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2. Solved Problems

1. Find the eigenvalues and the corresponding eigenspaces of the matrix

A =


1 −1 0

−1 2 −1

0 −1 1


Solution: A scalar λ is an eigenvalue if and only if the kernel of λI−A is a

nontrivial subspace of F3×1. That subspace is the corresponding eigenspace.

Recall that row equivalent matrices have the same null space. Use symbolic

row-reduction on the matrix λI−A to obtain a row equivalent matrix whose
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kernel is easy to find. Several steps may be combined.

λI −A =


λ− 1 1 0

1 λ− 2 1

0 1 λ− 1

 −→


1 λ− 2 1

0 1 λ− 1

λ− 1 1 0



−→


1 λ− 2 1

0 1 λ− 1

0 −λ2 + 3λ− 1 −(λ− 1)

 −→


1 λ− 2 1

0 1 λ− 1

0 0 λ(λ− 1)(λ− 3)


The last matrix has a nontrivial null space if and only if its determinant

is zero. Obviously, that occurs for λ = 0, 1, 3. These are the eigenvalues.

Let us first find the eigenspace for λ = 0. From above, substituting λ = 0,

we need the solutions of 
1 −2 1 | 0

0 1 −1 | 0

0 0 0 | 0

 .

All solutions are of the form x1 = x2 = x3, so the first eigenspace is

S(0) = sp{(1, 1, 1)t}.

For λ = 1 the eigenspace S(1) is the set of all solutions of
1 −1 1 | 0

0 1 0 | 0

0 0 0 | 0

 .
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Now the solutions are of the form x2 = 0, x3 = −x1. Thus,

S(1) = sp{(1, 0,−1)t}

The eigenspace for λ = 3 is

S(3) = sp{(1,−2, 1)t}

The details are left to you.

2. Tell why it is possible to diagonalize the matrix A of problem 1. Then

find a similarity transformation that diagonalizes it.

Solution: The answer to the question depends on two theorems. One

theorem asserts that eigenvectors corresponding to distinct eigenvalues are

linearly independent. Since we have three distinct eigenvalues: 0, 1, and 3,

any three vectors (other than the zero vector) belonging to their respective

eigenspaces are linearly independent. In particular, v1 = (1, 1, 1)t, v2 =

(1, 0,−1)t, and v3 = (1,−2, 1)t are linearly independent. Therefore, they

form a basis for R3×1.

The second theorem alluded to above asserts that a matrix (or linear

transformation on a finite dimensional vector space) is diagonalizable if and

only if there is a basis for the space consisting of eigenvectors of the matrix

or transformation. Clearly, {v1, v2, v3} above is a basis for R3×1, so A is

diagonalizable. This means that A is similar to a diagonal matrix, or that

there is a nonsingular matrix Q such that Q−1AQ = Λ, a diagonal matrix.

The diagonal entries of Λ must be the eigenvalues and the correspondingly
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numbered columns of Q must be associated eigenvectors. Therefore, we may

take

Λ =


0 0 0

0 1 0

0 0 3


and

Q =


1 1 1

1 0 −2

1 −1 1


The inverse of Q is

Q−1 =


1/3 1/3 1/3

1/2 0 −1/2

1/6 −1/3 1/6


You can verify that QΛQ−1 = A.

3. Find the characteristic polynomial and the minimum polynomial of the

matrix

A =


−1 0 0

0 1 1

0 0 1

 .

Solution: The characteristic polynomial of A is the polynomial

pA(λ) = det(λI −A).
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It is a monic polynomial whose degree is the same as the dimension of A.

In this case,

pA(λ) = det


λ + 1 0 0

0 λ− 1 −1

0 0 λ− 1

 .

Since this is triangular it is easy to see that

pA(λ) = (λ + 1)(λ− 1)2.

The Hamilton-Cayley theorem asserts that the characteristic polynomial

of a matrix annihilates the matrix, i.e., that pA(A) = 0. In the present case,

pA(A) = (A + I)(A− I)2

=


0 0 0

0 2 1

0 0 2




−2 0 0

0 0 1

0 0 0



2

You can verify that this is the zero matrix.

The minimum polynomial of a matrix is defined to be the monic polyno-

mial of smallest degree that annihilates the matrix. So, if mA is the mini-

mum polynomial, mA(A) = 0 and no polynomial of smaller degree satisfies

this matrix equation. The minimum polynomial must divide the character-

istic polynomial, and each irreducible factor of the characteristic polynomial

must be a factor of the minimum polynomial, possibly to a smaller power.
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With these considerations, it is clear that the only possibilities for the min-

imum polynomial of the matrix A above are mA(λ) = (λ + 1)(λ − 1) or

mA(A) = (λ+1)(λ−1)2 = pA(λ). The first is not the minimum polynomial

because

(A + I)(A− I) = A2 − I 6= 0

Therefore, mA = pA.

4. Show that A in problem 3 is not diagonalizable.

Solution: A matrix is diagonalizable if and only if its minimum polynomial

factors into distinct first degree factors. Since this is not the case for the

matrix A above, it is not diagonalizable.

A more direct approach is to show that there is no basis of eigenvectors of

A. The eigenvalues are 1 and -1. The eigenspaces S(−1) and S(1) are both

one-dimensional. In fact, S(1) = sp{(0, 1, 0)t}, even though 1 is a repeated

zero of the characteristic polynomial. Therefore, there cannot be more than

two linearly independent eigenvectors.

5. Let V = C∞(R) be the real vector space of all infinitely differentiable real-

valued functions on R. Let D be the differentiation operator. Show that

every real number is an eigenvalue of D and find the associate eigenspace.

Solution: λ ∈ R is an eigenvalue if and only if there is a nonzero vector

v ∈ V such that Dv = λv. There is such a vector (function), namely,

v(t) = eλt. The eigenspace is the set of all real multiples of this vector, i.e.,
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the set of all functions of the form v(t) = ceλt, where c is an arbitrary real

number.

6. Let A ∈ Fn×n and let q be a polynomial with coefficients in F. Show that

if λ ∈ F is an eigenvalue of A, then q(λ) is an eigenvalue of q(A).

Solution: There is a nonzero vector v such that Av = λv. A2v = A(Av) =

A(λv) = λAv = λ2v. Arguing in the same manner, A3v = λ3v, and by

induction Akv = λkv for all k ∈ N. The rest of the proof is left to you.

3. Unsolved Problems

Unless otherwise stated, the scalar field is C, even if the entries of the

matrix are real.

1. Find the eigenvalues and associated eigenspaces of the matrix 1 1

−1 1


2. Find a diagonal matrix Λ and a nonsingular matrix Q such that Q−1AQ =

Λ, where

A =


−1 0 0

0 0 0

−2 1 1


3. Find the minimum polynomial of the matrix in problem 2.

4. A matrix A is nilpotent if there is a positive integer k such that Ak = 0.

Show that the only eigenvalue of a nilpotent matrix is 0. Find an example

of a 2× 2 nilpotent matrix that is not the zero matrix.
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5. Show that the eigenvalues of a triangular matrix are its diagonal entries.

6. Show that At and A have the same eigenvalues. Show that the eigenvalues

of A∗ are conjugates of the eigenvalues of A.


