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It is important first to establish the purpose of this document. It can be used as a review of
some of the things you may not remember from linear algebra (although it does not include
some early things that it is assumed that you know, like the meaning of the words in the first
few bullets below). So drink it in, letting it settle and remind you (or inform you). Parts
of it can be used as a ‘formula sheet’. There is some repetition in parts of this document,
usually there to help view some things from different angles. There are almost no examples
(you do not find examples on a formula sheet), you will have to supply those from the usual
sources when you need them. There may be some more simple things that are not said,
since we are often focussing here on things that are harder to remember. In places there is
a lot more than you need. However towards the end of this document the detail will tail
off, because I ran out of energy and time, and be replaced by lists of topics a linear algebra
student needs to know (fortunately most of these are just ‘recipes’). I will probably add and
change some things in this document later.

A nice thing about linear algebra is that from a higher math/proofs point of view it is
a relatively easy subject–that is an able graduating math major at a good school should,
theoretically, be able to do almost any of the proofs as exercises. Try that! (Not meant as an
insult, but as a challenge, and to reassure you that the proofs are uasually easy. Of course
its easier if you’ve taken Advanced Linear Algebra.)

• It is assumed you know your vectors in Rn, dot product, their length (Euclidean

norm ‖~v‖2 =
√
→
v · →v ), angle between them, etc. Cauchy-Schwarz inequality: |~a ·~b| ≤

‖~a‖2 ‖~b‖2.
• You are expected to know the meaning of ‘size of a matrix’ (i.e. m × n) and when

two matrices have the same size, or when they are equal, or square (m = n).
• It is assumed you know your matrix algebra.
• A~x =

∑
k xk ~ak, where ~ak is the kth column of A, and xk is the kth entry of ~x. The

matrix product

AB = [A~b1 : A~b2 : · · · : A~br]
if ~bk is the kth column of the n × r matrix B. Note the i-j entry of AB is the dot
product of the ith row of A and the jth column of B.
• You are expected to know the rules for the transpose AT , like (AB)T = BTAT . We

call A symmetric if A = AT .
• You are expected to know a few basic things about permutation matrices (wiki).

These are matrices of 0’s and 1’s, with exactly one 1 in every column and row.
• You are expected to know what is an upper or lower triangular or diagonal matrix

(symbols U,L,D), and what the ‘main diagonal’ of a matrix is. You may be asked
for the LU and maybe the LDU decomposition (wiki), although this is not likely.
• We write I or In for the n× n identity matrix. This is both a diagonal matrix and a

permutation matrix.
• We will discuss the inverse A−1 of a square matrix A in more detail later, but for now:

a matrix is nonsingular iff it is invertible (has an inverse, that is, a matrix B with
1



AB = BA = I. We write such B, if it exists, as A−1). Otherwise it is singular. The
inverse of a diagonal matrix diag(d1, d2, · · · , dn) is diag(d−11 , d−12 , · · · , d−1n ), assuming
the dk are all nonzero. The inverse of a 2× 2 matrix:

[
a b
c d

]−1
=

1

ad− bc

[
d −b
−c a

]
,

assuming ad− bc 6= 0. (If ad− bc = 0 the matrix is not invertible. For a general 3×3
or larger square matrix A you can find the inverse A−1 if it is invertible either by (1)
the cofactor method using the determinant (wiki), or (2): Try to use Gauss-Jordan
elimination (below) on the matrix [A : I] to achieve reduced row echelon form [I : C].
If you can do this then C = A−1, otherwise A is not invertible.
• If A is an m × n matrix, we can use Gauss elimination to row reduce A to row

