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Highlights

• We devise an unconditionally stable FSI numerical method based on
ALE monolithic formulation.

• On every time step the method is linear.

• Incompressible and slightly compressible neo-Hookean models are nu-
merically compared for a model hemodynamic problem
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An unconditionally stable semi-implicit FSI finite element

method ∗

Alexander Lozovskiy† Maxim A. Olshanskii‡ Victoria Salamatova §

Yuri V. Vassilevski¶

Abstract

The paper addresses the numerical solution of fluid-structure interaction (FSI) prob-
lems involving incompressible viscous Newtonian fluid and hyperelastic material. A well
known challenge in computing FSI systems is to provide an effective time-marching al-
gorithm, which avoids numerical instabilities due to the loose coupling of fluid and
structure motion on the FSI interface. In this work, we introduce a semi-implicit finite
element scheme for an Arbitrary Lagrangian–Eulerian formulation of the fluid–structure
interaction problem. The approach strongly enforces the coupling conditions on the
fluid–structure interface, but requires only a linear problem to be solved on each time
step. Further, we prove that the numerical solution to the fully discrete problem satisfies
the correct energy balance, and the stability estimate follows without any extra model
simplifications or assumptions on the time step. The analysis covers the cases of Saint
Venant–Kirchhoff compressible and incompressible neo-Hookean materials. Results of
several numerical experiments are included to illustrate the properties of the method
and its applicability for the simulation of certain hemodynamic flows. We also experi-
ment with the enforcement of material incompressibility condition in the finite element
via an integral constraint or alternatively letting the Poisson ratio in the compress-
ible model to be close to 1

2 . From these experiments conclusions are drawn concerning
the accuracy of flow statistics prediction for incompressible vs. nearly incompressible
structure models.

1 Introduction

Fluid–structure interaction phenomena is of great importance in many engineering and
life science applications. Among these applications, hemodynamic and cardiovascular FSI
problems received recently much attention, see, e.g., [1, 2, 3]. In this paper, we address the
numerical solution of a fluid-structure interaction problem involving a viscous incompress-
ible fluid and hyperelastic compressible and incompressible materials. This model is often
used to describe blood motion in compliant vessels and the heart.

Two major approaches to the solution of FSI problem can be distinguished: the mono-
lithic approach and partitioned one. In the scope of the monolithic approach [4, 5, 6, 7, 8],
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A semi-explicit monolithic FSI finite element method 2

the fluid and the structure are treated as a single continuum, and the coupling conditions at
interface are implicit for the solution procedure. The partitioned approach [4, 9, 10, 11, 12]
treats the fluid and the structure separately. In the course of simulation, one consequently
solves fluid and structure subproblems, using the computed forces of the one subproblem
as boundary conditions for the other subproblem. One known issue of the partitioned ap-
proach is that the accuracy of satisfying the coupling conditions at the interface between
the fluid and the structure may effect significantly the numerical stability of the method. At
the same time, monolithic approaches are generally more demanding for efficient algebraic
solvers and require more implementation effort if a legacy CFD code is used.

Following a common convention, we call a numerical FSI algorithm strongly coupled,
if the interface conditions are exactly satisfied at every time step. Otherwise, we call it a
loosely or weakly coupled algorithm. It is well-known that a weak coupling may lead to
numerical instabilities due to added-mass effect [13, 14]. Strongly coupled methods are gen-
erally more stable, but computationally more demanding. Note that it is possible to enforce
the strong coupling for partitioned solvers, but it can be expensive due to slow convergence
of iterations between subdomains [15]; see also [16] for optimization based enforcement
of coupling conditions in partitioned solvers. This paper studies a strongly coupled algo-
rithm within a monolithic finite element approach. The reduction of computational costs is
achieved by an extrapolation technique leading to a semi-implicit method, which requires
only one linear problem to be solved on every time step.

