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Abstract

Our interest in this part of the survey course/test preparation is really in
using a common language that applies to R,R2,R3,Rn, metric spaces, and
topology (which are successively more general). Thus we should know, for
example, things like ‘a union of open sets is open and the intersection of two
open sets is open’. Or interior, neighborhood, boundary, limit/accumulation
points, closure, compact sets , etc. We will visit these below, but the point
is that you know these words, and something about such things from 3333
and elsewhere, the results should all be quite familiar sounding. There are
often a few questions on topology or the associated notion of metrics on
the Field test of Math GRE.



A topological space is a set X with a collection of subsets of it which
we have decided to call open sets. This collection of open sets is called a
topology on X . The union of any number of open sets is open, and the
intersection of two open sets is open. The empty set and X are open.
We can generalize much of Analysis to such spaces, as we shall see briefly
here.
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IF YOU GET LOST BELOW WHEN YOU HEAR THE WORD TOPO-
LOGY OR METRIC SPACE, JUST TAKE THAT SPACE TO BE THE
REAL NUMBERS, OR Rn. (THAT PROBABLY GOES FOR THE RELA-
TED QUESTIONS ON THE FIELD TEST OR MATH GRE TOO.)



A neighborhood of a point x is an open set U containing x. The interior
int S of a set S are the points x which have a (open) neighborhood
which is a subset of S. The interior of a set S is the biggest open set
contained in S. And S is open iff int S = S. The boundary of a set S are
the points x such that every (open) neighborhood of x contains points
in S and in Sc (that is, points not in S).



An open set is a set that contains none of its boundary points.

An accumulation (or limit or cluster) point of a set A is an element x
such that every neighborhood of x contains at least one point in A\{x}
(or equivalently contains infinitely many points in A. If x /∈ A then x is
an accumulation point iff it is a boundary point.

An isolated point of a set A is a point x in A for which there exists a
neighborhood of x which does not contain any other points of A.

A closed set is the complement Uc of an open set U , and also can be
defined as a set that contains all its boundary (or limit/accumulation)
points. A set is clopen iff it is both open and closed. Both the empty set
and its complement (the universe) are clopen. Arbitrary intersections of
closed sets are closed. Finite unions of closed sets are closed.



The closure A of A, is the intersection of all closed subsets of X , con-
taining A. We take φ = φ,X = X .

Note that A is the smallest closed subset of X containing A. Also A is
closed iff A = A.

Test: x ∈ A iff U ∩ A 6= φ for all open sets U with x ∈ U . In a metric
space you can take U here to be an open ball center x (defined on next
slide).

The boundary of A equals Ā \ int(A); and Ā is the union of A and its
boundary (or the union of the interior of A and its boundary).



A metric space is a set X , with a function d : X ×X → [0,∞), called
a metric, satisfying the following properties:

(i) d(x, y) = d(y, x) for all x, y ∈ X ,

(ii) (Triangle inequality) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X ,

(iii) d(x, y) = 0 if and only if x = y.
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A normed (vector) space is a vector space X over the real or complex
scalars, with a function ‖ · ‖ : X → [0,∞), called a norm, satisfying the
following properties:

(i) ‖x‖ = 0 iff x = 0,

(ii) ‖λx‖ = |λ|‖x‖ for all scalars λ and x ∈ X ,

(iii) (Triangle inequality) ‖x + y‖ ≤ ‖x‖ + ‖y‖ for all x, y ∈ X ,

In a metric space (X, d), an open ball isB(x, r) = {y ∈ X : d(x, y) < r},
for some r > 0.



Proposition Every normed space is a metric space with metric d(x, y) =
||x− y||. Proof. (i) d(x, y) = 0 iff ||x− y|| = 0 iff x− y = 0 iff x = y.

(ii) d(x, y) = ||x− y|| = ||(−1)(y − x)|| = ||y − x|| = d(y, x).
(iii) d(x, z) = ||x− z|| = ||(x− y) + (y− z)|| ≤ ||x− y||+ ||y− z|| =

d(x, y) + d(y, z). 2

In a metric space (X, d), an open ball is B(x, r) = {y ∈ X : d(x, y) <
r}, for some r > 0.

Open sets in a metric space X are the unions of open balls. This is the
topology for X .

A set U in a metric space is open iff ∀x ∈ U ∃r > 0 s.t.B(x, r) ⊂ U .

An interior point of a set S is a point x for which B(x, r) ⊂ S for some
r > 0.



