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Abstract

This document can be used as a review of some of the things you may
not remember from linear algebra (although it does not include some early
things that it is assumed that you know, like the meaning of the words in the
first few bullets below). Parts of it can be used as a ‘formula sheet’. There
is some repetition in parts of this document, usually there to help view some
things from different angles. There are almost no examples (you do not find
examples on a formula sheet), you will have to supply those from the usual
sources when you need them. There may be some more simple things that
are not said, since we are often focussing here on things that are harder to
remember. In places there is a bit more information than you need.



Basics

It is assumed you know your vectors in Rn, dot product, their length

(Euclidean norm ∥v⃗∥2 =
√→

v ·→v ), angle between them, etc. Cauchy-

Schwarz inequality: |⃗a · b⃗| ≤ ∥a⃗∥2 ∥⃗b∥2.
You are expected to know the meaning of size of a matrix (i.e. m × n)
and when two matrices have the same size, or when they are equal, or
square (m = n).

It is assumed you know your matrix algebra.

Ax⃗ =
∑

k xk a⃗k, where a⃗k is the kth column of A, and xk is the kth
entry of x⃗. The matrix product

AB = [A⃗b1 : A⃗b2 : · · · : A⃗br]

if b⃗k is the kth column of the n× r matrix B. Note the i-j entry of AB
is the dot product of the ith row of A and the jth column of B.



You are expected to know the rules for the transpose AT , like (AB)T =
BTAT . We call A symmetric if A = AT .

You are expected to know a few basic things about permutation matrices
(wiki). These are matrices of 0’s and 1’s, with exactly one 1 in every
column and row.

You are expected to know what is an upper or lower triangular or diagonal
matrix (symbols U,L,D), and what the ‘main diagonal’ of a matrix is.
You may be asked for the LU and maybe the LDU decomposition (wiki),
although this is not likely.

We write I or In for the n× n identity matrix. This is both a diagonal
matrix and a permutation matrix. Note A = AI = IA.

E.g. I3 =

 1 0 0
0 1 0
0 0 1

.



We will discuss the inverse A−1 of a square matrix A in more detail later,
but for now: a matrix is nonsingular iff it is invertible (has an inverse,
that is, a matrix B with AB = BA = I . We write such B, if it exists, as
A−1). Otherwise, A is called singular. The inverse of a diagonal matrix
diag(d1, d2, · · · , dn) is diag(d−1

1 , d−1
2 , · · · , d−1

n ), assuming the dk are all
nonzero.



The inverse of a 2× 2 matrix:[
a b
c d

]−1

=
1

ad− bc

[
d −b
−c a

]
,

assuming that the determinant ad− bc ̸= 0. (If ad− bc = 0 the matrix
is not invertible.)

For a general 3×3 or larger square matrix A you can find the inverse A−1

if it is invertible either by (1) the cofactor method using the determinant
(wiki), or (2): Try to use Gauss-Jordan elimination (below) on the matrix
[A : I ] to achieve reduced row echelon form [I : C]. If you can do this
then C = A−1, otherwise A is not invertible.



If A is an m× n matrix, we can use Gauss elimination to row reduce A
to row echelon form (REF) (or ‘staircase form’ see pic). We can also use
Gauss-Jordan elimination to row reduce A to reduced row echelon form
(RREF). By an echelon form of A we mean either of the above.

We will write RREF(A) for the reduced row echelon form. Convention:
we will make RREF(A) have 1’s in all the pivots (so that each pivot
column has one 1 and the rest zeros).

One may view the row echelon form or the RREF of A as the product EA
of a matrix E and A. Indeed E is the product of ‘elementary matrices’
each representing and performing (by left multiplying by it, in the right
order) one of the elementary row operations needed in the row reduction.

[Picture drawn of matrix in (‘staircase’) form REF or RREF



There are three elementary row operations, namely switching two rows,
multiplying one row by a nonzero scalar k, or adding to one row a nonzero
multiple of another row.

Hence there are three kinds of elementary matrices (you will have seen
them, write them down), all invertible. The first is a simple permutation
matrix (which is its own inverse). Indeed the elementary matrix that
corresponds to switching rows i and j is the identity matrix with rows i
and j switched. The second is a simple diagonal matrix which looks like
the identity matrix except for a k in one of the diagonal entries (and
its inverse is the same except except for a 1/k in that entry). The third
kind, adding to row j a nonzero multiple k of row i is a lower triangular
matrix which looks like the identity matrix except for a k in the j-i entry
(and its inverse is the same except except for a −k in that spot).