echelon form (REF). We sometimes say ‘staircase’ to refer to the final echelon form.
We can also use Gauss-Jordan elimination to row reduce A to reduced row echelon
form (RREF). By an echelon form of A we mean either of the above. We will write
RREF(A) for the reduced row echelon form. Convention: we will make RREF(A)
have 1’s in all the pivots (so that each pivot column has one 1 and the rest zeros).
• One may view the row echelon form or the RREF as the product EA of a matrix
E and A. Indeed E is the product of ‘elementary matrices’ each representing and
performing (by left multiplying by it, in the right order) one of the elementary row
operations needed in the row reduction. There are three elementary row operations,
namely switching two rows, multiplying a row by a nonzero scalar k, or adding to one
row a nonzero multiple of another row. Hence there are three kinds of elementary
matrices, all invertible. The first is a simple permutation matrix (which is its own
inverse), the second is a simple diagonal matrix which looks like the identity matrix
except for a k in one of the diagonal entries (and its inverse is the same except except
for a 1/k in that entry). The third kind, adding to one row a nonzero multiple k of
another row is a lower triangular matrix which looks like the identity matrix except
for a k in one of the spots below the main diagonal (and its inverse is the same except
except for a −k in that spot).
• You are expected to know the meaning of ‘pivot positions’, ‘pivot columns’ and ‘free

variables’ (the variables corresponding to the non-pivot columns). Non-pivot columns
are sometimes called ‘free columns’.
• The augmented matrix of a linear system A~x = ~b is the matrix [A : ~b].
• We usually view vectors in Rn as columns (as in the last line). Sometimes to stress

this point we call them column vectors.

• We will not define a vector space here. If you have not looked at that for a while do
so now, eg. on wikipedia, and be sure that you have a feeling for which examples are
vector spaces and which are not. The main vector spaces we look at in this course are
Rn. and its subspaces (particularly the ones met with below). By a scalar we mean a
real number (although nearly everything here applies to complex vector spaces too).



• Recall that a subspace of a vector space V is a subset W of V containing the 0 vector
of V , such that (a) v + w ∈ W, and (b) cv ∈ V , for all v, w ∈ W and for all scalars
c. FACT: Any subspace is a vector space.
• A linear combination of vectors v1, v2, · · · , vm is a vector of form c1v1+c2v2+· · ·+cmvm

for scalars c1, · · · , cm. Here m ∈ N.

• Writing one vector ~b in Rn as a linear combination of several other vectors: Number
these other vectors, and let A be the matrix having these vectors as columns in this

order. Solve A~x = ~b. The coefficients in the desired linear combination are the entries
in any particular solution of this equation.

• Recall that the solution of A~x = ~b is ~x = A−1~b if A is square and invertible.

• The span of a set B of vectors is the set of all linear combinations of vectors in B; it
is written Span(B). FACT: Span(B) is a subspace. We say a set B of vectors in a
vector space V spans V , or is a spanning set for V , if Span(B) = V .

• A set of vectors B = {v1, v2, · · · , vm} in a vector space V is said to be linearly depen-
dent if one of them can be written as a linear combination of the others. Otherwise,
B is said to be linearly independent or l.i. for short.

A set of one vector {v} is always linearly independent. Two vectors are linearly
dependent if and only if one is a scalar multiple of the other. Two vectors in Rn

are linearly independent if and only if they are not parallel. Three vectors in R3 are
linearly independent if and only if they do not lie in the same plane.
• FACT: B = {v1, v2, · · · , vm} is linearly independent if and only if the only scalars
c1, c2, · · · , cm such that c1v1 + c2v2 + · · ·+ cmvm = 0 are c1 = c2 = · · · = cm = 0.
• Test if a collection of several vectors in Rn is linearly independent: Let A be the

matrix having these vectors as columns. If this (or its RREF) has free variables they
are linearly dependent. Saying these vectors are linearly independent is the same as
saying that A~x = ~0 has only the trivial solution ~0.

• A basis for a vector space V is a finite set in V which is both linearly independent
and spans V .

