
SHARP BOUNDARY TRACE INEQUALITIES

GILES AUCHMUTY

Abstract. This paper describes sharp inequalities for the trace of Sobolev functions on
the boundary of a bounded region Ω ⊂ R

N . The inequalities bound (semi-)norms of the
boundary trace by certain norms of the function and its gradient on the region and two
specific constants kρ and kΩ associated with the domain and a weight function. These
inequalities are sharp in that there are functions for which equality holds. Explicit inequal-
ities in some special cases when the region is a ball, or the region between two balls, are
evaluated.

1. Introduction

This paper describes some elementary, but sharp, trace inequalities. It will be proved
that if ρ is a positive weight function on the boundary ∂Ω of a bounded region Ω, then there
are positive constants kρ, kΩ such that∫

∂Ω

ρ | γ(u) | dσ ≤ kρ

∫
Ω

|u| dx + kΩ

∫
Ω

|∇u| dx (1.1)

for all u ∈ W 1,1(Ω). Here γ is the boundary trace operator and mild conditions on the
boundary ∂Ω and the function ρ are required. kρ, kΩ are characterized explicitly and equality
holds here when u ≡ c on Ω.

Moreover, when r > 1, inequalities of the form∫
∂Ω

ρ | γ(u) |p dσ ≤ kρ

∫
Ω

|u|p dx + p kΩ ‖u‖p−1
q ‖∇u‖r (1.2)

hold for u ∈ W 1,r(Ω), certain ranges of p (depending only on r) and for a specific value of
q that depends on r and p. See theorems 5.1 and 6.3 below. The constants kρ and kΩ are
the same in these two inequalities and may be regarded as geometrical quantities associated
with the region Ω and the weight function ρ. In particular, kΩ is the L∞ norm of the gradient
of a function wρ characterized by the region and ρ. This function will be called the trace
weight function and is the solution of a variational problem for the torsion equation.

When ρ ≡ 1 on ∂Ω these inequalities can be used to estimate the norms of the trace
operator γ : W 1,r(Ω) → Lp(∂Ω, dσ). Taking ρ to be the characteristic function of a proper
subset of the boundary leads to restricted trace estimates.
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The inequalities described here are much simpler than the trace results described in
texts such as those of DiBenedetto [5], chapter IX.18 or Leoni [9], chapter 15. Grisvard
[8], theorem 1.5.1.10 describes a family of trace inequalities that follow from the case where
p = q = r > 1 in (1.2) above.

A number of papers have treated issues regarding the ”best” constant for various
Sobolev trace inequalities - and whether there are Sobolev functions that attain these opti-
mal values. That is, they have proved results about the norm of the trace operator either
as a map of W 1,1(Ω) to L1(∂Ω, dσ) or from W 1,p(Ω) to various Lq(∂Ω, dσ). See Andreu,
Mazon, Rossi [1], Border, Rossi, Ferreira [3], Motron [11] for example. These inequalities do
not have the scaling properties, or geometrical interpretations, of (1.1) or (1.2) and assume
ρ ≡ 1. Inequalities such as some of those treated in Auchmuty [2] or (2) of Maggi and Vilani
[10] are quite different to the ones to be investigated here - even though they involve the
same functionals.

2. Definitions and Notation

A region is a non-empty open connected set in R
N with N ≥ 2. Let Lp(Ω), p ∈ [1,∞]

be the usual real Lebesgue spaces of functions on Ω. All functions here take values in
R̄ := [−∞,∞] and the norm on Lp(Ω) is denoted ‖.‖p. A function is said to be positive

on a set E if f(x) ≥ 0 for all x in E. It is strictly positive if f(x) > 0 for all x in E. When
Ω has finite Lebesgue measure, then ū := |Ω|−1

∫
Ω

u dx will be the mean value of u on Ω.

