Probability

Part 2 - Basic Rules of Probability

1. References

(1) R. Durrett, The Essentials of Probability, Duxbury.
(2) L.L. Helms, Probability Theory with Contemporary Applications, Freeman.
(3) J.J. Higgins and S. Keller-McNulty, Concepts in Probability and Stochastic Modeling, Duxbury.
(4) R.V. Hogg and E.A. Tanis, Probability and Statistical Inference, Prentice-Hall.

2. Solved Problems

Problem 1. Part of the specification of a probability model of a random experiment is to describe its sample space and the collection of events. What are the axioms satisfied by the collection of events?

Solution:

The sample space S is the set of all possible outcomes of the experiment. An event is a subset of the sample space. If S is countable, then it is almost always the case that every subset of S is taken to be an event. If S is uncountable, for example an interval of real numbers, then not every subset is called an event. The collection \mathcal{A} of all events must satisfy the following axioms.
(1) $S \in \mathcal{A}$.
(2) If $A \in \mathcal{A}$, then $A^{c} \in \mathcal{A}$.
(3) If A_{1}, A_{2}, \cdots is a finite or infinite sequence of events, then $\cup_{i} A_{i} \in \mathcal{A}$.

Problem 2: Show that if \mathcal{A} is the collection of events in a probability model and if A_{1}, A_{2}, \cdots is a finite or infinite sequence of events, then $\cap_{i} A_{i} \in \mathcal{A}$.

Solution:

DeMorgan's law says that $\left(\cap_{i} A_{i}\right)^{c}=\cup_{i} A_{i}^{c}$. Since each $A_{i} \in \mathcal{A}$, each $A_{i}^{c} \in \mathcal{A}$ by (2) above. Therefore, by (3), $\cup_{i} A_{i}^{c} \in \mathcal{A}$. Hence, $\left(\cap_{i} A_{i}\right)^{c} \in \mathcal{A}$ and by (2) again, $\cap_{i} A_{i} \in \mathcal{A}$.

We can summarize the properties of the collection of events by saying that it contains the entire sample space and it is closed under finite or countably infinite unions, finite or countably infinite intersections, and complementation.

Problem 3: Suppose that the sample space of a random experiment is the set \mathbb{R} of all real numbers. Suppose also that the collection \mathcal{A} of all events contains all the closed half lines of the form $(-\infty, b]$, where $b \in \mathbb{R}$. Show that all sets of the following types are also events:
(1) all open half lines of the form (a, ∞), where $a \in \mathbb{R}$,
(2) all half open intervals of the form $(a, b]$, where $a, b \in \mathbb{R}$,
(3) all singleton sets $\{a\}$, where $a \in \mathbb{R}$,
(4) all bounded open intervals (a, b) and all bounded closed intervals $[a, b]$.
(5) all open sets and all closed sets.

Solution:

The open half line (a, ∞) is the complement of the closed half line $(-\infty, a]$. Therefore, all the half lines in (1) are events. The bounded half open interval $(a, b]$ is the intersection of $(-\infty, b]$ and (a, ∞). Thus, it is an event. A singleton set $\{a\}=\cap_{n}(a-1 / n, a]$ is a countable intersection of events, so it is an event. Bounded open intervals (a, b) and bounded closed intervals $[a, b]$ may be obtained by adjoining or deleting singletons to or from $(a, b]$, so they are events. Finally, every open set is a countable union of intervals, so all open sets are events. Closed sets are the complements of open sets, so they are events.

Events formed by applying a sequence of set operations to intervals are called Borel sets. They constitute the most natural collection of events for describing a great many random experiments.

Problem 4: In addition to a sample space S and a collection \mathcal{A} of events, a probability model for a random experiment must have a probability measure that assigns a number between 0 and 1 to each event. Thus, the probability measure is a function $P: \mathcal{A} \longrightarrow[0,1]$. What are the essential properties of a probability measure?