You are expected to know the meaning of ‘pivot positions’, ‘pivot co-
lumns’ and ‘free variables’ (the variables corresponding to the non-pivot
columns). Non-pivot columns are sometimes called free columns. Pictures
shown in class.

The augmented matrix of a linear system Ax⃗ = b⃗ is the matrix [A : b⃗].

We usually view vectors in Rn as columns (as in the last line). Sometimes
to stress this point we call them column vectors.



We will not define a vector space here. If you have not looked at that for
a while do so now, eg. on wikipedia, and be sure that you have a feeling
for which examples are vector spaces and which are not.

The main vector spaces we look at in this course are Rn, and its subspaces
(particularly the ones met with below). By a scalar we mean a real number
(although nearly everything here applies to complex vector spaces too).

Recall that a subspace of a vector space V is a subsetW of V containing
the 0 vector of V , such that (a) v + w ∈ W, and (b) cv ∈ W , for all
v, w ∈ W and for all scalars c.

FACT: Any subspace of a vector space is a vector space.

A linear combination of vectors v1, v2, · · · , vm is a vector of form

c1v1 + c2v2 + · · · + cmvm

for scalars c1, · · · , cm. Here m ∈ N.



Writing one vector b⃗ in Rn as a linear combination of several other
vectors: Number these other vectors, and let A be the matrix having
these vectors as columns in this order. Solve Ax⃗ = b⃗. The coefficients in
the desired linear combination are the entries in any particular solution
of this equation.

Recall that the solution of Ax⃗ = b⃗ is x⃗ = A−1⃗b if A is square and
invertible.

The span of a set B of vectors is the set of all linear combinations of
vectors in B; it is written Span(B). FACT: Span(B) is a subspace.

We say a set B of vectors in a vector space V spans V , or is a spanning
set for V , if Span(B) = V .



A set B = {v1, v2, · · · , vm} in a vector space V is said to be linearly
dependent if one of them can be written as a linear combination of the
others. Otherwise, B is said to be linearly independent or l.i. for short.

A set of one nonzero vector {v} is always linearly independent. Two
vectors are linearly dependent if and only if one is a scalar multiple of
the other. Two vectors in Rn are linearly independent if and only if
they are not parallel (and neither is 0⃗). Three vectors in R3 are linearly
independent if and only if they do not lie in the same plane.

FACT: B = {v1, v2, · · · , vm} is linearly independent if and only if the
only scalars c1, c2, · · · , cm such that c1v1 + c2v2 + · · ·+ cmvm = 0 are
c1 = c2 = · · · = cm = 0.

Test if a collection of several vectors in Rn is linearly independent: Let
A be the matrix having these vectors as columns. If this (or its RREF)
has free variables then the vectors are linearly dependent.

Saying these vectors are linearly independent is the same as saying that
Ax⃗ = 0⃗ has only the trivial solution 0⃗.



A basis for a vector space V is a finite set in V which is both linearly
independent and spans V .

A finite set B = {v1, v2, · · · , vm} in V is a basis for V iff every vectorv
in V can be written as a linear combination v = c1v1+c2v2+· · ·+cmvm
in one and only one way (that is, c1, · · · , cm are unique). We call this
‘one way’ writing (or expressing) v in terms of the basis.

A vector space V is finite dimensional if it has a (finite) basis. In this
case one can show that all bases of V are the same size. This size is
called the dimension of V , and is written as dim(V ). If a vector space
V is not finite dimensional it is called infinite dimensional (and then we
will not talk about bases for V ).

FACT: The dimension of the span of a set S of several vectors in Rn

is the maximum number of linearly independent members of S. We will
give a recipe later.

FACT: A strictly smaller subspace (that is W ⊂ V but W ̸= V ) will
have strictly smaller dimension. (Assuming finite dimensions.)



Suppose that dim(V ) = n. Any set of strictly more than (resp. less than)
n vectors in V is linearly dependent (resp. cannot span V ). Any linearly
independent (resp. spanning) set in V has ≤ n (resp. ≥ n) elements.