• A finite set B = {v1, v2, · · · , vm} in V is a basis for V iff every vectorv in V can be
written as a linear combination v = c1v1 + c2v2 + · · ·+ cmvm in one and only one way.
We call this one way writing (or expressing) v in terms of the basis.
• A vector space V is finite dimensional if it has a (finite) basis. In this case one can

show that all bases of V are the same size. This size is called the dimension of V ,
and is written as dim(V ). If a vector space V is not finite dimensional it is called
infinite dimensional (and then we will not talk about bases for V ).
• FACT: The dimension of the span of a set S of several vectors in Rn is the maximum

number of linearly independent members of S.
• FACT: A strictly smaller subspace (that is W ⊂ V but W 6= V ) will have strictly

smaller dimension.
• Suppose that dim(V ) = n. Any set of strictly more than (resp. less than) n vectors

in V is linearly dependent (resp. cannot span V ). Any linearly independent (resp.



spanning) set in V has ≤ n (resp. ≥ n) elements. So any set of linearly independent
vectors in Rn has ≤ n members, any spanning set for Rn has ≥ n members.
• FACT: A set of n vectors in Rn is linearly independent if and only if it spans Rn.

That is, if and only if it is a basis for Rn. This is also equivalent to saying that the
matrix with these vectors as columns is invertible (or that this matrix has nonzero
determinant).

• The standard basis or canonical basis for R3 from Calculus III is often written as~i,~j,~k.
The standard basis or canonical basis for Rn is often written as {~e1, ~e2, · · · , ~en}.

• Column space C(A) of a matrix A:
• If A is an m × n matrix, we can write A = [~a1 : ~a2 : · · · : ~an]; here ~ak is the kth

column of A. Then C(A) is the set of all the linear combinations of ~a1,~a2, · · · ,~an.
So we really have C(A) = Span(~a1,~a2, · · · ,~an). This is a vector space, is a subspace
of Rm as we said above.
• Also, C(A) = {~b ∈ Rm : A~x = ~b has a solution }. That is, asking if ~b ∈ C(A) is the

same as asking: does A~x = ~b have a solution?
(To prove this, recall that for any ~x ∈ Rn, we can write A~x = x1~a1 + x2~a2 + · · ·+

xn~an (here xk is the kth entry of ~x). Thus saying that A~x = ~b has a solution, is the

same as saying that ~b is a linear combination of the columns of A, or equivalently, as

saying that ~b ∈ Span(~a1,~a2, · · · ,~an).)

• So one way to find C(A) is to use Gauss elimination to find the ~b such that A~x = ~b
has a solution.
• Finding a ‘nice’ basis for C(A): Do Gauss-Jordan to AT to obtain RREF(AT ). Take

the transpose of RREF(AT ). The nonzero columns of this, that is the nonzero
columns of (RREF(AT ))T , form a basis for C(A).
• Finding a basis for C(A) consisting of columns of A: Do Gauss-Jordan to A. The

original columns of A standing in the pivot columns, are the desired basis. (Here is
the idea for why this works, not that you care probably. If E is the matrix from page
2 that one must multiply A on the left by to get the echelon form, then because E
is invertible, it follows that ‘the columns that count’ in A, are exactly ‘the columns
that count’ in its echelon form. But ‘the columns that count’ for the column space
of the echelon form matrix, are exactly the ‘pivot columns’.)
• Finding a basis for the span of several vectors in Rn: Number them. Let A be the

matrix having these vectors as columns in this order, and apply one of the last two
items to find a basis for C(A).
• Given a finite set of vectors S find a subset which is a basis for Span(S): this is the

same recipe as for the last item, but using the item before it to find a basis for C(A).

• Row space R(A) of a matrix A is the span of the rows of A. Note that R(A) = C(AT )
and C(A) = R(AT ).
• Finding a basis for R(A): Do Gauss-Jordan to A. The nonzero rows in RREF(A) are

a basis for R(A). Or you could find a basis for C(AT ) by one of the methods above.

• rank(A) = number of nonzero rows in RREF(A) = number of pivot columns/free
variables = dim(C(A)) = dim(R(A)).



• FACT: rank(A) = rank(AT ).
• A rank 1 matrix may also be described as a matrix of the form A = ~v ~wT , for vectors
~v, ~w.