For 1 ≤ p < ∞, W 1,p(Ω) is the Sobolev space of Lebesgue measurable functions on Ω
that are Lp and whose weak derivatives Dj u are again in Lp for each j ∈ IN := {1, 2, . . . , N}.
W 1,p(Ω) is a real Banach space with respect to the norm defined by

‖u ‖p
1,p :=

∫
Ω

[ |u(x)|p + |∇u(x)|p ] dx. (2.1)

Here ∇u := (D1u,D2u, . . . , DNu) is the gradient of the function u and |v| will denote the
2-norm of a vector v.

The definitions and terminology of Evans and Gariepy [6], will generally be followed
except that σ, dσ, respectively, represent Hausdorff (N − 1)−dimensional measure and in-
tegration with respect to this measure. Also Hausdorff (N − 1)−dimensional measure will
be called surface area measure in this paper. In particular we require that a unique unit
outward normal function ν : ∂Ω → S1 be defined σ a.e. on ∂Ω. Here S1 is the unit sphere
in R

N .

H1(Ω) will denote the standard Sobolev space of Lebesgue measurable functions on Ω
that are L2 and whose weak derivatives Dj u are again in L2 for each j ∈ IN := {1, 2, . . . , N}.
H1(Ω) is a real Hilbert space under the standard H1− inner product

[u, v]1,2 :=

∫
Ω

[ u(x) v(x) + ∇u(x) · ∇v(x) ] dx. (2.2)

and the associated norm is denoted ‖u‖1,2.
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When K is a compact subset of R
N , then C(K) will denote the Banach space of

continuous real valued functions on K with the maximum norm. When Ω is an open set
then Ck

b (Ω) is the space of uniformly bounded Ck−functions on Ω.

A bounded region Ω is said to satisfy the Sobolev imbedding theorem provided the
imbedding of W 1,p(Ω) into Lq(Ω) is continuous when 1 ≤ p < N and 1 ≤ q ≤ pS with
pS = pN/(N − p). pS is called the Sobolev conjugate of p. When p = N this imbedding
should be continuous for all 1 ≤ q < ∞. These theorems hold under a variety of conditions
on the boundary ∂Ω. See [6] or DiBenedetto [5] for statements and proofs of such results.

This paper will describe some inequalities for certain boundary (semi-)norms of
Sobolev functions in terms of norms of the functions on Ω. The following condition will
be required throughout.

Condition B1: Ω is a bounded region in R
N and its boundary ∂Ω is the union of a finite

number of disjoint closed Lipschitz surfaces; each surface having finite surface area.

Let C1
c (RN) be the space of functions that are C1 on R

N and have compact support.
The Gauss-Green (or divergence) theorem holds on a region Ω provided for any v ∈ C1

c (RN),

∫
Ω

Djv dx =

∫
∂Ω

v νj dσ for j ∈ IN . (2.3)

See [6], chapter 5 section 5, for conditions on the region Ω and its boundary for which (2.3)
holds.

Given a function v ∈ C1
c (RN), its restriction to Ω will again be denoted v and the

restriction operator is RΩ. The space of all such restrictions will be denoted C1
R(Ω) and is

a subspace of W 1,∞(Ω). Define G1,p(Ω) to be the closure of C1
R(Ω) in the (1, p) norm.

Grisvard [8] theorem 1.4.2.1 quotes a result that G1,p(Ω) = W 1,p(Ω) when the region
Ω has a ”continuous boundary”. DiBenedetto [5] propositions 18.1 and 19.1 shows that
G1,p(Ω) = W 1,p(Ω) when the region Ω satisfies a segment property and provides a coun-
terexample with a disconnected boundary. Many of the standard extension theorems for C1

functions on Ω imply this condition. See the discussion of extension theorems in Brezis [4]
for example. Whether or not W 1,p(Ω) = G1,p(Ω) is a regularity condition on the boundary
∂Ω.

When u is a continuous function on Ω, then the boundary trace operator is the linear
map γ : C(Ω) → C(∂Ω) that evaluates the function pointwise on the boundary. Our interest
here is in the properties of this operator when the domain is a Sobolev space W 1,r(Ω).
When r > N , this trace operator is well-defined from Morrey’s imbedding theorem. For
1 ≤ r ≤ N, γ may be extended to be a continuous linear transformation of W 1,p(Ω) into
L1(∂Ω, dσ) provided the boundary satisfies some regularity conditions. See [5], [6] or [8] for
descriptions of such results..

