . , xk =




x1k(t)

x2k(t)
...

xnk(t)




be n-component vector functions defined on some interval I. The vectors are linearly

dependent on I if there exist k real numbers c1, c2, . . . , ck, not all zero, such

that

c1x1(t) + c2x2(t) + · · · + ckxk(t) ≡ 0 on I.

Otherwise the vectors are linearly independent on I.

THEOREM 2. Let x1, x2, . . . , xn be n, n-component vector functions defined

on an interval I. If the vectors are linearly dependent, then

W (t) =

∣∣∣∣∣∣∣∣∣∣

x11 x12 · · · x1n

x21 x22 · · · x2n

...
...

...
...

xn1 xn2 · · · xnn

∣∣∣∣∣∣∣∣∣∣

≡ 0 on I.

The determinant in Theorem 4 is called the Wronskian of the vector functions

x1, x2, . . . , xn.

COROLLARY Let x1, x2, . . . , xn be n, n-component vector functions defined

on an interval I. If the Wronskian W (t) 6= 0 for at least one t ∈ I, then the

vectors are linearly independent on I.

Example 1. The vector functions

u =

(
t3

3t2

)
and x =

(
t−1

−t−2

)

are solutions of the homogeneous system in Example 1(b), Section 4.1. Their Wron-

skian is:

W (t) =

∣∣∣∣∣
t3 t−1

3t2 −t−2

∣∣∣∣∣ = −4t.

The solutions are linearly independent.

The vector functions

x1 =




e2t

2e2t

4e2t


, x2 =




e−3t

−3e−3t

9e−3t


, x3 =




te2t

e2t + 2te2t

4e2t + 4te2t
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are solutions of the homogeneous system

x′ =




0 1 0

0 0 1

−12 8 1


x.

Their Wronskian is:

W (t) =

∣∣∣∣∣∣∣

e2t e−3t te2t

2e2t −3e−3t e2t + 2te2t

4e2t 9e−3t 4e2t + 4te2t

∣∣∣∣∣∣∣
= −25et.

These solutions are linearly independent.

THEOREM 3. Let x1, x2, . . . , xn be n solutions of (H). Exactly one of the

following holds:

1. W (x1, x2, . . . , xn)(t) ≡ 0 on I and the solutions are linearly dependent.

2. W (x1, x2, . . . , xn)(t) 6= 0 for all t ∈ I and the solutions are linearly

independent.

It is easy to construct sets of n linearly independent solutions of (H). Simply pick

any point a ∈ I and any nonsingular n × n matrix A. Let α1 be the first column

of A, α2 the second column of A, and so on. Then let x1 be the solution of (H)

such that x1(a) = α1, let x2 be the solution of (H) such that x2(a) = α2, . . .,

and let xn be the solution of (H) such that xn = αn. The existence and uniqueness

theorem guarantees the existence of these solutions. Now

W (x1,x2, . . . ,xn)(a) = detA 6= 0.

Therefore, W (t) 6= 0 for all t ∈ I and the solutions are linearly independent.

A particularly nice set of n linearly independent solutions is obtained by choosing

A = In, the identity matrix.

THEOREM 4. Let x1, x2, . . . , xn be n linearly independent solutions of (H). Let

u be any solution of (H). Then there exists a unique set of constants c1, c2, . . . , cn

such that

u = c1x1 + c2x2 + · · · + cnxn.

That is, every solution of (H) can be written as a unique linear combination of

x1, x2, . . . , xn.
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DEFINITION 2. A set {x1, x2, . . . , xn} of n linearly independent solutions of

(H) is called a fundamental set of solutions. A fundamental set of solutions is also

called a solutions basis for (H). If x1, x2, . . . , xn is a fundamental set of solutions

of (H), then the n × n matrix

X(t) =




x11(t) x12(t) · · · x1n(t)

x21(t) x22(t) · · · x2n(t)
...

...
...

xn1(t) xn2(t) · · · xnn(t)




(the vectors x1,x2, . . . ,xn are the columns of X) is called a fundamental matrix for

(H).

DEFINITION 3. Let x1, x2, . . . , xn be a fundamental set of solutions of (H).

Then

x = c1x1 + c2x2 + · · · + cnxn,

where c1, c2, . . . , cn are arbitrary constants, is the general solution of (H).

Exercises 4.2

Determine whether or not the vector functions are linearly dependent.

1. x1 =

(
2t − 1

−t

)
, x2 =

(
−t + 1

2t

)

2. x1 =

(
cos t

sin t

)
, x2 =

(
sin t

cos t

)

3. x1 =




2 − t

t

−2


, x2 =




t

−1

2


, x3 =




2 + t

t− 2

2


.