So any set of linearly independent vectors in Rn has ≤ n members, any
spanning set for Rn has ≥ n members.

FACT: A set of n vectors in Rn is linearly independent if and only if it
spans Rn. That is, if and only if it is a basis for Rn. This is also equivalent
to saying that the matrix with these vectors as columns is invertible (or
that this matrix has nonzero determinant).

The standard basis or canonical basis for R3 from Calculus III is often
written as i⃗, j⃗, k⃗. The standard basis or canonical basis for Rn is often
written as {e⃗1, e⃗2, · · · , e⃗n}.



Column space C(A) of a matrix A:

If A is an m×n matrix, we can write A = [⃗a1 : a⃗2 : · · · : a⃗n]; here a⃗k is
the kth column of A. Then C(A) is the set of all the linear combinations
of a⃗1, a⃗2, · · · , a⃗n. So we really have C(A) = Span(⃗a1, a⃗2, · · · , a⃗n). This
is a vector space, is a subspace of Rm as we said above.

Also, C(A) = {⃗b ∈ Rm : Ax⃗ = b⃗ has a solution }. That is, asking if

b⃗ ∈ C(A) is the same as asking: does Ax⃗ = b⃗ have a solution?

(To prove this, recall that for any x⃗ ∈ Rn, we can write Ax⃗ = x1 a⃗1 +
x2 a⃗2+· · ·+xn a⃗n (here xk is the kth entry of x⃗). Thus saying that Ax⃗ =

b⃗ has a solution, is the same as saying that b⃗ is a linear combination of the
columns of A, or equivalently, as saying that b⃗ ∈ Span(⃗a1, a⃗2, · · · , a⃗n).)
So one way to find C(A) is to use Gauss elimination to find the b⃗ such

that Ax⃗ = b⃗ has a solution.



Finding a nice basis forC(A): Do Gauss-Jordan toAT to obtain RREF(AT ).
Take the transpose of RREF(AT ). The nonzero columns of this, that is
the nonzero columns of (RREF(AT ))T , form a basis for C(A).

Finding a basis for C(A) consisting of columns of A: Do Gauss elimina-
tion to A. The original columns of A standing in the pivot columns, are
the desired basis.

Finding a basis for the span of several vectors in Rn: Number them. Let
A be the matrix having these vectors as columns in this order, and apply
one of the last two items to find a basis for C(A).



Given a finite set of vectors S find a subset which is a basis for Span(S):
this is the same recipe as for the last item, but using the item before it
to find a basis for C(A).

Row space R(A) of a matrix A is the span of the rows of A. Note that
R(A) = C(AT ) and C(A) = R(AT ).

Finding a basis for R(A): Do Gauss-Jordan to A. The nonzero rows in
RREF(A) are a basis for R(A). Or you could find a basis for C(AT ) by
one of the methods above.

rank(A) = number of nonzero rows in RREF(A) = number of pivot
columns/pivot variables = dim(C(A)) = dim(R(A)).

FACT: rank(A) = rank(AT ).

A rank 1 matrix may also be described as a matrix of the form A = v⃗ w⃗T ,
for vectors v⃗, w⃗.



The nullspace N(A) for matrix A is the set of solutions to the homoge-
neous equation Ax⃗ = 0⃗. It is a subspace, and always contains the zero
vector 0⃗, the trivial solution to Ax⃗ = 0⃗. The nullspace is also the kernel
Ker (LA) of the operator LA : Rn → Rm of left multiplication by A on
(column) vectors in Rn. Then nullity(A) = dimN(A).

FACT: If A has more columns than rows then Ax⃗ = 0⃗ has infinitely many
solutions, and nullity(A) ≥ 1.

Rank-nullity theorem: rank(A)+ nullity(A) = n for an m×n matrix A.

(Sketch proof: this is almost obvious for RREF(A), and none of the
operations for RREF change rank, nullity, n.)



The members of a basis for N(A) are called the fundamental solutions.

The special solutions are a particularly ‘nice’ basis for N(A). Here is the
recipe for finding the special solutions. First compute RREF(A). Then
each special solution is found by solving RREF(A) x⃗ = 0⃗, putting all the
free variables equal to zero except one, which we set equal to 1. (It is
‘nice’ because of all the ‘1’s in positions where all other vectors have 0’s.)