Solution:

A probability P must have the following properties:
(1) $P(S)=1$,
(2) If A_{1}, A_{2}, \cdots is a sequence of pairwise disjoint events, then $P\left(\cup_{i} A_{i}\right)=$ $\sum_{i} P\left(A_{i}\right)$.

Problem 5: Suppose S is countable and \mathcal{A} is the collection of all subsets of S. Show that for each $A \in \mathcal{A}$,

$$
P(A)=\sum_{a \in A} P(\{a\}) .
$$

Solution:

$A=\cup_{a \in A}\{a\}$ is a countable union of pairwise disjoint events. The result follows from property (2) of a probability measure.

Problem 6: Prove the following properties of probability measures:
(1) If $A \subseteq B$, then $P(A) \leq P(B)$.
(2) $P(A \cup B)=P(A)+P(B)-P(A \cap B)$.
(3) $P\left(A^{c}\right)=1-P(A)$.

Solution:

(1) $B=A \cup(B \sim A)$ is a disjoint union. Therefore, $P(B)=P(A)+P(B \sim$ $A) \geq P(A)$. (2) As is customary, write $A B$ for $A \cap B . A \cup B=A \cup(B \sim$ $A B)$. The right hand side is a disjoint union. Therefore, $P(A \cup B)=$ $P(A)+P(B \sim A B)=P(A)+P(B)-P(A B)$. (3) $S=A \cup A^{c}$. Therefore, $P(S)=1=P(A)+P\left(A^{c}\right)$.

Problem 7: Toss a coin 3 times and assume that all outcomes are equally likely. Let A_{i} denote the event of a head on the $i^{\text {th }}$ toss. Show that the events A_{1}, A_{2}, A_{3} are independent.

Solution:

For convenience, let us indicate a head by the numeral 1 and a tail by the numeral 0 . The sample space of the experiment is the set of all sequences of 0's and 1 's of length 3 . Hence, S has 2^{3} elements and if outcomes are equally likely, $P(\{a\})=1 / 8$ for each outcome a, e.g., $a=(1,0,1)$. A verbal description of an event, such as we gave for A_{i}, must be capable of translation into a precise definition of a subset of S, although often it is not necessary to do so. Here, for example,

$$
\begin{aligned}
& A_{1}=\{(1,0,0),(1,0,1),(1,1,0),(1,1,1)\} \\
& A_{2}=\{(0,1,0),(0,1,1),(1,1,0),(1,1,1)\} \\
& A_{3}=\{(0,0,1),(0,1,1),(1,0,1),(1,1,1)\} \\
& A_{1} A_{2}=\{(1,1,0),(1,1,1)\} \\
& A_{1} A_{3}=\{(1,0,1),(1,1,1)\} \\
& A_{2} A_{3}=\{(0,1,1),(1,1,1)\} \\
& A_{1} A_{2} A_{3}=\{(1,1,1)\}
\end{aligned}
$$

Now it is easy to see that $P\left(A_{i} A_{j}\right)=1 / 4=P\left(A_{i}\right) P\left(A_{j}\right)$ for $i \neq j$ and $P\left(A_{1} A_{2} A_{3}\right)=1 / 8=P\left(A_{1}\right) P\left(A_{2}\right) P\left(A_{3}\right)$. This shows that A_{1}, A_{2}, A_{3} are independent events. In general, events in a collection $\left\{A_{i}\right\}$ are independent if for each finite subcollection $\left\{A_{i} \mid i \in F\right\}$,

$$
P\left(\bigcap_{i \in F} A_{i}\right)=\prod_{i \in F} P\left(A_{i}\right) .
$$

Problem 8: Two cards are drawn in succession, without replacement, from a standard 52-card deck. All outcomes are equally likely. Let A_{i} denote the event that the $i^{\text {th }}$ card is red, i.e., a heart or a diamond. Show that A_{1} and A_{2} are dependent events.