Numerical analysis of a finite element method for the FSI problem is challenging due to
the non-linearity of the system and its mixed hyperbolic–parabolic type. Several results on
stability of finite element solutions are known in the literature, and for most of them the
time-stepping scheme has to be implicit in fluid–structure coupling and geometry advancing.
Thus, in [17] energy stability of a second order implicit finite element method was proved.
In the same reference, a stability estimate subject to a time-step restriction was proved
for a semi-implicit algorithm based on the Leap-Frog discretization for the structure and
on the implicit Euler discretization for the fluid. In order to linearize the convection term
of the Navier–Stokes equation, a supplementary fluid problem has to be solved. In [18],
an algorithm based on the Chorin–Temam projection scheme for incompressible flows is
proposed. On each time-step, the algorithm is linear in convection-diffusion and nonlinear
in projection sub-steps because of the implicit coupling to the structure equation. The
stability was proved when the fluid domain is fixed. In the present paper, we show correct
energy balance and prove the unconditional (without a time-step restriction) stability of
a finite-element FSI method, which treats geometric non-linearities in an explicit way and
linearizes fluid inertia terms. The analysis is applied to the fully discrete formulation of a 3D
FSI problem with hyperelastic compressible and incompressible models for the material. We
note that stability of FSI finite element schemes with time-lagged geometric non-linearities
was previously observed in numerical experiments, see, e.g., [19], but the analysis was
available only for simplified FSI problems [20, 21].

Numerical FSI approaches may employ either conforming meshes fitted to fluid-structure
interface or non-conforming (unfitted) meshes [4]. In the present study, we use a mesh fitted
to the structure. The Arbitrary Lagrangian Eulerian (ALE) formulation [22, 23, 24] of the
FSI problem is employed. Both fluid and structure equations are discretized in a reference
domain and so mesh reconstruction is avoided. This limits the present approach to the case
of modest (but not necessarily ‘small’) deformations and does not allow topological changes.

The paper also aims at the application of the developed numerical methodology in
hemodynamic simulations such as the computing of incompressible viscous fluid flow in a
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A semi-explicit monolithic FSI finite element method 3

deformable vessel. This application of FSI numerical techniques received significant at-
tention in the literature, see, e.g., [17, 25, 26, 27]. In numerical simulations, vessel walls
are often modeled using a thin shell approximation, while in reality, the blood vessel wall
thickness can be significant, cf., e.g., [28], and accounting for this is important for obtain-
ing physiologically relevant solutions to hemodynamic problems. Here we treat the vessel
wall as a hyperelastic body. Accurate simulation of mechanical properties of blood vessel
walls such as nonlinear constitutive equation and near incompressibility [29] challenges an
FSI numerical method. While the question of vessel wall compressibility is not ultimately
answered by now, it is often accepted that the wall is an incompressible material. At the
same time, recent experimental research shows that relative compressibility of vessel wall
may be as large as 2-6% under physiological pressure range [30]. Results in [31] show that
the effect of arterial compressibility (about 3%) may lead to notable difference in observed
displacement and stress values. Thus, we experiment numerically with both incompressible
and slightly compressible elasticity models. The results presented in Section 5 show, in
particular, that for a Poisson ratio close to 1

2 a compressible neo-Hookean model repro-
duces the statistics of the incompressible model rather accurately for the monolithic finite
element approach. If the incompressibility constraint for the structure and for the fluid is
enforced weakly in the finite element method, then the corresponding Lagrange multiplier
(having a physical meaning of pressure in fluid domain) should admit discontinuity across
the fluid-structure interface. Globally continuous Lagrange multiplier finite element space
may affect significantly the accuracy of the numerical simulation.