4. x1 =




et

−et

et


, x2 =




−et

2et

−et


, x3 =




0

et

0


.

5. x1 =

(
et

0

)
, x2 =

(
0

0

)
, x3 =

(
0

et

)
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6. Given the linear differential system

x′ =

(
5 −3

2 0

)
x.

Let

x1 =

(
e2t

e2t

)
and x2 =

(
3e3t

2e3t

)
.

(a) Show that x1, x2 are a fundamental set of solutions of the system.

(b) Let X be the corresponding fundamental matrix. Show that

X ′ = AX.

(c) Give the general solution of the system.

(d) Find the solution of the system that satisfies x(0) =

(
1

0

)
.

7. Let X be the matrix function

X(t) =




0 4te−t e−t

1 e−t 0

1 0 0




(a) Verify that X is a fundamental matrix for the system

x′ =




−1 4 −4

0 −1 1

0 0 0


x.

(b) Find the solution of the system that satisfies x(0) =




0

1

2


.

4.3. Homogeneous Systems with Constant Coefficients

A homogeneous system with constant coefficients is a linear differential system having

the form

x′
1 = a11x1 + a12x2 + · · · + a1nxn

x′
2 = a21x1 + a22x2 + · · · + a2nxn

...
...

x′
n = an1x1 + an2x2 + · · · + annxn
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where a11, a12, . . . , ann are constants. The system in vector-matrix form is

x′
1

x′
2

−
x′

n

=




a11 a12 · · · a1n

a21 a22 · · · a2n

− − − −
an1 an2 · · · ann







x1

x2

−
xn


 or

−→
x′ = A−→x .

Example 1. Consider the 3rd order linear homogeneous differential equation

y′′′ − y′′ − 8y′ + 12y = 0.

The characteristic equation is:

r3 − r2 − 8r + 12 = (r − 2)2(r + 3) = 0

and {e2t, te2t, e−3t} is a solution basis for the equation.

The corresponding linear homogeneous system is

x′ =




0 1 0

0 0 1

−12 8 1


x

and

x1(t) =




e2t

2e2t

4e2t


 = e2t




1

2

4




is a solution vector. Similarly,

x2(t) = e−3t




1

3

9




is a solution vector.

The example suggests that homogeneous systems with constant coefficients might

have solution vectors of the form x(t) = eλt v, for some number λ and some

constant vector v.

If x(t) = eλt v is a solution vector of (H), then

x′ = Ax which implies λeλtv = Aeλt v and so Av = λv.

The latter equation is an eigenvalue-eigenvector equation for A. Thus, we look for

solutions of the form x(t) = eλtx where λ is an eigenvalue of A and c is a

corresponding eigenvector.
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Example 2. Find a fundamental set of solution vectors of

x′ =

(
1 5

3 3

)
x

and give the general solution of the system.

SOLUTION First we find the eigenvalues:

det(A− λI) =

∣∣∣∣∣
1 − λ 5

3 3 − λ

∣∣∣∣∣ = (λ − 6)(λ + 2).

The eigenvalues are λ1 = 6 and λ2 = −2.

Next, we find corresponding eigenvectors. For λ1 = 6 we have:

(A−6I)x =

(
−5 5

3 −3

)(
x1

x2

)
=

(
0

0

)
which implies x1 = x2, x2 arbitrary.

Setting x2 = 1, we get the eigenvector

(
1

1

)
.

Repeating the process for λ2 = −2, we get the eigenvector

(
5

−3

)
.

Thus x1 = e6t

(
1

1

)
and x2 = e−2t

(
5

−3

)
are solution vectors of the system.

The Wronskian of x1 and x2 is:

W (t) =

∣∣∣∣∣
e6t 5e−2t

e6t −3e−2t

∣∣∣∣∣ = −8e4t 6= 0.

Thus x1 and x2 are linearly independent; they form a fundamental set of solutions.

The general solution of the system is

x(t) = c1x1 + c2x2 = c1e
6t

(
1

1

)
+ c2e

−2t

(
5

−3

)
.

Example 3. Find a fundamental set of solution vectors of

x′ =




3 −1 −1

−12 0 5

4 −2 −1


x
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and find the solution that satisfies the initial condition x(0) =




1

0

1


.

SOLUTION

det(A− λI) =

∣∣∣∣∣∣∣

3 − λ −1 −1

−12 −λ 5

4 −2 −1 − λ

∣∣∣∣∣∣∣
= −λ3 + 2λ2 + λ − 2.