The number of fundamental solutions is the number of free variables in
an echelon form of A. This number is the dimension of N(A).

If x⃗1, x⃗2, · · · , x⃗m are the fundamental solutions (i.e. any basis for N(A))
then the general solution to Ax⃗ = 0⃗ is

c1x⃗1 + c2x⃗2 + · · · + cmx⃗m

for scalars c1, c2, · · · , cm.

(This follows from the definition of a basis.)



The general solution to Ax⃗ = b⃗ is

x⃗ = x⃗h + x⃗p = x⃗p + c1x⃗1 + c2x⃗2 + · · · + cmx⃗m.

Here x⃗h is the general solution to the associated homogeneous equation
Ax⃗ = 0⃗, and x⃗p is a particular solution to Ax⃗ = b⃗, and x⃗1, x⃗2, · · · , x⃗m
are the fundamental solutions to the associated homogeneous equation
Ax⃗ = 0⃗ (that is, they are a basis for N(A)).

One way to find a particular solution to Ax⃗ = b⃗ is to do Gauss-Jordan
elimination to the augmented matrix, then set the free variables equal to
0.



Theorem The general solution to Ax⃗ = b⃗ is x⃗ = x⃗h + x⃗p where x⃗h is the

general solution to the associated homogeneous equation Ax⃗ = 0⃗, and x⃗p
is a particular solution to Ax⃗ = b⃗.

Proof: I). x⃗h + x⃗p is a solution to Ax⃗ = b⃗:

A (x⃗h + x⃗p) = Ax⃗h + Ax⃗p = 0⃗ + b⃗ = b⃗.

II). Now suppose that x⃗0 is any solution to Ax⃗ = b⃗. Then

A(x⃗0 − x⃗p) = Ax⃗0 − Ax⃗p = b⃗− b⃗ = 0⃗.

Thus x⃗0 − x⃗p solves the associated homogeneous equation Ax⃗ = 0⃗, so
x⃗0 − x⃗p is of the form x⃗h.

But if x⃗0 − x⃗p = x⃗h then x⃗0 = x⃗h + x⃗p. □

Key tool above: LINEARITY .... Ax⃗ is a linear transformation of x⃗.



Theorem The general solution to Ax⃗ = b⃗ is

x⃗ = x⃗h + x⃗p = x⃗p + c1x⃗1 + c2x⃗2 + · · · + cmx⃗m.

Here x⃗h, x⃗p are as before, and x⃗1, x⃗2, · · · , x⃗m are the fundamental solutions

to the associated homogeneous equation Ax⃗ = 0⃗.

Proof: Combine the last theorem and a fact a few pages back (after we
defined the fundamental solutions) that says x⃗h = c1x⃗1+c2x⃗2+· · ·+cmx⃗m.

So by the last theorem the general solution to Ax⃗ = b⃗ is

x⃗ = x⃗h + x⃗p = x⃗p + c1x⃗1 + c2x⃗2 + · · · + cmx⃗m. □

Finding solutions to linear equations or systems is close to the heart of
linear algebra.



There is a similar fact in differential equations, which has the ‘same’ proof:
Suppose that L is a linear differential operator (like 3D2− etD+5I), that
xh is the general solution to the associated homogeneous equation Lx = 0,
and that xp is a particular solution to Lx = g. Show that the general
solution to Lx = g is x = xp+xh. And xh = c1x1+c2x2+ · · ·+cmxm for
scalars c1, c2, · · · , cm, where x1, x2, · · · , xm are the fundamental solutions,
i.e. a basis for the solution space of the associated homogeneous equation
Lx = 0.

Proof: That xh = c1x1 + c2x2 + · · ·+ cmxm follows as before from the
definition of basis and that x1, x2, · · · , xm are the fundamental solutions,
i.e. a basis for the solution space of the associated homogeneous equation
Lx = 0.



I). xh + xp is a solution to Lx = g:

L (xh + xp) = Lxh + Lxp = 0 + g = g.

II). Now suppose that x0 is any solution to Lx = g. Then

L (x0 − xp) = Lx0 − Lxp = g − g = 0.

Thus x0 − xp solves the associated homogeneous equation Lx = 0, so
x0 − xp is of the form xh.