The region Ω is said to satisfy the W 1,r-trace theorem provided the trace mapping has
an extension γ that is a continuous linear map of W 1,r(Ω) into Lq(∂Ω, dσ) for all 1 ≤ r ≤ N
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and

1 ≤ q ≤ pT (r) :=
r(N − 1)

N − r
for r < N, and 1 ≤ q < ∞ when r = N. (2.4)

The quantity pT (r) is called the critical trace index associated with r. Proofs of such results
may be found in a number of texts including DiBenedetto [5], section IX.18 and Grisvard
[8], section 1.5.

Our basic assumption is that the region Ω has a boundary ∂Ω such that

Condition B2: The region Ω is such that (B1), the Sobolev imbedding and W 1,p-trace
theorems hold and W 1,p(Ω) = G1,p(Ω).

For regions obeying this condition (B2), the Gauss-Green theorem (2.3) holds for all
v ∈ W 1,1(Ω) with γv replacing v on the right hand side and the derivatives taken in a weak
sense; see [6], chapter 5. In the following the trace operator will generally be understood
when integrals over ∂Ω are taken.

3. The Trace Weight Function

When (B1) holds, the boundary ∂Ω is a finite union of compact connected subsets in
R

N whose Hausdorff (N−1) dimensional measure is finite and positive. Let ρ : ∂Ω → [0,∞]
be a Borel function that is in Ls(∂Ω, dσ) for some s ≥ 1 and M :=

∫
∂Ω

ρ dσ.

The sharp inequalities to be derived here involve a function that will be called the
trace weight function wρ of ρ. wρ is defined as the unique solution of a simple variational
principle and may be regarded as a solution of the torsion equation subject to Neumann
boundary data. When ρ ≡ 1 on ∂Ω this function is a geometrical quantity associated with
the region Ω. Torsion functions , obeying zero Dirichlet boundary conditions, were recently
used by Giorgi and Smits [7]. to obtain upper and lower bounds on the principal eigenvalues
of Dirichlet-Laplacians on Ω. Their function also has a probabilistic interpretation.

Let H1
m(Ω) be the subspace of H1(Ω) of all functions that satisfy ū = 0. It is a closed

subspace of H1(Ω) and condition (B2) implies that Poincare’s inequality holds. Namely
there is a cΩ > 0 such that∫

Ω

|∇u|2 dx ≥ cΩ

∫
Ω

(u − ū)2 dx, for all u ∈ H1(Ω). (3.1)

Thus H1
m(Ω) is a real Hilbert space with respect to the inner product defined by

〈u,w〉∇ :=

∫
Ω

∇u · ∇w dx.

Given ρ as above, define E : H1
m(Ω) → R by

E(w) :=

∫
Ω

|∇w|2 dx − 2

∫
∂Ω

ρ w dσ. (3.2)
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Consider the variational problem (Pρ) of minimizing E on H1
m(Ω) and evaluating

α(ρ) := inf
w∈H1

m(Ω)
E(w).

Theorem 3.1. Assume (B2) holds, N ≥ 3 and ρ ∈ Ls(∂Ω, dσ) with s ≥ sc := 2(1−1/N).
Then there is a unique minimizer wρ of E on H1

m(Ω). When N = 2, we require s > 1. wρ

satisfies ∫
Ω

∇w · ∇v dx =

∫
∂Ω

ρ v dσ for all v ∈ H1
m(Ω), and (3.3)

α(ρ) = − ‖∇wρ ‖
2
2 = −

∫
∂Ω

ρ wρ dσ. (3.4)

Proof. When the trace theorem holds on Ω then w ∈ H1
m(Ω) implies that w ∈ Lp(∂Ω) for

p ≤ pT (2) := 2(N − 1)/(N − 2) (and N ≥ 3). Thus E2(w) :=
∫

∂Ω
ρ w dσ will be a

continuous linear functional on H1
m(Ω) provided ρ ∈ Ls(∂Ω, dσ) with s ≥ sc := 2(1−1/N).