Now

det(A − λI) = 0 implies λ3 − 2λ2 − λ + 2 = (λ − 2)(λ − 1)(λ + 1) = 0.

The eigenvalues are λ1 = 2, λ2 = 1, λ3 = −1.

As you can check, corresponding eigenvectors are:

v1 =




1

−1

2


 , v2 =




3

−1

7


 , v3 =




1

2

2


 .

A fundamental set of solution vectors is:

x1 = e2t




1

−1

2


 , x2 = et




3

−1

7


 , x3 = e−t




1

2

2


 .

since distinct exponential vector-functions are linearly independent (calculate the

Wronskian to verify.)

To find the solution vector satisfying the initial condition, solve

c1x1(0) + c2x2(0) + c3x3(0) =




1

0

1




which is:

c1




1

−1

2


+ c2




3

−1

7


+ c3




1

2

2


 =




1

0

1




or 


1 3 1

−1 −1 2

2 7 2







c1

c2

c3


 =




1

0

1


 .
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Note: The matrix of coefficients is the fundamental matrix evaluated at t = 0

Using the solution method of your choice (row reduction, inverse, Cramer’s rule),

the solution is: c1 = 3, c2 = −1, c3 = 1. The solution of the initial-value problem is

x = 3e2t




1

−1

2


− et




3

−1

7


+ e−t




1

2

2


 .

Two Difficulties

There are two difficulties that can arise:

1. A has complex eigenvalues.

If λ = a + bi is a complex eigenvalue with corresponding (complex) eigenvector

u + ix, then λ = a − bi (the complex conjugate of λ) is also an eigenvalue of A

and u− ix is a corresponding eigenvector. The corresponding linearly independent

complex solutions of x′ = Ax are:

w1 = e(a+bi)t(u + ix) = eat(cos bt + i sin bt)(u + ix)

= eat [(cos btu − sin btx) + i(cos btx + sin btu)]

w2 = e(a−bi)t(u − ix) = eat(cos bt − i sin bt)(u − ix)

= eat [(cos btu − sin btx) − i(cos btx + sin btu)]

Now

x1(t) = 1
2

[w1(t) + w2(t)] = eat(cos btu − sin btx)

and

x2(t) = 1
2i

[w1(t) − w2(t)] = eat(cos btx + sin btu)

are linearly independent solutions of the system, and they are real-valued vector

functions. It is worth noting that x1 and x2 are simply the real and imaginary

parts of w1 (or of w2).

Example 4. Determine a fundamental set of solution vectors of

x′ =




1 −4 −1

3 2 3

1 1 3


x.
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SOLUTION

det(A−λI) =

∣∣∣∣∣∣∣

1 − λ −4 −1

3 2 − λ 3

1 1 3 − λ

∣∣∣∣∣∣∣
= −λ3+6λ2−21λ+26 = −(λ−2)(λ2−4λ+13).

The eigenvalues are: λ1 = 2, λ2 = 2+3i, λ3 = 2−3i. The corresponding eigenvectors

are:

v1 =




1

0

−1


 , v2 =




−5 + 3i

3 + 3i

2


 =




−5

3

2


+ i




3

3

0




v3 =




−5 − 3i

3 − 3i

2


 =




−5

3

2


− i




3

3

0


 .

Now

e(2+3i)t







−5

3

2


+ i




3

3

0





 =

e2t(cos 3t + i sin 3t)







−5

3

2


+ i




3

3

0





 =

e2t


cos 3t




−5

3

2


− sin 3t




3

3

0





+ i e2t


cos 3t




3

3

0


+ sin 3t




−5

3

2





 .

A fundamental set of solution vectors for the system is:

x1 = e2t




1

0

−1


 , x2 = e2t


cos 3t




−5

3

2


− sin 3t




3

3

0





 ,

x3 = e2t


cos 3t




3

3

0


+ sin 3t




−5

3

2





 .

2. A has an eigenvalue of multiplicity greater than 1

We’ll look first at the case where A has an eigenvalue of multiplicity 2.
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Example 5. Let A =




1 −3 3

3 −5 3

6 −6 4


.

det(A− λI) =

∣∣∣∣∣∣∣

1 − λ −3 3

3 −5 − λ 3

6 −6 4 − λ

∣∣∣∣∣∣∣
= −λ3 + 12λ − 16 = −(λ − 4)(λ + 2)2.

The eigenvalues are: λ1 = 4, λ2 = λ3 = −2.