Thus: Every metric space (X, d) has an associated topology, called the
metric topology. Putting this together with Proposition 1, we see that
every normed space, (X, || · ||), has an associated topology, called the
norm topology.

We say that a sequence (xn) in a metric space (X, d) converges to x if
d(xn, x)→ 0. Then a set A in a metric space is closed iff it contains the
limits of all convergent sequences with terms in A. Also Ā is the set of
limits of all convergent sequences with terms in A.

If Y is a subset of a topological space X , then the subspace topology or
relative topology on Y is when the open sets of Y are the intersections
U ∩ Y of open sets U in X . Sets of this form are also called ‘relatively
open’ sets in Y .



An open cover of a subset A of a topological space X , is a collection
C of open sets whose union contains A. A subcover is a subset of this
collection C whose union also contains A. A set is compact if every open
cover of it has a finite subcover.

A topological space X is connected if it does not have a clopen set
besides ∅ and X . A subset of a topological space X is connected if it is
connected in the subspace topology.

A subset A of Rn (or a metric space) is connected if for all nonempty
disjoint open sets U, V whose union contains A, either A ⊂ U or A ⊂ V .

The connected sets in R are just the intervals.



Theorem ( Heine-Borel) A subset of Rn is compact iff it is closed and
bounded.

Theorem (Bolzano-Weierstrass) Every nonempty bounded set in Rn has
an accumulation point. Every bounded sequence in Rn has a convergent
subsequence.



Let f : X → Y be a function between topological spaces (we sometimes
call a function a ‘map’). We say that f is continuous if f−1(V ) is open
in X for all open V in Y . (We may take V to be an open ball here in
the metric space case.) We say that f is continuous at a point x ∈ X
if for every open neighborhood V of f (x) in Y , there exists an open
neighborhood U of x in X such that f (U) ⊂ V . If A is a subset of X
then we say that f is continuous on A if f is continuous at every point
in A.

Theorem Let f : X → Y be a function between topological spaces.
TFAE:

(i) f is continuous.

(ii) f−1(C) is closed in X ∀ closed C ⊂ Y .

(iii) f is continuous at every x ∈ X .

We have the usual results, such as compositions of continuous functions
are continuous, etc.



Theorem Let f : X → Y be a function between metric spaces, and
x ∈ X . TFAE:

(i) f is continuous at x.

(ii) whenever xn→ x in X then f (xn)→ f (x) in Y .

(iii) Given ε > 0 there exists a δ > 0 such that d(f (y), f (x)) < ε whenever
d(y, x) < δ.

A few more definitions: A function f : X → Y (between topological or
metric spaces) is called open if f (U) is open in Y for all open U in X . We
say that f is a homeomorphism if f is one-to-one, onto, continuous, and
open (note that a one-to-one, onto function is open iff f−1 is continuous).
Two topological spaces X and Y are said to be homeomorphic if there
exists a homeomorphism between them.



Theorem If f : X → Y is continuous, and X is compact, then f (X) is
compact.

Corollary (Extreme value/Min-Max theorem) If f : X → R is continuous
on a topological space X , and given a compact subset A of X , then f
achieves a minimum and a maximum on A. That is, there exist x1, x2 ∈ X
such that f (x1) ≤ f (x) ≤ f (x2) for all x ∈ A. In particular, f is bounded
(the range of f is closed and bounded, i.e. compact).

[Proof: Exercise using last theorem, and results from 3333 like the Heine-
Borel theorem. ]



For sets in Rn, path connectedness or convexity is often more important
than connectedness, and if you are taking the math subject GRE you
could look up these on wikipedia, but we will treat connectedness here.

Theorem If f : X → Y is continuous, and X is connected, then f (X)
is connected.



Corollary (Intermediate Value Theorem (IVT)) If f : X → R is conti-
nuous and X is connected, then f (X) is an interval. Hence if c is a number
between f (x1) and f (x2), for x1, x2 ∈ X , then ∃z ∈ X such that f (z) = c.

If, in addition, X is compact, then f (X) = [a, b], some a ≤ b in R.

Proof. Use the last theorem and the fact that connected sets in the R are
intervals. So f (X) is an interval. By the Extreme value/Min-Max theorem
above (or the Theorem stated before that), it is a compact interval. But
the only compact intervals are [c, d], some c, d in R. Since Range f equals
[c, d], if f (x1) < t < f (x2) for x1, x2 ∈ X then t ∈ [c, d] = f (X), so
there exists z ∈ X with f (z) = t. 2



As time permits, you could read more of the online notes on Analysis, and
the two “Multivariable” pdf’s on the course notes link under the analysis
tab.