When N = 2, E2 is a continuous linear functional when s > 1 using the corresponding trace
theorem.

Thus our conditions imply that E is continuous, strictly convex and coercive on
H1

m(Ω). Hence there is a unique minimizer of E on H1
m(Ω). It is easily verified that E is

Gateaux differentiable on H1
m(Ω) with

〈DE(w), v〉 = 2

∫
Ω

∇w · ∇v dx − 2

∫
∂Ω

ρ v dσ.

Thus the minimizer of E on H1
m(Ω) satisfies (3.3).

Put v = wρ in (3.3) and substitute in the expression (3.2). Then (3.4) follows. ¤

Corollary 3.2. Under the conditions of theorem 3.1, the function wρ is a weak solution of

∆ w = kρ := M/|Ω| a.e. on Ω and Dνw = ρ on ∂Ω. (3.5)

Proof. Equation (3.3) implies that there is a c ∈ R such that∫
Ω

∇w · ∇v dx −

∫
∂Ω

ρ v dσ = c

∫
Ω

v dx for all v ∈ H1(Ω)

from a standard orthogonality argument. Take v ≡ 1 on Ω in this equation to see that
c = −M/|Ω|. In particular this holds for all v ∈ H1

0 (Ω) and thus wρ is a weak solution of
the equation

−∆ w = c on Ω.

Using the Gauss-Green theorem and this result we find that∫
∂Ω

v [Dνw − ρ ] dσ = 0 for all v ∈ H1(Ω).

Since this holds for all v ∈ H1(Ω), the boundary condition follows. ¤
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This shows that the function wρ may be regarded as a weak solution of the torsion
equation on Ω subject to a Neumann boundary condition. Note that v(x) := wρ(x) − c |x|2

is a harmonic function on Ω when c = M/(2N |Ω|) and v obeys

Dνv = ρ1 := ρ − c (x · ν) on ∂Ω. (3.6)

Thus v, and also wρ, will be C∞ on Ω as v is harmonic on Ω. For our following
analysis the essential condition on the function ρ will be

Condition B3: ρ ∈ Ls(∂Ω, dσ) with s ≥ sc if N ≥ 3 (or s > 1 when N = 2), and
wρ ∈ W 1,∞(Ω).

The requirement that wρ ∈ W 1,∞(Ω) holds under various regularity conditions on ρ
and ∂Ω. In particular when ρ ≡ 1 on ∂Ω, it holds when ∂Ω satisfies (B2).

4. Weighted Trace Inequalities.

In this section some simple sharp trace inequalities will be derived using the di-
vergence theorem and the trace weight function. The inequalities are for the quantity
Ip(u) :=

∫
∂Ω

ρ | γ(u) |p dσ with p ≥ 1. This integral is the p−th power of a (semi-)norm
on a class of functions defined on ∂Ω. Our analysis is based on the following result for
bounded C1 functions on Ω.

Lemma 4.1. Suppose Ω is a bounded region obeying (B2) and ρ is such that (B3) holds.
When p ∈ [1,∞),∫

∂Ω

ρ | γ(u) |p dσ ≤ kρ

∫
Ω

|u|p dx + p

∫
Ω

|u|p−1 |∇u| |∇wρ| dx (4.1)

for all u ∈ C(Ω) ∩ C1
b (Ω).

Proof. Let wρ be the trace weight function for Ω as described in the preceding section.
The divergence theorem yields∫

Ω

div (|u|p ∇wρ) dx =

∫
∂Ω

ρ |u|p dσ

upon using the Neumann condition from (3.5). When p > 1, this integral also equals∫
Ω

|u|p ∆wρ dx + p

∫
Ω

|u|p−2 u ∇u · ∇wρ dx

using a product rule for weak derivatives. Then (4.1) follows from the Poisson equation in
(3.5) and elementary inequalities.

