MATH 4389-THE BASIC DE FACTS/CHEATSHEET

1. First order ODEs

- If linear, $y^{\prime}+p(x) y=g(x)$, then the solution is

$$
y=\frac{1}{\mu(x)}\left[\int^{x} \mu(s) g(s) d s+C\right], \quad \text { where } \mu(x)=e^{\int^{x} p(t) d t}
$$

A linear equation is homogeneous if the right side $g(x)$ is 0 .

- If nonlinear, is it: Separable: $M(x) d x=N(y) d y$. Integrate.
- Exact: $M(x, y) d x+N(x, y) d y=0$ where $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$. Here solution is $g(x, y)=C$ where $\frac{\partial g}{\partial x}=M$ and $\frac{\partial g}{\partial y}=N$. Solve these by integrating.
- Integrating factor: if there exists $\mu(x, y)$ with $(\mu M) d x+(\mu N) d y=0$ exact. Two easy special cases: 1) If $\frac{\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}}{N}$ is a function of x. Solve for $\mu(x)$ in

$$
\frac{d \mu}{d x}=\left(\frac{\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}}{N}\right) \mu(x) .
$$

2) If $\frac{\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}}{M}$ is a function of y. Solve for $\mu(y)$ in

$$
\frac{d \mu}{d y}=\left(\frac{\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}}{M}\right) \mu(y) .
$$

In either case, $(\mu M) d x+(\mu N) d y=0$ is now exact.

- Homogeneous in the sense that $\frac{d y}{d x}=F\left(\frac{y}{x}\right)$ (call this 'homogeneous sense 2'). Let $v=\frac{y}{x}$ and solve $\frac{d x}{x}=\frac{d v}{F(v)-v}$.
- Bernoulli equation: $y^{\prime}+p(x) y=g(x) y^{n}$ with $n \neq 0,1$. Substitute $v=y^{1-n}$ to get a linear ODE.

2. Second order ODEs

2.1. Nonlinear second order ODEs.

- If of form $y^{\prime \prime}=f\left(x, y^{\prime}\right)$. Substitute $v=y^{\prime}, v^{\prime}=y^{\prime \prime}$, and get a first order ODE $v^{\prime}=f(x, v)$. Solve this for v, then integrate v to get y.
- If of form $y^{\prime \prime}=f\left(y, y^{\prime}\right)$. Substitute $v=y^{\prime}, v^{\prime}=y^{\prime \prime}$, and get a first order ODE $v \frac{d v}{d y}=f(y, v)$. Solve this for $v(y)$, then solve $\frac{d y}{d x}=v(y)$ to get y.

2.2. Linear second order ODEs.

- Linear second order: $a(x) y^{\prime \prime}+b(x) y^{\prime}+p(x) y=g(x)$.
- A linear equation is homogeneous if the right side $g(x)$ is 0 . Otherwise it is called nonhomogeneous.
- Linear homogeneous second order with two linearly independent solutions $y_{1}(x), y_{2}(x)$, then the general solution is $y=c_{1} y_{1}(x)+c_{2} y_{2}(x)$. You can test if solutions $y_{1}(x), y_{2}(x)$ are linearly independent by Wronskian $W\left(y_{1}(x), y_{2}(x)\right)=y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2} \neq 0$.
- Linear second order homogeneous constant coefficients: $a y^{\prime \prime}+b y^{\prime}+c y=$ 0 , with $a \neq 0$. Solve the characteristic equation $a r^{2}+b r+c=0$ to get solutions r_{1}, r_{2}.
- If r_{1}, r_{2} real and distinct, then $y=c_{1} e^{r_{1} x}+c_{2} e^{r_{2} x}$ is solution.
- If r_{1}, r_{2} real and equal, then $y=c_{1} e^{r_{1} x}+c_{2} x e^{r_{1} x}$ is solution.
- If $r_{1}, r_{2}=\alpha \pm i \beta$ then $y=c_{1} e^{\alpha x} \cos (\beta x)+c_{2} e^{\alpha x} \sin (\beta x)$ is solution.
- If linear homogeneous but not constant coefficients, and know one solution $y_{1}(x)$, can use reduction of order to find a second linearly independent solution $y_{2}(x)$:

$$
y_{2}(x)=y_{1}(x) \int^{x} \frac{e^{-\int^{s} p(t) d t}}{y_{1}(s)^{2}} d s
$$

2.3. Linear second order nonhomogeneous ODEs.

- Linear second order nonhomogeneous ODE $a(x) y^{\prime \prime}+b(x) y^{\prime}+p(x) y=$ $g(x)$: If you can find one particular solution $y_{p}(x)$, and if the associated homogeneous equation $a(x) y^{\prime \prime}+b(x) y^{\prime}+p(x) y=0$ has two linearly independent solutions $y_{1}(x), y_{2}(x)$, then the general solution is $y=$ $c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$.
- Linear second order nonhomogeneous constant coefficients: $a y^{\prime \prime}+b y^{\prime}+$ $c y=g(x)$: Finding a particular solution by undetermined coefficients table:
- If $g(x)$ is an nth degree polynomial: try $y_{p}(x)$ of form

$$
y_{p}(x)=x^{s}\left(A_{0}+A_{1} x+\cdots+A_{n} x^{n}\right) .
$$

- If $g(x)$ is an nth degree polynomial times $e^{\alpha x}$: try

$$
y_{p}(x)=x^{s}\left(A_{0}+A_{1} x+\cdots+A_{n} x^{n}\right) e^{\alpha x} .
$$

- If $g(x)$ is an nth degree polynomial times $e^{\alpha x}$ times $\cos (\beta x)$ or $\sin (\beta x)$: $\operatorname{try} y_{p}(x)$ of form
$x^{s} e^{\alpha x}\left[\left(A_{0}+A_{1} x+\cdots+A_{n} x^{n}\right) \cos (\beta x)+\left(B_{0}+B_{1} x+\cdots+B_{n} x^{n}\right) \sin (\beta x)\right]$.
Here $s=0,1,2, \cdots$ is the smallest whole number so that no 'term' of y_{p} above is a solution of the associated homogeneous equation. (By a 'term' we mean e.g. $x^{s} A_{n} x^{n}$ above.)
- Other undetermined coefficients method-method of annihilators.
- Linear second order nonhomogeneous ODE $y^{\prime \prime}+b(x) y^{\prime}+p(x) y=g(x)$ by variation of parameters: Find two linearly independent solutions $y_{1}(x), y_{2}(x)$ of the associated homogeneous equation. Then solve

$$
\left\{\begin{array}{l}
u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0 \\
u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}=g(x)
\end{array}\right.
$$

for u_{1}^{\prime} and u_{2}^{\prime}, then integrate to get u_{1}, u_{2}. Finally $y_{p}(x)=u_{1} y_{1}+u_{2} y_{2}$.

- Alternative way to get u_{1}, u_{2} in the previous item: $u_{1}=-\int \frac{y_{2} g}{W} d x, u_{2}=$ $\int \frac{y_{1} g}{W} d x$ where W is the Wronskian $W\left(y_{1}(x), y_{2}(x)\right)$.