As you can check, an eigenvector corresponding to λ1 = 4 is v1 =




1

1

2


.

We’ll carry out the details involved in finding an eigenvector corresponding to the

“double” eigenvalue −2.

[A− (−2)I]v =




3 −3 3

3 −3 3

6 −6 6







v1

v2

v3


 =




0

0

0


 .

The augmented matrix for this system of equations is




3 −3 3 0

3 −3 3 0

6 −6 6 0


 which row reduces to




1 −1 1 0

0 0 0 0

0 0 0 0




The solutions of this system are: v1 = v2−v3, v2, v3 arbitrary. We can assign values

to v2 and v3 independently and obtain two linearly independent eigenvectors. For

example, setting v2 = 1, v3 = 0, we get the eigenvector v2 =




1

1

0


. Reversing

the roles, we set v2 = 0, v3 = −1 to get the eigenvector v3 =




1

0

−1


. Clearly

v2 and v3 are linearly independent. You should understand that there is nothing

magic about our two choices for v2, v3; any choice which produces two independent

vectors will do.

The important thing to note here is that this eigenvalue of multiplicity 2 produced

two independent eigenvectors.
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Based on our work above, a fundamental set of solutions for the differential system

x′ =




1 −3 3

3 −5 3

6 −6 4


x

is

x1 = e4t




1

1

2


 , x2 = e−2t




1

1

0


 , x3 = e−2t




1

0

−1


 .

Example 6. Let A =




0 1 0

0 0 1

12 8 −1




det(A − λI) =

∣∣∣∣∣∣∣

−λ 1 0

0 −λ 1

12 8 −1 − λ

∣∣∣∣∣∣∣
= −λ3 − λ2 + 8λ − 12 = −(λ − 3)(λ + 2)2.

The eigenvalues are: λ1 = 3, λ2 = λ3 = −2.

As you can check, an eigenvector corresponding to λ1 = 3 is v1 =




1

3

9


.

We’ll carry out the details involved in finding an eigenvector corresponding to the

“double” eigenvalue −2.

[A − (−2)I]v =




2 1 0

0 2 1

12 8 1







v1

v2

v3


 =




0

0

0


 .

The augmented matrix for this system of equations is



2 1 0 0

0 2 1 0

12 8 1 0


 which row reduces to




2 1 0 0

0 2 1 0

0 0 0 0




The solutions of this system are v1 = 1
4
v3, v2 = −1

2
v3, v3 arbitrary. Here there is

only one parameter and so we’ll get only one eigenvector. Setting v3 = 4 we get the

eigenvector v2 =




1

−2

4


.

In contrast to the preceding example, the “double” eigenvalue here has only one

(independent) eigenvector.
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Suppose that we were asked to find a fundamental set of solutions of the linear

differential system

x′ =




0 1 0

0 0 1

12 8 −1


x.

By our work above, we have two independent solutions

x1 = e3t




1

3

9


 and x2 = e−2t




1

−2

4


 .

We need a third solution which is independent of these two.

Our system has a special form; it is equivalent to the third order equation

y′′′ + y′′ − 8y′ − 12y = 0.

The characteristic equation is

r3 + r2 − 8r − 12 = (r − 3)(r + 2)2 = 0

(compare with det(A−λI).) The roots are: r1 = 3, r2 = r3 = −2 and a fundamental

set of solutions is {y1 = e3t, y2 = e−2t, y3 = te−2t}. The correspondence between

these solutions and the solution vectors we found above should be clear:

e3t −→ e3t




1

3

9


 , e−2t −→ e−2t




1

−2

4


 .

The solution y3 = te−2t of the equation corresponds to the solution vector

x3 =




y3

y′
3

y′′
3


 =




te−2t

e−2t − 2te−2t

−4e−2t − 4te−2t


 = e−2t




0

1

−4


+ te−2t




1

−2

4


 .

The appearance of the te−2tv2 term should not be unexpected since we know that

a characteristic root of multiplicity 2 produces a solution of the form tert.

You can check that x3 is independent of x1 and x2. Therefore, the solution

vectors x1, x2, x3 are a fundamental set of solutions of the system.

The question is: What is the significance of the vector w =




0

1

−4


? How

is it related to the eigenvalue −2 which generated it, and to the corresponding

eigenvector?
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Let’s look at [A− (−2)I]w = [A + 2I]w:

[A + 2I]w =




2 1 0

0 2 1

12 8 1







0

1

−4


 =




1

−2

4


 = v2;

A − (−2)I “maps” w onto the eigenvector v2. The corresponding solution of the

system has the form

x3 = e−2tw + te−2tv2

where v2 is the eigenvector corresponding to −2 and w satisfies

[A− (−2)I]w = v2.

