MATH 4389–THE BASIC DE FACTS/CHEATSHEET

1. First order ODEs

• If linear, y' + p(x)y = g(x), then the solution is

$$y = \frac{1}{\mu(x)} \left[\int^x \mu(s) g(s) \, ds + C \right], \quad \text{where } \mu(x) = e^{\int^x p(t) \, dt}.$$

A linear equation is homogeneous if the right side g(x) is 0.

- If nonlinear, is it: Separable: M(x) dx = N(y) dy. Integrate.
- Exact: M(x, y) dx + N(x, y) dy = 0 where $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$. Here solution is g(x, y) = C where $\frac{\partial g}{\partial x} = M$ and $\frac{\partial g}{\partial y} = N$. Solve these by integrating.
- Integrating factor: if there exists $\mu(x, y)$ with $(\mu M) dx + (\mu N) dy = 0$ exact. Two easy special cases: 1) If $\frac{\frac{\partial M}{\partial y} \frac{\partial N}{\partial x}}{N}$ is a function of x. Solve for $\mu(x)$ in

$$\frac{d\mu}{dx} = \left(\frac{\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x}}{N}\right) \mu(x).$$

2) If $\frac{\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x}}{M}$ is a function of y. Solve for $\mu(y)$ in

$$\frac{d\mu}{dy} = \left(\frac{\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y}}{M}\right) \mu(y).$$

In either case, $(\mu M) dx + (\mu N) dy = 0$ is now exact.

- Homogeneous in the sense that $\frac{dy}{dx} = F(\frac{y}{x})$ (call this 'homogeneous sense 2'). Let $v = \frac{y}{x}$ and solve $\frac{dx}{x} = \frac{dv}{F(v)-v}$.
- Bernoulli equation: $y' + p(x)y = g(x)y^n$ with $n \neq 0, 1$. Substitute $v = y^{1-n}$ to get a linear ODE.

2. Second order ODEs

2.1. Nonlinear second order ODEs.

- If of form y'' = f(x, y'). Substitute v = y', v' = y'', and get a first order ODE v' = f(x, v). Solve this for v, then integrate v to get y.
- If of form y'' = f(y, y'). Substitute v = y', v' = y'', and get a first order ODE $v \frac{dv}{dy} = f(y, v)$. Solve this for v(y), then solve $\frac{dy}{dx} = v(y)$ to get y.

2.2. Linear second order ODEs.

- Linear second order: a(x) y'' + b(x) y' + p(x)y = g(x).
- A linear equation is homogeneous if the right side g(x) is 0. Otherwise it is called nonhomogeneous.
- Linear homogeneous second order with two linearly independent solutions $y_1(x), y_2(x)$, then the general solution is $y = c_1 y_1(x) + c_2 y_2(x)$. You can test if solutions $y_1(x), y_2(x)$ are linearly independent by Wronskian $W(y_1(x), y_2(x)) = y_1y'_2 - y'_1y_2 \neq 0$.
- Linear second order homogeneous constant coefficients: ay''+by'+cy = 0, with $a \neq 0$. Solve the *characteristic equation* $ar^2 + br + c = 0$ to get solutions r_1, r_2 .
- If r_1, r_2 real and distinct, then $y = c_1 e^{r_1 x} + c_2 e^{r_2 x}$ is solution.
- If r_1, r_2 real and equal, then $y = c_1 e^{r_1 x} + c_2 x e^{r_1 x}$ is solution.
- If $r_1, r_2 = \alpha \pm i\beta$ then $y = c_1 e^{\alpha x} \cos(\beta x) + c_2 e^{\alpha x} \sin(\beta x)$ is solution.
- If linear homogeneous but not constant coefficients, and know one solution $y_1(x)$, can use *reduction of order* to find a second linearly independent solution $y_2(x)$:

$$y_2(x) = y_1(x) \int^x \frac{e^{-\int^s p(t) dt}}{y_1(s)^2} ds.$$

2.3. Linear second order nonhomogeneous ODEs.

- Linear second order nonhomogeneous ODE a(x) y'' + b(x) y' + p(x)y = g(x): If you can find one *particular solution* $y_p(x)$, and if the *associated homogeneous equation* a(x) y'' + b(x) y' + p(x)y = 0 has two linearly independent solutions $y_1(x), y_2(x)$, then the general solution is $y = c_1 y_1(x) + c_2 y_2(x) + y_p(x)$.
- Linear second order nonhomogeneous constant coefficients: ay'' + by' + cy = g(x): Finding a particular solution by undetermined coefficients table:

- If
$$g(x)$$
 is an *n*th degree polynomial: try $y_p(x)$ of form
 $y_p(x) = x^s (A_0 + A_1 x + \dots + A_n x^n).$

- If
$$g(x)$$
 is an *n*th degree polynomial times $e^{\alpha x}$: try

 $y_p(x) = x^s (A_0 + A_1 x + \dots + A_n x^n) e^{\alpha x}.$

- If g(x) is an *n*th degree polynomial times $e^{\alpha x}$ times $\cos(\beta x)$ or $\sin(\beta x)$: try $y_p(x)$ of form

 $x^{s}e^{\alpha x}[(A_{0} + A_{1}x + \dots + A_{n}x^{n})\cos(\beta x) + (B_{0} + B_{1}x + \dots + B_{n}x^{n})\sin(\beta x)].$

Here $s = 0, 1, 2, \cdots$ is the smallest whole number so that no 'term' of y_p above is a solution of the associated homogeneous equation. (By a 'term' we mean e.g. $x^s A_n x^n$ above.)

- Other undetermined coefficients method-method of annihilators.
- Linear second order nonhomogeneous ODE y'' + b(x) y' + p(x)y = g(x)by variation of parameters: Find two linearly independent solutions $y_1(x), y_2(x)$ of the associated homogeneous equation. Then solve

$$\begin{cases} u_1'y_1 + u_2'y_2 = 0\\ u_1'y_1' + u_2'y_2' = g(x) \end{cases}$$

for u'_1 and u'_2 , then integrate to get u_1, u_2 . Finally $y_p(x) = u_1y_1 + u_2y_2$.

• Alternative way to get u_1, u_2 in the previous item: $u_1 = -\int \frac{y_2 g}{W} dx, u_2 = \int \frac{y_1 g}{W} dx$ where W is the Wronskian $W(y_1(x), y_2(x))$.