Solution:

We must show that $P\left(A_{1} A_{2}\right) \neq P\left(A_{1}\right) P\left(A_{2}\right)$. The number of 2 term nonrepeating sequences that begin with a red card is 26×51. The number of outcomes of the experiment is 52×51. Therefore, $P\left(A_{1}\right)=(26 \times 51) /(52 \times$ $51)=1 / 2 . P\left(A_{1} A_{2}\right)=(26 \times 25) /(52 \times 51)=25 / 102$. To find $P\left(A_{2}\right)$, write $A_{2}=\left(A_{2} A_{1}\right) \cup\left(A_{2} A_{1}^{c}\right)$. Then $P\left(A_{2}\right)=P\left(A_{2} A_{1}\right)+P\left(A_{2} A_{1}^{c}\right)=(26 \times$ $25) /(52 \times 51)+(26 \times 26) /(52 \times 51)=1 / 2$. Thus, $P\left(A_{1} A_{2}\right) \neq P\left(A_{1}\right) P\left(A_{2}\right)$ and A_{1} and A_{2} are dependent.

Problem 9: For the situation described in Problem 8, find the conditional probabilities $P\left(A_{2} \mid A_{1}\right)$ and $P\left(A_{1} \mid A_{2}\right)$.

Solution:

The conditional probability of event A_{2}, given event A_{1}, is defined as

$$
P\left(A_{2} \mid A_{1}\right)=\frac{P\left(A_{2} A_{1}\right)}{P\left(A_{1}\right)}
$$

Thus, $P\left(A_{2} \mid A_{1}\right)=(25 / 102) /(1 / 2)=25 / 51$. Likewise, $P\left(A_{1} \mid A_{2}\right)=25 / 51$. This is another way of seeing that A_{1} and A_{2} are dependent. Two events C and D with nonzero probabilities are independent if and only if $P(C \mid D)=$ $P(C)$.

Problem 10: Four cards are drawn in succession without replacement from a standard deck. At each draw, all the remaining cards in the deck are equally likely. What is the probability of the color sequence red-red-blackred?

Solution:

Let R_{i} denote the event of a red card on the $i^{\text {th }}$ draw and let $B_{i}=R_{i}^{c}$ denote the event of a black card. We want to find $P\left(R_{1} R_{2} B_{3} R_{4}\right)$. It can be shown that if $A_{1}, A_{2}, \cdots, A_{k}$ are events in a probability model,

$$
P\left(A_{1} \cdots A_{k}\right)=P\left(A_{k} \mid A_{1} \cdots A_{k-1}\right) P\left(A_{k-1} \mid A_{1} \cdots A_{k-2}\right) \cdots P\left(A_{2} \mid A_{1}\right) P\left(A_{1}\right)
$$

Thus,

$$
\begin{aligned}
P\left(R_{1} R_{2} B_{3} R_{4}\right) & =P\left(R_{4} \mid R_{1} R_{2} B_{3}\right) P\left(B_{3} \mid R_{1} R_{2}\right) P\left(R_{2} \mid R_{1}\right) P\left(R_{1}\right) \\
& =\frac{24}{49} \frac{26}{50} \frac{25}{51} \frac{26}{52}=.0624
\end{aligned}
$$

3. Unsolved Problems

Problem 1: Show that $P(\phi)=0$.

Problem 2: Find and prove an expression for $P\left(A_{1} \cup A_{2} \cup A_{3}\right)$.
Problem 3: Show that a finite or countably infinite set of real numbers is
a Borel set.

Problem 4: Draw two cards in succession without replacement from a standard deck. Let $A=$ "Red on first draw" and $B=$ "King on the second draw". Are A and B independent or dependent events?

Problem 5: Show that if A is any event and B is an event such that $P(B)=1$, then A and B are independent.

Problem 6: By induction, show that

$$
P\left(A_{1} \cdots A_{k}\right)=P\left(A_{k} \mid A_{1} \cdots A_{k-1}\right) \cdots P\left(A_{2} \mid A_{1}\right) P\left(A_{1}\right)
$$

Problem 7: Modify Solved Problem no. 10 so that the cards are drawn with replacement.

