
Probability

Part 3 - Random Variables, Distributions and Expected Values
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2. Solved Problems

Problem 1. A fair die is tossed. The random variable X is equal to 1 if a

one or a six occurs and is equal to 0 otherwise. Find the probability mass

function of X

Solution:

A random variable X is a function X : S −→ R from the sample space of

a random experiment to the real numbers. In this case, S = {1, · · · , 6} and

X(1) = X(6) = 1 while X(s) = 0 for all other s ∈ S. The only restriction on

such a function is that if I is an interval of real numbers, the set of outcomes

[X ∈ I] = {s ∈ S|X(s) ∈ I]
1



2

must be an event. For finite or countable sample spaces S this is no restric-

tion and any real valued function on S is a random variable. For uncountable

sample spaces there may be functions that are not random variables, but

they are hard to find. Any ”ordinary” function is a random variable.

A discrete random variable is one that has only finitely many or countably

many distinct values. For a discrete random variable X, the probability mass

function is defined for real numbers x as f(x) = P [X = x]. In the present

case, f(1) = 2/6, f(0) = 4/6, and f(x) = 0 for any other value of x.

A random variable whose only values are 0 and 1 is called a Bernoulli

random variable. Bernoulli random variables are often used to encode the

occurrence or nonoccurrence of an event. The event [X = 1] is often des-

ignated a ”success” and its complement [X = 0] is a ”failure”. The proba-

bility p = P [X = 1] is called the success probability. For a Bernoulli ran-

dom variable X with success probability p, the probability mass function is

f(x) = px(1− p)1−x for x = 0, 1 and f(x) = 0 for all other x.

Problem 2: Let X be a Bernoulli random variable with success probability

p. Find the mean, variance, and standard deviation of X.

Solution:

The expected value or expectation of a discrete random variable X is

defined as

E[X] =
∑

x

xP [X = x] =
∑

x

xf(x)
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Symbolically, the sum may be taken over all real numbers x, but since

f(x) = 0 for all but countably many values of x, it actually reduces to a

finite sum or an infinite series. If it is an infinite series, it must be absolutely

convergent, otherwise the expected value does not exist. In the present case,

we sum over the only two possible values x = 0 and x = 1. Thus,

E[X] = 1 · P [X = 1] + 0 · P [X = 0]

= 1 · p + 0 · (1− p) = p

The expected value of a random variable is often denoted with the Greek

letter µ.

The variance of a random variable X is defined to be

var(X) = E[(X − E[X])2] = E[X2]− E[X]2

if the expected value exists. In the present case, X2 = X, so E[X2] =

E[X] = p and E[X]2 = p2. Therefore, var(X) = p− p2 = p(1− p).

The square root of the variance is called the standard deviation and is

often denoted with the Greek letter σ. Therefore, var(X) = σ2. Here,

σ =
√

p(1− p).

We remark that if X is a discrete random variable and g : R −→ R is a

reasonable function, the expected value of the transformed random variable

Y = g(X) may be found by

E[Y ] = E[g(X)] =
∑

x

g(x)f(x)



4

provided the sum is absolutely convergent. This is rather snidely called the

law of the unconscious statistician.

Problem 3: Suppose a coin is biased and has head probability p. Toss the

coin n times and let Xi = 1 if the ith toss is a head and Xi = 0 if it is a tail.

Assume that the random variables X1, · · · , Xn are independent. Find their

joint probability mass function.

Solution:

The random variables X1, · · · , Xn are jointly distributed because they

arise from the same random experiment,i.e., they are defined on the same

sample space. They are independent if for each sequence I1, · · · , In of inter-

vals, the events [Xi ∈ Ii] are independent events, i.e.,

P [X1 ∈ I1; · · · ;Xn ∈ In] = P [X1 ∈ I1] · · ·P [Xn ∈ In].

Since these are discrete random variables, this is equivalent to

P [X1 = x1;X2 = x2; · · · ;Xn = xn] =
n∏

i=1

P [Xi = xi]

for each sequence of possible values (0’s and 1’s, in this case). The left

hand side of this equation is called the joint probability mass function of the

Xi and is commonly denoted by f(x1, · · · , xn). Denoting the individual (or

marginal) probability mass function of Xi by fi, X1, · · · , Xn are independent

if and only if

f(x1, x2, · · · , xn) =
n∏

i=1

fi(xi)
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for all real numbers x1, · · · , xn. In this case, if xi = 0 or xi = 1, fi(xi) =

pxi(1− p)1−xi . Thus,

f(x1, x2, · · · , xn) = py(1− p)n−y

where y =
∑

xi.

Problem 4: Two cards are drawn without replacement from a standard

deck. All outcomes are equally likely. Let Xi = 1 if the ith card drawn is a

heart and Xi = 0 if it is not. Find the joint pmf of X1 and X2. Find their

marginal pmf’s. Show that X1 and X2 are dependent.

Solution:

X1 and X2 are Bernoulli variables. The success probability for X1 is

P [X1 = 1] = P [Heart on first draw] = 1/4. Therefore, f1(x1) = (1
4)x1(3

4)1−x1

if x1 = 1 or x1 = 0. It is left to you to show that the success probability for

X2 is

P [X2 = 1] = P [X2 = 1|X1 = 0]P [X1 = 0]+P [X2 = 1|X1 = 1]P [X1 = 1] = 1/4

also. Therefore, X1 and X2 have the same Bernoulli distribution. The prod-

uct of the marginal pmf’s is f1(1)f2(1) = (1
4)2, f1(1)f2(0) = f1(0)f2(1) =

(1
4)(3

4), f1(0)f2(0) = (3
4)2. On the other hand, f(1, 1) = 13·12

52·51 . This is

enough to show that X1 and X2 are dependent. Continuing, f(1, 0) =

f(0, 1) = (1
4)(39

51) and f(0, 0) = (3
4)(38

51).

Problem 5: In the preceding problem, let Y = X1+X2 be the total number

of hearts drawn. Find the expected value and variance of Y .
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Solution: The expected value operator ”E” is linear. Thus, E[Y ] = E[X1+

X2] = E[X1] + E[X2] = 1
4 + 1

4 = 1
2 .

The variance is not linear except in special circucumstances. Here it can

be calculated directly as follows.

var(Y ) = E[Y 2]− E[Y ]2

= E[X2
1 + 2X1X2 + X2

2 ]− 1
4

= E[X2
1 ] + 2E[X1X2] + E[X2

2 ]− 1
4

=
1
4

+
1
4
− 1

4
+ 2E[X1X2]

=
1
4

+ 2E[X1X2]

To calculate the second term of the last expression, it helps to remember

that X1X2 is itself a Bernoulli variable, with success probability f(1, 1) = 3
51 .

Therefore, E[X1X2] = 1
17 and var(Y ) = 1

4 + 2
17 = 25

68 .

When the terms of a sum of random variables are independent, the vari-

ance is linear. Thus, if the cards in this example were drawn with replace-

ment, the variance of Y would be var(X1) + var(X2) = 3
8 .

Problem 6: Let X1, X2, · · · , Xn be independent Bernoulli random variables

with common success probability p. Let Y = X1 + X2 + · · ·+ Xn. Find the

pmf of Y , the expected value of Y , and the variance of Y .

Solution: The possible values of Y are the integers from 0 to n inclusive.

Let y denote an arbitrary one of these values. By Problem 3, the probability



7

of any particular sequence of y 1’s and n− y 0’s is py(1− p)n−y. There are(
n
y

)
such sequences of 0’s and 1’s. Therefore, P [Y = y] =

(
n
y

)
py(1− p)n−y.

By the linearity of expectation,

E[Y ] =
n∑

i=1

E[Xi] =
n∑

i=1

p = np,

and because the Xi are independent (see the preceding problem),

var(Y ) =
n∑

i=1

var(Xi) = np(1− p).

This distribution is called the binomial distribution with n trials and success

probability p.

Problem 7: A random variable T has an exponential distribution. Let t1

and t2 be arbitrary positive numbers. Show that

P [T > t1 + t2|T > t1] = P [T > t2].

Solution: Unlike the distributions considered up to now, an exponential

distribution is not discrete. Rather, it is continuous and instead of a prob-

ability mass function it has a probability density function f(t). This is a

nonnegative function such that

P [T ∈ I] =
∫

I
f(t)dt.

for each interval I. In particular, P [T > τ ] =
∫∞
τ f(t)dt. For an exponential

distribution the density function is

f(t) =
1
µ

e
− t

µ
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for t ≥ 0 and f(t) = 0 for t < 0. The parameter µ is an arbitrary but fixed

positive number. For τ > 0,

P [T > τ ] =
∫ ∞

τ

1
µ

e
− t

µ dt

= e
− τ

µ .

Now,

P [T > t1 + t2|T > t1] = P [T > t1 + t2]/P [T > t1]

= e−(t1+t2)/e−t1

= e−t2 = P [T > t2]

If T is the lifetime of a system (say an ionized atom of Hydrogen), the

conclusion above says that given that the system has survived past time

t1, the probability that it survives an additional time t2 is the same as the

unconditional probability that it survives for time t2 from the beginning.

Such system lifetimes are called memoryless and it can be shown that the

only continuous distributions that have this property are the exponential

distributions with various values of µ.

Problem 8: Show that the expected value of a random variable with an

exponential distribution is the parameter µ.

Solution:
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For a continuous random variable, such as T , with a density function, the

expected value is defined as

E[T ] =
∫ ∞

−∞
f(t)dt.

More generally, if g is a reasonable function from R to R,

E[g(T )] =
∫ ∞

−∞
g(t)f(t)dt

provided these integrals are absolutely convergent. A ”reasonable” function

is, to be precise, a measureable function. Any function that can be obtained

as the pointwise limit of a sequence of continuous functions is measureable.

Applying this to an exponential random variable,

E[T ] =
∫ ∞

0
t
1
µ

e
− t

µ dt.

Integration by parts gives E[T ] = µ. To find the variance, we use the formula

var(T ) = E[T 2]− E[T ]2.

E[T 2] =
∫ ∞

0
t2

1
µ

e
− t

µ dt.

Again by parts this is E[T 2] = 2µ2. Thus, var(T ) = 2µ2−µ2 = µ2, and the

standard deviation is µ.

Problem 9: Let Y have a binomial distribution with n = 100 trials and

success probability p = .2. Find the approximate value of the probability

P [16 < Y ≤ 28].

Solution:
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The random variable Y has the same distribution as
∑100

i=1 Xi, where

X1, · · · , X100 are independent Bernoulli random variables with success prob-

ability .2. Therefore, let us write Y =
∑100

i=1 Xi. We will standardize Y by

subtracting its mean value and dividing by its standard deviation and calling

the resulting random variable Z.

Z =
Y − E[Y ]√

var(Y )
=

Y − np√
np(1− p)

=
Y − 20

4

The Central Limit Theorem asserts that for sums, such as Y , of independent

and identically distributed random variables, the distribution of the stan-

dardized sum approaches the standard normal distribution as the number n

of summands grows without bound. The standard normal distribution is a

continuous distribution with density function

φ(z) =
1√
2π

e−
1
2
z2

.

The Central Limit Theorem is the reason why the normal distributions, in

particular the standard normal distribution, are so important in probability

theory.

Applying the Central Limit Theorem,

P [16 < Y ≤ 28] = P [−1 <
Y − 20

4
≤ 2]

= P [−1 < Z ≤ 2] ≈
∫ 2

−1
φ(z)dz
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This integral cannot be evaluated by elementary calculus, but there are

extensive tables of integrals of the standard normal density function. Ac-

cording to these tables, the numerical answer is 0.8186. The true answer

is 0.7876. The accuracy of the Central Limit approximation could be in-

creased by modifying the interval to avoid integer endpoints. For example,

the event [16 < Y ≤ 28] is the same as the event [16.5 < Y ≤ 28.5]. With

this correction, the Central Limit approximation is 0.7924.

Problem 10: Let Z be a random variable with the standard normal dis-

tribution. Let µ ∈ R and σ > 0 be arbitrary. Define a new random variable

X by X = σZ + µ. Find the density function of X.

Solution:

Let φ(z) = 1√
2π

e−
1
2
z2

be the standard normal density function and let

Φ(ζ) = 1√
2π

∫ ζ
−∞ e−

1
2
z2

dz denote its cumulative distribution function. We

will find the cumulative distribution function of X and, by differentiation,

the density function of X. The cumulative distribution function is

F (x) = P [X ≤ x] =
∫ x

−∞
f(u)du

= P [σZ + µ ≤ x]

= P [Z ≤ x− µ

σ
]

= Φ(
x− µ

σ
).
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Differentiate both sides with respect to x. On one side we get f(x). On the

other side, we get

1
σ

φ(
x− µ

σ
) =

1
σ
√

2π
e−

1
2
(x−µ

σ
)2 .

This is the normal density function with mean µ and standard deviation σ.

3. Unsolved Problems

Problem 1: Let X have a binomial distribution with n trials and success

probability p. Let t be an arbitrary real number. Find E[etX ]. Hint: Use

the binomial theorem.

Problem 2: If X1 and X2 are jointly distributed random variables, their

covariance is defined as cov(X1, X2) = E[X1X2] − E[X1]E[X2]. Draw two

cards in succession from a standard deck Let Xi = 1 if the ith draw is a

heart and let Xi = 0 otherwise. Find the covariance between X1 and X2 if

the cards are drawn with replacement.

Problem 3: In the preceding problem, find the covariance when the cards

are drawn without replacement, that is, independently.

Problem 4: A Poisson random variable X is a discrete random variable

whose values are the nonnegative integers and whose probability mass func-

tion is

f(x) = e−µ µx

x!

for x = 0, 1, 2, · · · . Show that the expected value of X is µ.

Problem 5: Forty percent of voters in a large city would approve a new

bond issue. A random sample of 100 voters is taken with replacement.
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Approximately what is the probability that more than 50 of the sampled

voters would approve the issue? You will need to find a table of the standard

normal distribution. Every statistics book has one.

Problem 6: Let Z have the standard normal distribution. Show that

E[Z] = 0 and var(Z) = 1.