But if x0 − xp = xh then x0 = xh + xp. □
Key tool above: LINEARITY .... L is a linear transformation .



Table of the number of solutions to Ax⃗ = b⃗ for an m× n matrix A:

If m = n there is 1 solution if A is invertible; if A is not invertible then
there are zero or infinitely many solutions.

If m > n = rank(A) there are 1 or no solutions.

If m < n there are none or infinitely many solutions (there are infinitely
many if rank(A) = m).

If rank(A) < mı́n{n,m} there are none or infinitely many solutions. (All
of these can be seen/proved by thinking about RREF of the augmented
matrix, and/or using the second last bullet).



On inverses: If AB = I or BA = I and A and B have the same size
then A = B−1 (and B = A−1).

If A and B are invertible matrices of the same size then the inverse of
AB is B−1A−1.

If A is an invertible matrix then AT has inverse (A−1)T .



Determinants: only make sense for square matrices.

if A is a square matrix then A is invertible iff det(A) ̸= 0.

You should know the Cramer’s rule method for solving the system Ax⃗ = b⃗
if A is a square matrix.

You are expected to know the main properties of determinants: like
det(A) = det(AT ), det(A−1) = 1/det(A), det(AB) = det(A) det(B),
etc.

Or, that the determinant changes sign if you switch two rows or columns,
is multiplied by k if you multiply a row (or column) through by k, and
is unchanged if you add to one row a nonzero multiple of another row .
If one row (resp. column) of a matrix equals or is a multiple of another
row (resp. column) its determinant is zero. Etc.

You are expected to know the formula for the determinant of a 2 × 2
matrix (ad− bc), or of an upper or lower triangular matrix (the product
of the main diagonal entries).



You are expected to know the 4 methods for the determinant of a 3× 3
matrix, three of which work for bigger square matrices too (cofactors,
Gauss elimination to lower triangular, the permutation definition).

You should know the connections between determinants and the cross
product of vectors, or the volume of a parallelopiped (google this).



Theorem If A is an n× n matrix the following are equivalent:

(1) A is invertible.

(2) det(A) ̸= 0.

(3) rank(A) = n.

(4) For every vector b⃗ the system Ax⃗ = b⃗ has a solution.

(5) For every vector b⃗ the system Ax⃗ = b⃗ has a unique solution.

(6) For some vector b⃗ the system Ax⃗ = b⃗ has a unique solution.

(7) The system Ax⃗ = 0⃗ has only the trivial solution x⃗ = 0⃗ (i.e.N(A) = (⃗0}).
(8) The columns of A are linearly independent.

(9) The columns of A span n-space.

(10) The rows of A are linearly independent.

(11) The rows of A span n-space.

(12) The reduced row echelon form of A is In.



(13) The (echelon forms) of A have n pivot positions/columns.

(14) There is a matrix B with AB = I .

(15) There is a matrix B with BA = I .



Diagonalization

An n by n matrix can be diagonalized (that is, A = SDS−1 for a diagonal
matrix D and an invertible matrix S) if and only there exist n linearly
independent eigenvectors, and if and only if the algebraic multiplicity of
each eigenvalue equals its geometric multiplicity.

If S is the matrix with these n linearly independent eigenvectors as co-
lumns, and if D is a diagonal matrix with the associated (all real) eigen-
values (in the same order as the column eigenvectors) as diagonal entries,
then A = SDS−1.



Orthogonal diagonalization

An n by n real matrix is symmetric (i.e. A = AT ) if and only there
exist n mutually orthogonal real eigenvectors, and if and only if there is an
orthonormal basis of real eigenvectors of A, and if and only if A = UDUT

for real diagonal matrix D and real orthogonal matrix U .

If U is the matrix with these n orthonormal real eigenvectors as columns,
and if D is a diagonal matrix with the associated (all real) eigenvalues
(in the same order as the column eigenvectors) as diagonal entries, then
A = UDUT .

There is a similar list of equivalent conditions for an m × n matrix, for
when rank (A) = m etc (and another such list when rank (A) = n).



The rest of the ‘ Linear algebra ‘important facts’ list (partial)’ pdf docu-
ment linked on the ‘Notes for most of the modules’ page, was not covered
in class.


