
Linear Algebra and Matrix Theory

Part 5 - Inner Products, Normal Matrices, Projections, etc.
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2. Solved Problems

1. Show that the eigenvalues of a complex hermitian matrix are real.

Solution: Recall that A∗ denotes the conjugate transpose of a matrix. Also

recall that (AB)∗ = B∗A∗ whenever AB is defined. Let x ∈ Cn×1, x 6= 0,

be an eigenvector corresponding to an eigenvalue λ of A ∈ Cn×n. Then

Ax = λx

x∗Ax = λx∗x

x∗Ax = λx∗x (because x∗x > 0.)

x∗A∗x = λx∗x

x∗Ax = λx∗x (because A∗ = A.)
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Hence, λ = λ and λ is real.

2. Let v1 = (1, 1, 0)t, v2 = (0, 1, 1)t and v3 = (1, 0, 1)t. With respect to

the standard inner product of R3×1, find orthonormal vectors u1, u2, and

u3 such that ui ∈ sp{v1, · · · , vi} for i = 1, 2, 3.

Solution: Given a linearly independent set of vectors {v1, · · · , vm} in an

inner product space, the Gram-Schmidt procedure produces a sequence

{u1, · · · , um} of mutually orthogonal unit vectors such that ui ∈ sp{v1, · · · , vi}

for i = i, · · · ,m. The vectors ui are defined inductively by

u1 = v1/||v1||

and for k > 1 by

ṽk = vk −
k−1∑
i=1

(vk|ui)ui

uk = ṽk/||ṽk||

The expression (v|u) denotes the inner product of the vectors v and u. ||v||

is the norm of the vector v, defined as v =
√

(v|v). In the present case,

(v|u) = u∗v and ||v1|| =
√

12 + 12 + 02 =
√

2. Hence,

u1 =
1√
2


1

1

0
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Omitting the detailed calculations, the remaining steps are:

(v2|u1) =
1√
2

ṽ2 =


0

1

1

− 1
2


1

1

0

 =
1
2


−1

1

2



u2 =
1√
6


−1

1

2


(v3|u1) =

1√
2

(v3|u2) =
1√
6

ṽ3 =


1

0

1

− 1
2


1

1

0

− 1
6


−1

1

2

 =
2
3


1

−1

1



u3 =
1√
3


1

−1

1


3. Show that the transition matrix from one orthonormal basis of a finite-

dimensional inner product space to another is unitary.

Solution: When we say that a matrix Q ∈ Cn×n is unitary we mean that

its columns are orthonormal with respect to the standard inner product on
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Cn×1. Another way of expressing this is Q∗Q = QQ∗ = I. Thus, the inverse

of Q is Q∗. Real unitary matrices are commonly called orthogonal matrices.

We will use the ”dot product” notation to denote the standard inner product

x · y = y∗x =
n∑

i=1

xiȳi.

Let {u1, · · · , un} and {v1, · · · , vn} be orthonomal bases. This means that

(vi|vj) = 0 if i 6= j and = 1 if i = j. The u’s satisfy the same equations. If

Q = (qi,j) is the transition matrix from the u-basis to the v-basis,

vj =
n∑

i=1

qi,jui.

Thus,

(vk|vj) = (
n∑

l=1

ql,kul|
n∑

i=1

qi,jui)

=
n∑

l=1

n∑
i=1

ql,kq̄i,j(ul|ui)

=
n∑

l=1

ql,kq̄l,j

= q·,k·q·,j

Since the v’s are orthonormal, so are the columns of Q.

4. Find an orthonormal basis for R3×1 consisting of eigenvectors of
2 0 1

0 2 −1

1 −1 1

 .
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Solution: Given a hermitian matrix A ∈ Cn×n, there is an orthonormal

basis for Cn×1 consisting of unit eigenvectors of A. If A is real, it has real

eigenvectors (recall that the eigenvalues of a hermitian matrix are always

real). Furthermore, eigenvectors belonging to different eigenvalues of a her-

mitian matrix are always orthogonal, so if the given matrix has distinct

eigenvalues, we need only select unit eigenvectors for them.

Using the techniques of a previous section,

det(λI −A) = det


λ− 2 0 −1

0 λ− 2 1

−1 1 λ− 1


= λ(λ− 2)(λ− 3).

For λ1 = 0 an eigenvector is v1 = (−1, 1, 2)t, so a unit eigenvector is

u1 =
1√
6


−1

1

2

 .

Similarly, unit eigenvectors for λ2 = 2 and λ3 = 3 are

u2 =
1√
2


1

1

0
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and

u2 =
1√
3


1

−1

1


So, {u1, u2, u3} is an orthonormal basis for R3×1.

5. For the matrix A in problem 4, find a real orthogonal matrix U and a

diagonal matrix Λ such that U∗AU = Λ.

Solution: This illustrates the general theorem that a hermitian matrix is

unitarily similar to a diagonal matrix. The equation just above may be

rewritten AU = UΛ, or Aui = λiui, where λi is the ith diagonal entry of

Λ and ui is the ith column of U . Therefore, we take the columns of U to

be orthonormal eigenvectors of A and the diagonal entries of Λ to be the

corresponding eigenvalues. Since A here is real symmetric, all these objects

will be real.

Λ =


0 0 0

0 2 0

0 0 3


and

U =


− 1√

6
1√
2

1√
3

1√
6

1√
2

− 1√
3

2√
6

0 1√
3

 .

6. On Cn×1 × Cn×1 let f(x, y) = y∗Hx, where H ∈ Cn×n. Under what

conditions will f be an inner product?

Solution: Three conditions must be satisfied:
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(1) f(αx + βz, y) = αf(x, y) + βf(z, y) for all α, β ∈ C and all x, y, z ∈

Cn×1.

(2) f(y, x) = f(x, y) for all x, y ∈ Cn×1.

(3) f(x, x) > 0 for all x 6= 0 in Cn×1.

The first of these holds for any H. For the second,

f(x, y) = y∗Hx = x∗H∗y,

while

f(y, x) = x∗Hy.

These are equal for all x, y if and only if H∗ = H, that is, if and only if

H is hermitian. The third condition holds if and only if x∗Hx > 0 for all

x ∈ Cn×1. If this is so, we say that H is positive definite. A necessary and

sufficient condition for a hermitian matrix to be positive definite is that all

its eigenvalues be positive.

3. Unsolved Problems

1. Find an orthonormal basis for R2×1 of eigenvectors of the matrix2 1

1 2

 .

2. Find the transition matrix from the standard basis to this basis and show

that it is unitary.

3. Show that the eigenvalues of a unitary matrix all have absolute value (or

complex modulus) 1.
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4. Find all n × n matrices which are both hermitian positive definite and

unitary.

5. Apply the Gram-Schmidt procedure to convert {v1, v2, v3} to an or-

thonormal basis for R3×1, where v1 = (1, 0, 0)t, v2 = (1, 1, 0)t, and v3 =

(1, 1, 1)t.