General Result

Given the linear differential system x′ = Ax. Suppose that A has an eigenvalue λ

of multiplicity 2. Then exactly one of the following holds:

1. λ has two linearly independent eigenvectors, v1 and v2. Corresponding

linearly independent solution vectors of the differential system are x1(t) = eλtv1

and x2(t) = eλtv2.

2. λ has only one (independent) eigenvector v. Then a linearly independent pair

of solution vectors corresponding to λ are:

x1(t) = eλtv and x2(t) = eλtw + teλtv

where w is a vector that satisfies (A − λI)w = v. The vector w is called a

generalized eigenvector corresponding to the eigenvalue λ.

Example 7. Find a fundamental set of solution vectors of x′ =

(
1 −1

1 3

)
x.

SOLUTION

det(A − λI) =

∣∣∣∣∣
1 − λ −1

1 3 − λ

∣∣∣∣∣ = λ2 − 4λ + 4 = (λ − 2)2.

Characteristic values: λ1 = λ2 = 2.

Characteristic vectors:

(A − 2I)v =

(
−1 −1

1 1

)(
v1

v2

)
=

(
0

0

)
;

107



(
−1 −1 0

1 1 0

)
−→

(
1 1 0

0 0 0

)
.

The solutions are: v1 = −v2, v2 arbitrary; there is only one eigenvector. Setting

v2 = −1, we get v =

(
1

−1

)
.

The vector x1 = e2t

(
1

−1

)
is a solution of the system.

A second solution, independent of x1 is x2 = e2tw+te2tv where w is a solution

of (A− 2I)z = v:

(A − 2I)z =

(
−1 −1

1 1

)(
z1

z2

)
=

(
1

−1

)
;

(
−1 −1 1

1 1 1

)
−→

(
1 1 −1

0 0 0

)
.

The solutions of this system are z1 = −1 − z2, z2 arbitrary. If we choose z2 = 0

(any choice for z2 will do), we get z1 = −1 and w =

(
−1

0

)
. Thus

x2(t) = e2t

(
−1

0

)
+ te2t

(
1

−1

)

is a solution of the system independent of x1. The solutions

x1(t) = e2t

(
1

−1

)
, x2(t) = e2t

(
−1

0

)
+ te2t

(
1

−1

)

are a fundamental set of solutions of the system.

Eigenvalues of Multiplicity 3.

Given the differential system x′ = Ax. Suppose that λ is an eigenvalue of A of

multiplicity 3. Then exactly one of the following holds:

1. λ has three linearly independent eigenvectors v1, v2, v3. Then three linearly

independent solution vectors of the system corresponding to λ are:

x1(t) = eλtv1, x2(t) = eλtv2, x3(t) = eλtv3.
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2. λ has two linearly independent eigenvectors v1, v2. Then two linearly inde-

pendent solutions of the system corresponding to λ are:

x1(t) = eλtv1, x2(t) = eλtv2

A third solution, independent of x1 and x2 has the form

x3(t) = eλtw + teλtx

where x is an eigenvector corresponding to λ and (A− λI)w = x.

3. λ has only one (independent) eigenvector v. Then three linearly independent

solutions of the system have the form:

x1 = eλtv, x2 = eλtw + teλtv,

x3(t) = eλtz + teλtw + t2eλtv

where (A − λI)w = v and (A − λI)z = w.

Exercises 4.3

Find the general solution of the system x′ = Ax where A is the given matrix. If

an initial condition is given, also find the solution that satisfies the condition.

1.

(
−2 4

1 1

)
.

2.

(
−1 1

4 2

)
, x(0) =

(
−1

1

)
.

3.




−2 2 1

0 −1 0

2 −2 −1


. Hint: −3 is an eigenvalue.

4.




3 0 −1

−2 2 1

8 0 −3


, x(0) =




−1

2

−8


. Hint: 2 is an eigenvalue.

5.

(
1 −2

2 1

)
.
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6.

(
−1 2

−1 −3

)
.

7.

(
3 2

−8 −5

)
.

8.




−3 0 −3

1 −2 3

1 0 1


. Hint: −2 is an eigenvalue.

9.




2 −1 −1

−1 2 −1

1 1 4


. Hint: 3 is an eigenvalue

10.




−2 1 −1

3 −3 4

3 −1 2


. Hint: 1 is an eigenvalue.

11.




−3 1 −1

−7 5 −1

−6 6 −2


.
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