When p = 1, the integral over Ω becomes∫
Ω

|u| ∆wρ dx +

∫
Ω

∇|u| · ∇wρ dx
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with these derivatives taken in a weak sense. Then (4.1) follows from Corollary 3.2 and the
fact that |∇|u|| = |∇u| a.e.. ¤

For convenience we shall write X for the space C(Ω) ∩ C1
b (Ω). The preceding result

extends to u ∈ W 1,1(Ω) using common Sobolev function approximation arguments. In the
following we will use the quantity

kΩ := ‖ |∇wρ| ‖∞. (4.2)

It is worth noting that when |∇wρ |
2 is continuous on Ω, then it is subharmonic on Ω so it

attains its maximum on the boundary ∂Ω. Thus, when wρ is a classical solution and ρ is
continuous on the boundary, then supz∈∂Ω ρ(z) ≤ kΩ from Corollary 3.2.

Theorem 4.2. Suppose Ω is a bounded region obeying (B2) and ρ ∈ Ls(∂Ω, dσ) with s ≥ sc.
Then, for u ∈ H1(Ω),

∫
∂Ω

ρ | γ(u) | dσ ≤ kρ

∫
Ω

|u| dx + ‖∇wρ ‖2 ‖ ∇u ‖2. (4.3)

When (B3) also holds then, for all u ∈ W 1,1(Ω),

∫
∂Ω

ρ | γ(u) | dσ ≤ kρ

∫
Ω

|u| dx + kΩ

∫
Ω

|∇u| dx. (4.4)

Proof. When p = 1 the inequalities hold for u ∈ X from the lemma, properties of the
weak derivative and the Cauchy - Schwarz inequality. When u ∈ H1(Ω) there is a sequence
{um} ⊂ X that converges to u in H1(Ω). The trace operator γ is continuous for the region
Ω as (B2) holds, so γ(um) converges to γ(u) in L2(∂Ω, dσ) and there is a subsequence that
converges pointwise to γ(u) σ a.e. on ∂Ω. Since the inequality (4.3) holds for each m, it
holds in the limit upon using Fatou’s lemma on this subsequence.

Similarly given a u ∈ W 1,1(Ω), there is a sequence {um} ⊂ X that converges to u
in W 1,1(Ω). The trace operator γ is continuous as a map of W 1,1(Ω) to L1(∂Ω, dσ) from
condition (B2) and (4.4) holds for each um. Fatou’s lemma applied to a pointwise convergent
subsequence then yields (4.4) for all u ∈ W 1,1(Ω). ¤

Note that these inequalities are sharp and become equalities when u ≡ c on Ω. When
the quantity kΩ < ∞, then I1(u) is finite whenever u ∈ W 1,1(Ω).

The results show that the boundary integral I1(u) is well-defined and finite whenever
u ∈ H1(Ω) and ρ ∈ Ls(∂Ω, dσ) with s ≥ sc. In particular (4.3) holds without any fur-
ther regularity assumptions about ∇wρ. The following sections will describe various sharp
p−norm analogues of the inequality (4.4).
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5. Boundary Trace Inequalities when r > N .

Generalizations of the preceding inequality to values p > 1 depend essentially on
proving the continuity of, and finding upper bounds on, the functional Gp defined by

Gp(u) :=

∫
Ω

|u|p−1 |∇u| dx. (5.1)

Note that Gp is positive and homogeneous of degree p.

Let Xpr be the class of all Lp functions on Ω with gradient |∇u| ∈ Lr(Ω). For p, r ≥ 1,
this is a real Banach space with respect to the usual intersection norm;

‖u‖pr := ‖u‖p + ‖ |∇u| ‖r.

Gp is said to be locally bounded on the space Xpr if it is bounded on bounded subsets of Xpr.