Summarizing, the present paper studies a monolithic strongly coupled finite element
method for the ALE formulation of FSI problem. The proposed scheme is second order
accurate in time and requires solving only a linear system of algebraic equations per time
step. For the first order in time counterpart of the method, we prove the energy stability
without restrictions on time step. Results of the numerical experiments suggest that the
second order variant of the method is also stable. The energy estimate is shown if the fluid
is incompressible Newtonian and the structure is described by Saint Venant–Kirchhoff or
incompressible neo-Hookean constitutive laws. FSI models with incompressible and slightly
compressible neo-Hookean materials are compared in numerical experiments.

The outline of the remainder of the paper is the following. In section 2 we recall the
governing equations for the monolithic ALE formulation and introduce necessary prelimi-
naries. In section 3 we introduce the finite element method and the semi-implicit scheme.
The method is analysed in Section 4, where suitable a priori energy estimates for numerical
solutions are shown. Results of numerical experiments for two-dimensional FSI problems
are presented and discussed in Section 5. The method is implemented using the open source
package Ani2D [32]. Section 6 collects a few closing remarks.

2 FSI model

Consider a time-dependent domain Ω(t) ⊂ RN , N = 2, 3, partitioned into a subdomain
Ωf (t) occupied by fluid and Ωs(t) occupied by solid. Let Γfs(t) := ∂Ωf (t) ∩ ∂Ωs(t) be
the interface where the interaction of the fluid and solid takes place. Denote the reference
domains by

Ωf = Ωf (0), Ωs = Ωs(0), Γfs = Γfs(0),
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A semi-explicit monolithic FSI finite element method 4

and the deformation of the solid medium by

ξs : Ωs × [0, t]→
⋃

t∈[0,T ]

Ωs(t),

with the corresponding displacement us given by us(x, t) := x− ξs(x, t) and velocity vs =
∂tus = −∂tξ

s(x, t).
The fluid dynamics is described by the velocity vector field vf (x, t) and the pressure

function pf (x, t) defined in Ωf (t) for t ∈ [0, T ]. In this paper, we adopt the Arbitrary
Lagrangian-Eulerian formulation by introducing another auxiliary mapping

ξf : Ωf × [0, t]→
⋃

t∈[0,T ]

Ωf (t)

such that ξs = ξf on Γfs. In general, ξf does not follow material trajectories. Instead, it
is defined by a continuous extension of the displacement field to the flow reference domain

uf := Ext(us) = x− ξf (x, t) in Ωf × [0, t]. (1)

Furthermore, assume no-slip no-penetration boundary conditions on the fluid–structure
interface:

vs = vf on Γfs. (2)

Following [5] we consider a monolithic numerical approach using the continuous globally
defined displacement and velocity fields

u =

{
us in Ωs,

uf in Ωf ,
v =

{
vs in Ωs,

vf in Ωf .

The corresponding globally defined deformation gradient is F = I + ∇u. Its determinant
will be denoted by J := det(F).

Denote by ρs and ρf = const the densities of solid and fluid, and by σs, σf the Cauchy
stress tensors, so that J(σs ◦ ξs)F−T is the Piola-Kirchhoff tensor in the structure, σs ◦
ξs(x) := σs(ξs(x)).

The dynamic equations for the fluid and structure in the reference domains read

∂v
∂t

=





ρ−1
s div (J(σs ◦ ξs)F−T ) in Ωs,

(Jρf )−1div (J(σf ◦ ξf )F−T )− (∇v)(F−1(v − ∂u
∂t

)) in Ωf .
(3)

The definition of v in the solid domain gives

∂u
∂t

= v in Ωs. (4)

The fluid is assumed incompressible. The mass conservation of fluid leads to the equation
in the reference domain:

div (JF−1v) = 0 in Ωf . (5)

In addition to (2), the balance of normal stresses provides the second interface condition:

σfF−Tn = σsF−Tn on Γfs. (6)
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A semi-explicit monolithic FSI finite element method 5

The boundary of Ω(0) is subdivided into the structure boundary Γs0 := ∂Ω(0) ∩ ∂Ωs,
fluid Dirichlet and outflow boundaries: ∂Ω(0)∩ ