a counting problem, we may have to use one or a combination of these principles. The counting principles we have studied are:

- ▶ Inclusion-exclusion principle: $n(A \cup B) = n(A) + n(B) n(A \cap B)$.
- ► Complement Rule n(A') = n(U) n(A).
- ▶ Multiplication principle: If I can break a task into r steps, with m_1 ways of performing step 1, m_2 ways of performing step 2 (no matter what I do in step 1), ..., m_r ways of performing step r (no matter what I do in the previous steps), then the number of ways I can complete the task is

$$m_1 \cdot m_2 \cdot \cdot \cdot m_r$$
.

(This also applies if step i of task amounts to selecting from set A_i with m_i elements.)

Addition principle: If I must choose exactly one activity to complete a task from among the (disjoint) activities A_1, A_2, \ldots, A_r and I can perform activity 1 in m_1 ways, activity 2 in m_2 ways, ..., activity r in m_r ways, then I can complete the task in

$$m_1 + m_2 + \cdots + m_r$$

ways. (This also applies if task amounts to selecting one item from r disjoint sets A_1, A_2, \ldots, A_r with m_1, m_2, \ldots, m_r items respectively.)

ightharpoonup Permutations: The number of arrangements of n objects taken r at a time is

$$P(n,r) = n \cdot (n-1) \cdots (n-r+1) = \frac{n!}{(n-r)!}$$

Permutations of objects with some alike:

The number of different permutations (arrangements), where order matters, of a set of n objects (taken n at a time) where r of the objects are identical is

 $\frac{n!}{r!}$

Consider a set of n objects which is equal to the disjoint union of k subsets, A_1, A_2, \ldots, A_k , of objects in which the objects in each subset, A_i are identical and the objects in different subsets A_i and A_j , $i \neq j$ are not identical. Let r_i denotes the number of objects in set A_i , then the number of different permutations of the n objects (taken n at a time) is

$$\frac{n!}{r_1!r_2!\dots r_n!}.$$

This can also be considered as an application of the technique of "overcounting" where we count a larger set and then divide.

▶ Combinations: The number of ways of choosing a subset of (or a sample of) r objects from a set with n objects, where order does not matter, is

$$C(n,r) = \frac{P(n,r)}{r!} = \frac{n!}{r!(n-r)!}.$$

Note this was also an application of the technique of "overcounting".

Math 4389

(Author unknown!)

Probability Theory: Counting

The Product Rule:

Suppose a procedure can be broken down into a sequence of m tasks. If there are n_i ways to perform task i, then there are

$$n_1 n_2 \dots n_m$$

ways to perform the procedure.

Ex: The chairs in an auditorium are to be labeled with an uppercase English letter followed by a positive integer not exceeding 100. What is the largest number of chairs that can be labeled differently?

26

Ex: Each user on a computer system has a password which is six to eight characters long, where each character is an uppercase letter or a digit. Each password must contain at least one digit. How many possible passwords are there?

at the end, subtract off duplicates

Combinations:

Def: The number of ways to select a subset $\{s_1, s_2, ..., s_r\}$ of r elements of the set $S = \{1, 2, 3, ..., n\}$ is called the *combination of n items taken r at a time* and is given by

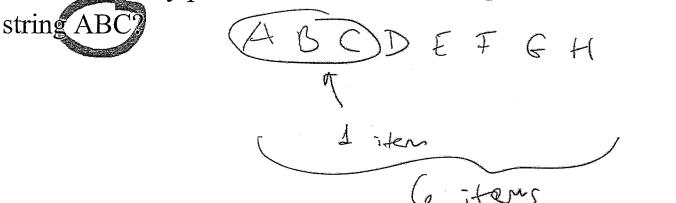
$$\binom{n}{r} = \frac{n!}{r!(n-r)!}$$

Permutations:

Def: The number of ways to choose a sequence $s_1, s_2, s_3, ...s_r$ of distinct elements of the set $S = \{1, 2, 3, ..., n\}$ is called the *r-permutation of n items* and is given by

$$n(n-1)(n-2)...(n-r+1) = \frac{n!}{(n-r)!}$$

Ex: How many permutations of the letters ABCDEEGH contain the



Ex: How many different poker hands of five cards can be dealt from a standard deck of 52 cards?

C(52,5)

Ex: A group of 30 people have been trained as astronauts to go on the first mission to Mars. How many ways are there to select a crew of six people to go on this mission (assuming that all crew members have the same job)?

C(30,6)

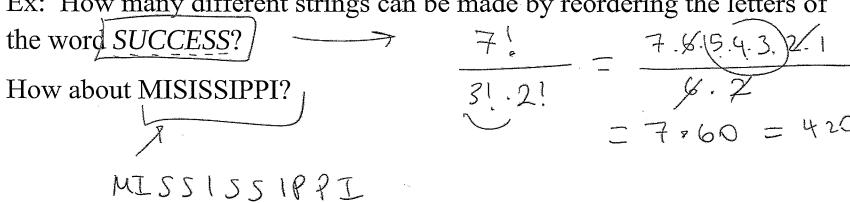
Ex: What if the crew of 6 above is split into a captain, a co-captain, and 4 crew members (who each share the same job)?

Indistinguishable Objects:

Thm: The number of different permutations of *n* objects, where there are n_i objects of Type i for i = 1, 2, 3, ..., k is given by

$$\frac{n!}{n_1!n_2!...n_k!}$$

Ex: How many different strings can be made by reordering the letters of



P(A) = # of desired outcomes

of all outcomes

PROBABILITY THEORY

An *experiment* is a procedure that yields one of a given set of possible outcomes.

The sample space of the experiment is the set of possible outcomes.

An event is a subset of the sample space.

Def: If *S* is a finite nonempty sample space of *equally likely* outcomes, and *E* is an event, that is $E \subseteq S$, then the *probability* of *E* is

$$\Pr(E) = \frac{|E|}{|S|}$$

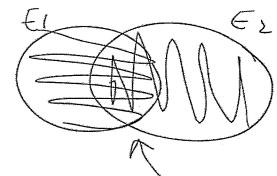
Complements and Unions:

If S is the sample space for an experiment and E, E_1, E_2 are events, the following are true:

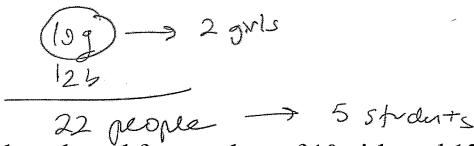
1.
$$Pr(S)=1$$

2.
$$Pr(E^c) = 1 - Pr(E)$$

3.
$$\Pr(E_1 \cup E_2) = \Pr(E_1) + \Pr(E_2) - \Pr(E_1 \cap E_2)$$



If $\Pr(E_1 \cap E_2) = 0$, then they are said to be *disjoint* events, and then $\Pr(E_1 \cup E_2) = \Pr(E_1) + \Pr(E_2)$



Ex: A team of 5 students will be selected from a class of 10 girls and 12 boys.

What is the probability that there are 2 girls in this team?

$$P(2 \text{ girls}) = C(10,2) \cdot C(12,3)$$
 $C(22,5)$

What is the probability that there is at least one girl in the team?

$$=\frac{C(10,1)\cdot C(12,14)}{C(22,5)}+\frac{C(10,12)\cdot C(12,3)}{C(22,5)}$$

$$P(a+lea)+1g)=1-P(0glsb)=1-\frac{C(10,0)\cdot C(14,5)}{C(22,5)}$$

Example: Two points x and y are selected at random in the interval [0,1]. What is the probability that the product xy is less than 1/2?

$$P(x,y \leq \frac{1}{2}) = \frac{\sqrt{2}}{\sqrt{2}} = \frac{\sqrt{2}}{\sqrt$$

$$= \frac{1}{2} + \left[\frac{1}{2}\ln(x)\right]^{1} = \frac{1}{2} + \left(0 - \frac{1}{2}\ln(\frac{1}{2})\right)^{1} = \frac{1}{2} - \frac{1}{2}\ln(\frac{1}{2})$$

Independence:
$$= \frac{1}{2} + \frac{1}{2} \ln 2$$
$$= \frac{1}{2} \left(1 + \ln 2\right)$$

Def: Two events, E_1 and E_2 , are independent if and only if $\Pr(E_1 \cap E_2) = \Pr(E_1) \Pr(E_2)$.

Ex: 5 red balls numbered 1-5 and five purple balls numbered 1-5 are placed in an urn. Let \underline{E} be the event that an even number is drawn and let F be the event that a red ball is drawn. Are these events independent?

$$P(E) = \frac{4}{10} = \frac{5}{5} \qquad P(F) = \frac{5}{10} = \frac{1}{2}$$

$$P(E \cap F) = P(\text{ever & eve}) = \frac{2}{10} = \frac{1}{5}$$

$$P(E) \cdot P(F) = \frac{2}{5} \cdot \frac{1}{2} = \frac{1}{5}$$

Conditional Probability:

Def: If E_1 and E_2 are events, the conditional probability of E_1 given E_2 is given by

$$\Pr(E_1 | E_2) = \frac{\Pr(E_1 \cap E_2)}{\Pr(E_2)}$$
, provided $\Pr(E_2) \neq 0$

ex:
$$P(E_1) = 0.2$$
, $P(E_2) = 0.5$, $P(E_1 \cap E_2) = 0.1$

$$P\left(E_1 \mid E_2\right) = \frac{P(E_1 \cap E_2)}{P(E_2)}$$

$$E_1 = \frac{P(E_2) = 0.5}{P(E_2)}$$

Ex: Twenty marbles, numbered 1-20, are placed in an urn. What is the probability that an 8 or 10 is drawn given that it is known that an even number is drawn?

$$P(8 \text{ or 10} \mid \text{even}) = \frac{2}{10}$$

What is the probability that a 3 or 5 is drawn given that a prime number is drawn?

$$P(3 \text{ or } 5) \text{ prime} = \frac{2}{8} = \frac{1}{4}$$
 $P(3 \text{ or } 4) \text{ prime} = \frac{1}{8}$

The Law of Total Probability

Law of Total Probability

Suppose that $F_1, F_2, F_3, ..., F_n$ are events such that

$$F_i \cap F_j = \emptyset$$
, whenever $i \neq j$ and $F_1 \cup F_2 \cup F_3 \cup ... \cup F_n = S$

Then for any event E,

$$Pr(E) = Pr(E \mid F_1) Pr(F_1) + Pr(E \mid F_2) Pr(F_2) + ... + Pr(E \mid F_n) Pr(F_n)$$

Ex:

An auto insurer classifies its policyholders as either average or substandard risks. Assume 70% of the policy holders are average risks. During the year, 1% of the average risks have an accident, and 5% of the substandard risks have an accident. What fraction of policyholders are involved in an accident during the year?

A binomial random variable, X, represents the number of successes in n independent trials, where the probability of success on an individual trial is p. (For example: The number of heads obtained during 10 coin flips.)

Conditions under which X is binomial:

- 1. There are n "trials," and n is fixed before the trials begin.
- 2. Each trial results in either a "success" (S) or a "failure" (F).
- 3. The trials are independent (the outcome of one trial does not influence the outcome of any other trial.
- 4. The probability of success, Pr(S) = p, is constant from trial to trial.

$$C(n, 1) \cdot p^{\epsilon} \cdot q^{n-r}$$
 $C(12,5) \cdot \left(\frac{1}{2}\right)^{5} \cdot \left(\frac{1}{2}\right)^{7}$

A random variable, X, is said to have a binomial distribution with parameters n and p if its probability mass function is given by

$$p_X(x) = \binom{n}{x} p^x (1-p)^{n-x}, \quad x = 0,1,2,...$$

where n is a positive integer, and p is a number in the interval [0,1].

For a binomial random variable,
$$X$$
, with parameters n and p

$$E[X] = np, \text{ and } Var(X) = np(1-p)$$

$$St. devictor: Variance The parameters n and $p$$$

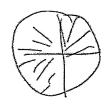
Example: A fair die is rolled 6 times. What is the probability of getting

b)No more than 2 fives?

$$P(2successes) \sim 6 \text{ trigls}) = C(6,2) \cdot p^2 \cdot q^4$$

$$= \frac{6!}{4!2!} \cdot \left(\frac{1}{6}\right)^2 \cdot \left(\frac{5}{6}\right)^4$$

$$= C(6,2) \cdot \left(\frac{1}{6}\right)^2 \cdot \left(\frac{5}{6}\right)^4 + C(6,1) \cdot \left(\frac{1}{6}\right) \cdot \left(\frac{5}{6}\right)^5 + C(6,0) \cdot \left(\frac{1}{6}\right) \cdot \left(\frac{5}{6}\right)^6$$



Example: For a biased coin, the odds of getting heads is 3 to 1. If the coin is flipped 10 times. What is the probability of getting at least one

head?
$$prob(heads) = \frac{3}{3+1} = \frac{3}{4} = 1 - \frac{3}{4} = 1$$

 $P(1H \text{ or } 2H \text{ or } 3H \text{ or } ... \text{ or } 1DH)$

$$= 1 - P(0H) = 1 - C(10,0) \cdot (\frac{3}{4})^{\circ} \cdot (\frac{1}{4})^{\circ}$$

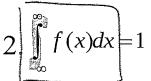
Continuous Variables and Probability density function:

Let X be a continuous random variable. Then, a probability density function of X is a function f(x) such that for any two number with a = b,

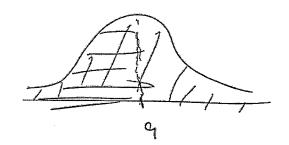
$$P(a \le X \le b) = \int_{a}^{b} f(\mathbf{t}) d\mathbf{t}$$

Properties:

 $1.f(x) \ge 0$ for all x.



Note: $P(X>a)=1-P(X\leq a)$



Definition: The cumulative distribution function F(x) for a continuous random variable X is defined by:

$$F(x) = P(X \le x) = \int_{-\infty}^{\infty} f(t)dt \qquad P(X \le 2) = \int_{-\infty}^{2} f(t)dt$$

Note: F'(x) = f(x)

Using F(x):

$$P(X > a) = 1 - F(a)$$

$$P(a \le X \le b) = F(b) - F(a)$$

Expected Value:

$$\mu = E(X) = \int_{-\infty}^{\infty} tf(t)dt$$

The variance:

$$\sigma^2 = Var(X) = \int_{\infty}^{\infty} (x - \mu)^2 f(x) dx$$

Standard deviation: square root of variance.

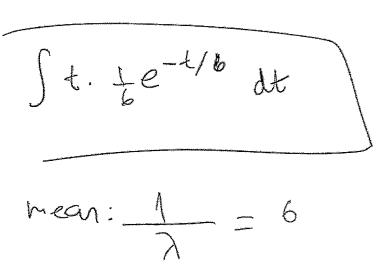
Example: A company hires a marketing consultant who determines that the length of time (in minutes) that a consumer spends on the company's website is a random variable, X, whose probability density function is:

$$f_{X}(t) = \begin{cases} \frac{1}{6}e^{-t/6}, & t \ge 0 \\ 0, & t < 0 \end{cases} \qquad P(X > 0) = 1 - P(X \le 10)$$

$$= 1 - \int_{-\infty}^{\infty} f(t) dt$$

What's the probability that a consumer will spend more than 10 minutes

on the company's website?



$$= 1 - \int_{0}^{10} \frac{e^{-t/6}}{e^{-t/6}} dt$$

$$= 1 - \left[\frac{1}{6} \cdot \frac{e^{-t/6}}{e^{-t/6}} \right]_{0}^{10}$$

$$= 1 - \left[-e^{-5/3} + e^{0} \right]$$

$$=1+e^{-5/3}-1=e^{-5/3}$$

Exercise: Let X be a random variable with probability density function given below. Find the mean of X.

$$f_{X}(t) = \begin{cases} \frac{1}{4}t^{3}, & 0 < t < 2 \\ 0, & \text{otherwise} \end{cases}$$

$$\mathcal{F}(X) = \begin{cases} \int t \cdot f(t) dt = \int t \cdot (\frac{1}{4}t^{3}) dt \\ -\infty \end{cases}$$

$$= \begin{cases} \int_{0}^{2} \frac{1}{4}t^{4} dt = \left[\frac{1}{4} \cdot \frac{t^{3}}{5}\right]^{2} = \frac{32}{20} - 0 \\ = \left[\frac{8}{5}\right]$$

The Exponential Distribution

A random variable X is said to have an *exponential distribution* with parameter λ if its probability density function is given by

$$f_X(x) = \begin{cases} 2e^{-\lambda x} & \text{if } x \ge 0 \\ 0 & \text{if } x < 0 \end{cases}$$

where λ is a positive real number.

If X is an exponential random variable with parameter λ , then

$$E[X] = \frac{1}{\lambda}, Var(X) = \frac{1}{\lambda^2}$$

Example: Let X be a random variable with probability density function given below.

$$f_X(t) = \begin{cases} \frac{1}{4}e^{-t/4}, & t \ge 0\\ 0, & \text{otherwise} \end{cases}$$

Then, the mean of X is 4 and variance is 16.