Theorem 5.1. Suppose (B2), (B3) hold and u ∈ Xpr. If p > 1 then∫
∂Ω

ρ | γ(u) |p dσ ≤ kρ

∫
Ω

|u|p dx + p kΩ Gp(u) (5.2)

whenever Gp(u) is continuous and locally bounded on Xpr. If p ≥ p0(r) := 2 − 1/r and
N < r < ∞, then∫

∂Ω

ρ | γ(u) |p dσ ≤ kρ

∫
Ω

|u|p dx + p kΩ ‖u‖p−1
q ‖∇u‖r (5.3)

for u ∈ Xpr and q = r(p−1)
r−1

≥ 1. When p > 1 and r = ∞, then (5.3) holds with q = p−1.

Proof. The first inequality holds by an approximation argument. Choose a sequence
{um} ⊂ X that converges to u in Xpr so that the functions converge in Lp and their
gradients converge to ∇u in Lr(Ω; RN). Now (5.2) holds for each um. From the proof of
lemma 4.1, we have that∫

∂Ω

ρ |um − uk |
p dσ ≤ kρ‖um − uk‖

p
p + p kΩ Gp(um − uk). (5.4)

Thus if Gp is continuous at 0, this left hand side is a Cauchy sequence and thus Ip(um)
converges to a unique limit and (5.2) holds by continuity.

Use Holder’s inequality in (5.1), to see that

0 ≤ Gp(u) ≤ ‖u‖p−1
q ‖∇u‖r with q =

r(p − 1)

r − 1
. (5.5)

So Gp is locally bounded on Xpr when q ≥ 1 or p ≥ 2 − 1/r.

Suppose that the sequence {um} converges to u in Xpr, then

Gp(u) − Gp(um) =

∫
Ω

|u|p−1 [|∇u| − |∇um|] dx +

∫
Ω

|∇um| [v − vm]dx
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where v = |u|p−1, vm = |um|
p−1. Apply Holder’s inequality to each of these integrals to

obtain

|Gp(u) − Gp(um)| ≤ ‖u‖p−1
q ‖|∇u| − | ∇um|‖r + ‖|∇um|‖r ‖v − vm‖r′ . (5.6)

When r > N , then Morrey’s inequality and the fact that Ω is a 1-extension region
implies that each u ∈ Xpr may be taken to be a continuous bounded function on Ω. Then
the sequence {um} converges to u in the supremum norm on Ω, so vm also converges to v in
this norm and thus Gp(um) converges to Gp(u) from this inequality as |Ω| is finite. Hence
(5.3) follows from the first part of this theorem,.

The last sentence follows from (5.2) upon using Holder’s inequality in (5.1). ¤

Note that equality holds in these inequalities for constant functions. When ρ(z) ≡ 1
on ∂Ω, these inequalities provide bounds on trace norms of functions in Xpr and W 1,r(Ω).
This inequality is much simpler than the trace estimates described in the literature such as
chapter 9, section 18 of DiBenedetto [5]. In particular it shows that the trace norms depend
essentially just on the two geometrical quantities kρ and kΩ - and in a simple manner on
p, r.

When the Sobolev imbedding theorem is invoked this inequality becomes∫
∂Ω

ρ |u|p dσ ≤ kρ

∫
Ω

|u|p dx + Crq kΩ ‖u||p1,r for all u ∈ W 1,r(Ω) (5.7)

where Crq depends on the norm of the imbedding of W 1,r(Ω) to Lq(Ω).

When r > N and p = 2 − 1/r, then q = 1 in (5.3) and Xpr = W 1,r(Ω). When 1 <
p < 2 − 1/r, then there is a bound on the boundary 1-seminorm of a function u ∈ W 1,r(Ω)
from the inequality (4.4) and on the (2-1/r)-seminnorm from theorem 5.1. Inequalities for
the intermediate p-seminorms may then be found using standard interpolation inequalities.

6. Boundary Trace Inequalities when 1 < r ≤ N .

Here the preceding inequalities will be extended to situations with 1 < r ≤ N .
First consider the case where p = r, so Xpr = W 1,p(Ω).

Theorem 6.1. Suppose (B2), (B3) hold and p > 1. Then,∫
∂Ω

ρ | γ(u) |p dσ ≤ kρ

∫
Ω

|u|p dx + p kΩ ‖u‖p−1
p ‖∇u‖p for u ∈ W 1,p(Ω). (6.1)

Proof. In this case the functional Gp defined by (5.1) satisfies

0 ≤ Gp(u) ≤ ‖u ‖p−1
p ‖∇u‖p

upon use of Holder’s inequality.

Let {um} ⊂ X be a sequence that converges to u in W 1,p(Ω), then the inequality
(5.6) holds with r = p and the associated sequence {vm} defined as in the proof of theorem
5.2 is a Cauchy sequence in Lp′ . Thus the sequence Ip(um) is a Cauchy sequence as in (5.4)
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above. Hence Ip(u) is well-defined for each u ∈ W 1,p(Ω) and the fact that (6.1) holds for
each um implies that it also holds for such u. ¤

(6.1) is sharp as it becomes an equality for constant functions on Ω. When Young’s
inequality (with an ǫ) is used on the last term here, an inequality of the form given in
theorem 1.5.1.10 of Grisvard [8] follows. Grisvard’s result involves a general constant K
rather than the specific quantities of (6.1). This result is different to the results described
in [3] as the expression on the right hand side of (6.1) is not the standard (1, p)−norm.

When r ≤ N then the boundary trace of a function in W 1,r(Ω) need not be a
bounded function on ∂Ω. Suppose p0(r) := 2 − 1/r and pT (r) is the critical trace index
associated with r from (2.4), then there are bounds on Gp for a range of values of p.

Lemma 6.2. Suppose (B2)-(B3) hold and r ∈ (1, N ] with N ≥ 3, then Gp is locally
bounded on W 1,r(Ω) when p ∈ [p0(r), pT (r)]. When N = 2, r ∈ (1, 2], then Gp is locally
bounded on W 1,r(Ω) for all p ∈ [p0(r),∞). For these values,

0 ≤ Gp(u) ≤ ‖u‖p−1
q ‖∇u‖r with q =

r(p − 1)

r − 1
∈ [1, rS]. (6.2)

Proof. This follows from Holder’s inequality applied to (5.1) and yields this value of q.
As p increases from p0(r) to pT (r), the associated values of q increase from 1 to the Sobolev
conjugate rS. ¤

This enables the following boundary trace inequality.

Theorem 6.3. Suppose (B2), (B3) hold, r ∈ (1, N ], N ≥ 3 and p ∈ [p0(r), pT (r)]. Then,
for u ∈ W 1,r(Ω),∫

∂Ω

ρ | γ(u) |p dσ ≤ kρ

∫
Ω

|u|p dx + p kΩ ‖u‖p−1
q ‖∇u‖r. (6.3)

Here q = r′(p − 1) ∈ [1, rS] with r′ the conjugate index of r. When N=2, r ∈ (1, 2], then
this holds for all p ∈ [p0(r),∞).

Proof. To prove this, from theorem 5.1, we need only show that Gp is continuous on
W 1,r(Ω) since it is locally bounded for this range of p from lemma 6.2. However, just as in
(5.6),

|Gp(u) − Gp(w)| ≤ ‖u‖p−1
q ‖|∇u| − | ∇w|‖r + ‖|∇w|‖r ‖|u|

p−1 − |w|p−1‖r′ . (6.4)

This implies that Gp is continuous when r′ (p − 1) ≥ 1. ¤

When N ≥ 3 and rS is the Sobolev conjugate of r, then there is a constant Cr such
that

‖u‖rS
≤ Cr‖u‖1,r for all u ∈ W 1,r(Ω).

When q ∈ [p, rS], the value of ‖u‖q can be bounded in terms of the values of ‖u‖p and ‖u‖rS

by the usual interpolation inequalities

‖u‖q ≤ ‖u‖1−θ
p ‖u‖θ

rS
with θ =

q − p

rS − p
.
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Substituting such bounds into (6.3) one obtains bounds on Ip(u) in terms of the p−norm of
u, the r−norm of ∇u and the (1,r)- norm of u.