• The nullspace N(A) for matrix A is the set of solutions to the homogeneous equation

A~x = ~0. It is a subspace, and always contains the zero vector ~0, the trivial solution
to A~x = ~0. The nullspace is also the kernel Ker (LA) of the operator LA : Rn → Rm

of left multiplication by A on (column) vectors in Rn. Then nullity(A) = dimN(A).

• If A has more columns than rows then A~x = ~0 has infinitely many solutions, and
nullity(A) ≥ 1.
• Finding a basis for N(A): The fundamental solutions or special solutions are a ‘nice’

basis for N(A). Here is the recipe for finding the fundamental solutions. First com-

pute RREF(A). Then each fundamental solution is found by solving RREF(A) ~x = ~0,
putting all the free variables equal to zero except one, which we set equal to 1. (It is
‘nice’ because of all the ‘1’s in positions where all other vectors have 0’s.)

Thus the number of fundamental solutions is the number of free variables in an
echelon form of A. This number is the dimension of N(A). If ~x1, ~x2, · · · , ~xm are the
fundamental solutions (or indeed are any basis for N(A)) then the general solution

to A~x = ~0 is c1~x1 + c2~x2 + · · ·+ cm~xm for scalars c1, c2, · · · , cm.
• Rank-nullity theorem: rank(A) + nullity(A) = n for an m× n matrix A.

(Sketch proof: this is almost obvious for RREF(A), and none of the operations for
RREF change rank, nullity, n.)

• Adding to a linearly independent set B in Rn to get a basis for Rn: Let A be the
matrix having these vectors as columns. Then add to B a basis for N(AT ). (Hint at
a proof: (Span(B))⊥ = C(A)⊥ = N(AT ) (see later section on orthocomplements)).

• The general solution to A~x = ~b is

~x = ~xh + ~xp = ~xp + c1~x1 + c2~x2 + · · ·+ cm~xm.

Here ~xh is the general solution to the associated homogeneous equation A~x = ~0, and

~xp is a particular solution to A~x = ~b, and ~x1, ~x2, · · · , ~xm are the fundamental solutions

to the associated homogeneous equation A~x = ~0. One way to find a particular

solution to A~x = ~b is to do Gauss-Jordan elimination to the augmented matrix, then
set the free variables equal to 0.
• Similar fact in differential equations, which has the ‘same’ proof: Suppose that L

is a linear differential operator, that xh is the general solution to the associated
homogeneous equation Lx = 0, and that xp is a particular solution to Lx = E. Show
that the general solution to Lx = E is x = xp+xh. And xh = c1x1+c2x2+ · · ·+cmxm
for scalars c1, c2, · · · , cm, where x1, x2, · · · , xm are the fundamental solutions, i.e. a
basis for the solution space of the associated homogeneous equation.

• Table of the number of solutions to A~x = ~b for an m × n matrix A: If m = n there
is 1 solution if A is invertible; if A is not invertible then there are zero or infinitely
many solutions. If m > n = rank(A) there are 1 or no solutions. If m < n there
are none or infinitely many solutions (there are infinitely many if rank(A) = m). If



rank(A) < min{n,m} there are none or infinitely many solutions. (All of these can
be seen/proved by thinking about RREF of the augmented matrix, and/or using the
second last bullet).

• On inverses: If AB = I or BA = I and A and B have the same size then A = B−1

(and B = A−1).
• If A and B are invertible matrices of the same size then the inverse of AB is B−1A−1.

If A is an invertible matrix with inverse B then the transpose AT has inverse BT .
(To prove this you may use the fact that (AC)T = CTAT for matrices A,C.)
• Determinants: only make sense for square matrices.
• if A is a square matrix then A is invertible iff det(A) 6= 0.

