
Linear Algebra and Matrix Theory

Part 3 - Linear Transformations
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2. Solved Problems

1. Let Vn be the real vector space of all polynomials of degree ≤ n with real

coefficients. For each space Vn, let Bn = {v1, · · · , vn+1} be the usual basis of

polynomial functions vi(t) = ti−1. Let D : V3 −→ V3 be the differentiation

operator. Find the matrix of D with respect to the basis B3.

Solution: We have Dv1 = 0 and Dvi = (i − 1)vi−1 for i ≥ 2. Let M be

the matrix of D and let [u] denote the coordinate vector of u with respect

to the given basis B3. The rule relating D to M is [Du] = M [u]. Hence,

[Dvi] = M [vi] for i = 1, · · · , 4. If {e1, · · · , e4} is the standard basis for R4×1,

[vi] = ei. From Dv1 = 0 we get Me1 = 0, from Dv2 = v1 we get Me2 = e1.

Similarly, Me3 = 2e2 and Me4 = 3e3. Partitioned by columns, the matrix
1
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M is (Me1|Me2|Me3|Me4). Thus,

M =



0 1 0 0

0 0 2 0

0 0 0 3

0 0 0 0



2. Let V be the same space as in problem no. 1. Instead of the usual basis

B3 = {vi}4
i=1 consider the basis B̂3 = {v̂i}4

i=1, where v̂i(t) = vi(t)− 1. Find

the transition matrix from B3 to B̂3 and use it to find the matrix M̂ of D

with respect to B̂3.

Solution: The same technique used in problem no. 1 may also be used

here, with the result that

M̂ =



0 1 2 3

0 0 2 0

0 0 0 3

0 0 0 0


.

You should carry out the details of this derivation. The transition matrix

Q = (qi,j) is defined by the equations

v̂j =
4∑

i=1

qi,jvi.
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One can see immediately that v̂1 = v1 and v̂j = vj − v1 for i ≥ 2. From this,

the transition matrix is

Q =



1 −1 −1 −1

0 1 0 0

0 0 1 0

0 0 0 1


.

Its inverse is

Q−1 =



1 1 1 1

0 1 0 0

0 0 1 0

0 0 0 1


.

The relationship between the two matrix representations of D is M̂ =

Q−1MQ. You should carry out the matrix multiplication to verify the an-

swer given previously.

3. Show that the dimension of the column space of a matrix is its rank.

Solution: Recall that the rank of a matrix was defined as the number of

nonzero rows in its reduced row echelon form. If v1, · · · , vk are linearly inde-

pendent vectors in Fm×1 and Q ∈ Fm×m is nonsingular, then Qv1, · · · , Qvk

are linearly independent. This follows almost immediately from the defi-

nition of linear independence. Thus, although row equivalent matrices do

not necessarily have the same column space, the dimensions of their column

spaces are the same. Therefore, the dimension of the column space of a ma-

trix M is the same as that of its reduced row echelon form. In the reduced
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row echelon form, the columns with the leading 1’s are linearly independent

and each column without a leading 1 is a linear combination of the preceding

columns. Hence, the dimension of the column space is the number of leading

1’s, i.e., the number of nonzero rows. This shows that the dimension of the

row space of a matrix and the dimension of its column space are the same.

It also shows why we use the term ”rank” for the dimension of the range

space of a linear transformation.

4. Verify the theorem on rank and nullity for the linear transformation D

in problem no. 1.

Solution: Let V be a vector space of dimension n over a field F and let W

be another vector space over F. Let T : V −→ W be a linear transformation.

The nullity of T is defined as the dimension of its null space (or kernel)

ker(T ) = {v ∈ V|Tv = 0}

and its rank is defined as the dimension of its range space

T (V) = {w ∈ W|w = Tv for some v ∈ V}.

The theorem on rank and nullity asserts that the nullity of T plus the rank

of T is equal to dim(V). In problem 1, dim(V) = 4. The range of D is

the subspace of all polynomials of degree ≤ 2, so it has dimension 3. In

other words, the rank of D is 3. The null space of D is the subspace of

all polynomials v such that Dv = 0, i.e., all constant polynomials. This
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subspace is spanned by the first basis vector v1(t) ≡ 1, so the nullity of D

is 1.

3. Unsolved Problems

1. Define T : R3×1 −→ R3×1 by

T (x1, x2, x3)t = (x1, x1 + x2, x1 + x2 + x3)t.

Show that T is a linear transformation. Find [T ], the matrix of T relative

to the standard basis B of R3×1. Find the matrix [T ]′ of T relative to the

basis

B′ = {(1, 0, 0)t, (1, 1, 0)t, (1, 1, 1)t}

2. In problem 1, find the transition matrix Q from B to B′. Verify that

[T ]′ = Q−1[T ]Q.

3. Let Vn be the vector space of real polynomials of degree ≤ n and let Bn

be the usual basis of vi(t) = ti−1. Define T : V2 −→ V3 by

Tv(x) =
∫ x

0
v(t)dt

Let D : V3 −→ V2 be the differentiation operator. (Note that this is slightly

different from the definition of D in Solved Problem no. 1). Find the

matrices [T ] and [D] with respect to the given bases. Find TD and DT and

their matrices. Verify that [DT ] = [D][T ] and [TD] = [T ][D].

4. Verify the theorem on rank and nullity for the linear transformation T

in problem 3.