When r ∈ (1, N ] and p ∈ (1, r), then upper bounds on Ip(u) may be found using
interpolation between bounds on I1(u) from (4.4) and those of Ir(u) from (6.1) as Xpr =
W 1,r(Ω).

7. Explicit Trace Inequalities when Ω is a Ball.

The preceding inequalities provide some simple bounds when the region Ω = BR is
a ball of radius R in R

N and the function ρ(z) ≡ 1 on ∂Ω.

In this case the constants kρ = N/R and kΩ = 1 since the trace weight function is

wρ(x) = c +
kρr

2

2N

where c is a constant. Thus the W 1,1(Ω) trace inequality becomes, from (4.4),
∫

SR

|u| dσ ≤
N

R

∫
BR

|u| dx +

∫
BR

|∇u| dx. (7.1)

Here SR is the boundary of BR.

For N ≥ 3, the various cases described above yield that the boundary traces satisfy
∫

SR

|u|p dσ ≤
N

R
‖u‖p

p + p ‖u‖p−1
q ‖∇u‖r (7.2)

for u ∈ W 1,r(Ω), q = r′(p − 1) and either (i) r ∈ (1, N ], and p ∈ [p0(r), pT (r)], or
(ii) r ∈ (N,∞) and p ≥ 2 − 1/r, or (iii) r = ∞, p > 1. Here each of the norms
on the right hand side is with respect to the ball BR and equality holds here for constant
functions.

When Ω := BR \ B̄1 with R > 1 is the region between balls of radius R and radius
1, then these results yield simple inequalities for both

∫
S1

|u|p dσ and
∫

SR

|u|p dσ as well as
for the integral over the whole boundary. To obtain these inequalities take ρ to be the
characteristic function of either the interior boundary S1, the exterior boundary SR or the
whole boundary respectively. The trace weight functions can be found explicitly in each of
these cases and the corresponding values of kρ will be different, namely:

N

RN − 1
,

NRN−1

RN − 1

N(RN−1 + 1)

RN − 1

respectively but kΩ = 1 for each of these choices of the boundary integral.



12 AUCHMUTY

References

[1] F. Andreu, J.M. Mazou and J.D. Rossi, ”The best constant for the Sobolev trace embedding from
W 1,1(Ω) into L1(∂Ω, dσ)”, Nonlinear Analysis, T.M.A. 59 (2004), 1125-1145.

[2] G. Auchmuty, ”Optimal coercivity inequalities in W 1,p(Ω), Proc. Royal Soc. Edinburgh, 135A,
(2005), 915-933.

[3] J.F. Bonder, J.D. Rossi and R. Ferreira, ”Uniform bounds for the best Sobolev trace constant”,
Advanced Nonlinear Studies, 3 (2003), 181-192.

[4] H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, New
York, (2011).

[5] E. DiBenedetto, Real Analysis, Birkhauser, Boston, (2001).

[6] L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions, CRC Press, Boca
Raton (1992).

[7] T. Giorgi and R.G. Smits, ”Principal eigenvalue estimates via the supremum of the torsion”, Indiana
U Math J. 59 (2010), 987-1011.

[8] P. Grisvard, Elliptic Problems in Non-smooth Domains, Pitman, Boston, (1985).

[9] G. Leoni, A First Course in Sobolev Spaces, American Math Society, Providence, (2009).

[10] F. Maggi, C. Vilani, ”Balls have the worst best Sobolev inequalities”, J. Geom. Anal. 15 (2005),
83–121

[11] M. Motron, ”Around the best constants for the Sobolev trace map from W 1,1(Ω) into L1(∂Ω, dσ)”,
Asymptotic Analysis, 29 (2002), 69-90.

Department of Mathematics, University of Houston, Houston, Tx 77204-3008 USA

E-mail address: auchmuty@uh.edu