• You should know the Cramer’s rule method for solving the system A~x = ~b if A is a
square matrix.
• You are expected to know the main properties of determinants: like det(A) =

det(AT ), det(A−1) = 1/det(A), det(AB) = det(A) det(B), etc.
• Or, that the determinant changes sign if you switch two rows or columns, is multiplied

by k if you multiply a row (or column) through by k, and is unchanged if you add to
one row a nonzero multiple of another row . If one row (resp. column) of a matrix
equals or is a multiple of another row (resp. column) its determinant is zero. Etc.
• You are expected to know the formula for the determinant of a 2×2, or of an upper or

lower triangular matrix. You are expected to know the 4 methods for the determinant
of a 3×3 matrix, three of which work for bigger square matrices too (cofactors, Gauss
elimination to lower triangular, the permutation definition).
• You should know the connections between determinants and the cross product of

vectors, or the volume of a parallelopiped.

Theorem If A is an n× n matrix the following are equivalent:

(1) A is invertible.
(2) det(A) 6= 0.
(3) rank(A) = n.

(4) For every vector ~b the system A~x = ~b has a solution.

(5) For every vector ~b the system A~x = ~b has a unique solution.

(6) For some vector ~b the system A~x = ~b has a unique solution.

(7) The system A~x = ~0 has only the trivial solution ~x = ~0.
(8) The columns of A are linearly independent.
(9) The columns of A span n-space.

(10) The rows of A are linearly independent.
(11) The rows of A span n-space.
(12) The reduced row echelon form of A is In.
(13) The (echelon forms) of A have n pivot positions/columns.
(14) There is a matrix B with AB = I.
(15) There is a matrix B with BA = I.

There is a similar list of equivalent conditions for an m×n matrix, for when rank (A) = m

etc (and another such list when rank (A) = n). If interested ask me for these.



At this point I ran out of energy, and so end with mostly a (partial) list of linear algebra
topics the linear algebra student should know:

• Orthogonal vectors, Orthogonal subspaces, Orthogonal complements S⊥ of a set S
in Rn, orthonormal basis, Projection P of a vector onto a line or subspace, Construct
projection P =

∑
k ~vk (~vk)T using an orthonormal basis (~vk) for the subspace, rotation

matrix.
• N(A)⊥ = C(AT ) = R(A), so N(A) = C(AT )⊥ = R(A)⊥. And C(A)⊥ = N(AT ) and
C(A) = N(AT )⊥.
• Finding the orthogonal complement of a set S of several vectors in Rn: Let A be the

matrix having these vectors as columns. S⊥ = N(AT ), since (Span(S))⊥ = C(A)⊥ =
N(AT ).
• Application: Supplementing a linearly independent set B in Rn to a basis in Rn: Let
A be the matrix having these vectors as columns. Then add to B a basis for N(AT ).
Hint at a proof: (Span(B))⊥ = C(A)⊥ = N(AT ).
• Definitions of: Eigenvalue, Eigenvector, Characteristic Polynomial. The eigenspace

corresponding to an eigenvalue c is the set of all vectors v with Tv = cv; that is,
the nullspace of A − cI. Thee dimension of the eigenspace for an eigenvalue c is
called the geometric multiplicity of that eigenvalue. The algebraic multiplicity of c
is its order as a root of the characteristic polynomial (that is, the number of times
that root is repeated in the polynomial). Trace of a Matrix. A symmetric real
matrix A is positive definite if (A~x) · ~x > 0 for all nonzero vectors ~x. It is positive
semidefinite if (A~x) · ~x ≥ 0 for all nonzero vectors ~x. A symmetric real matrix is
positive definite (resp. positive semidefinite) if all its leading principal minors (i.e.
minor leading determinants) are > 0 (resp. ≥ 0). It is also the same as saying that all
of its eigenvalues are > 0 (resp. ≥ 0). Relation of positive definite matrices to ellipses
and hyperbolae and their major axes. Two square matrices A and B are similar if
A = S−1BS for some invertible matrix S.

Definitions of: Linear transformation, Kernel, Range, Matrix of a linear transfor-
mation, Composition of linear transformations, Inverse of a linear transformation,
Identity transformation, Change of basis matrix.
• Let A be a matrix with real entries. If

→
v is an eigenvector corresponding to a complex

eigenvalue λ of A, let
→
v
∗

be the vector obtained from
→
v by taking the complex

conjugate of each entry. Then
→
v
∗

is an eigenvector corresponding to the eigenvalue
λ̄.
• Tasks/Exercises you must be able to do, related to the last definitions: Find the

characteristic polynomial of a matrix, Find eigenvalues of a matrix, and associated
eigenvectors, eigenspace, Eigenvalues of the inverse, or of powers, of a matrix, Cayley-
Hamilton theorem, Checking if a matrix is positive definite, Least squares method,
Using facts about similar matrices. Check if a function T is linear, Find kernel and
range, Finding the matrix of a linear transformation. If T : Rn → Rm is linear then
T = LA, left multiplication by A, where A is the m× n matrix whose jth column is
T (~ej). Indeed this matrix A is MB(T ) where B is the canonical basis (~ej). Computing



compositions and inverses of linear transformations, and their matrices, Computing
a change of basis matrix.
• Some random remarks on diagonalization: We say that a square matrix A is di-

agonalizable (or can be diagonalized) if there is a matrix K of the same size such
that K−1AK is diagonal. An n × n matrix can be diagonalized iff it has n linearly
independent eigenvectors. Suppose that A is an n × n matrix, with n linearly inde-
pendent eigenvectors

→
v 1,

→
v 2, · · · ,

→
v n, and that λk is the eigenvalue associated with

the eigenvector
→
v k. Let K be the matrix [

→
v 1 :

→
v 2 : · · · :

→
v n]. Then

K−1AK =


λ1 0 0 · · · 0
0 λ2 0 · · · 0
0 0 λ3 · · · 0
...

...
... · · · 0

0 0 0 · · · λn

 .

The last matrix is called a diagonal matrix.
• Suppose that λ1, λ2, · · · , λn are all the eigenvalues of an n×n matrix A, and suppose

that they are all distinct (that is, there are no repeated eigenvalues). If
→
v k is any

eigenvector corresponding to λk, for k = 1, 2, · · · , n, then the set {→v 1,
→
v 2, · · · ,

→
v n} is

linearly independent.
• For any nonzero vector

→
v we can obtain a vector of length 1, namely 1

‖→v ‖
→
v . This is

called normalizing the vector.
• An orthonormal set of vectors is a set of vectors {→v 1,

→
v 2, · · · ,

→
v n} such that each of

these vectors has length 1, and
→
v i ·

→
v j = 0 for all i, j with i 6= j.

• An orthonormal set of vectors is linearly independent. An orthonormal set which is
also spanning is an orthonormal basis.
• Recall that a matrix A is called symmetric if A = AT . It is called orthogonal if
A−1 = AT .
• In Rn, a set of vectors {→v 1,

→
v 2, · · · ,

→
v n} is orthonormal if and only of the matrix

K = [
→
v 1 :

→
v 2 : · · · :

→
v n] is orthogonal.

• IfA is a symmetric n×nmatrix, then you can find an orthonormal basis {→v 1,
→
v 2, · · · ,

→
v n}

consisting of eigenvectors of A. Thus, by the facts above, if A is a symmetric n× n
matrix, then there is an orthogonal matrix U such that UTAU = U−1AU is diagonal.
This is called orthogonal diagonalization. Indeed the columns of U are the members
of the orthonormal set of eigenvectors of A above, and the diagonal matrix obtained
has the corresponding eigenvalues on the diagonal.
• In some cases to find an orthonormal set of eigenvectors of A, one might need to use

the Gram-Schmidt process. The Gram-Schmidt process constructs an orthonormal
set from a set S of vectors (and it will be an orthonormal basis) if S is spanning.
• Another way to view diagonalization: picking a new basis of n-space such that (the

matrix of) A with respect to this basis, becomes a diagonal matrix.


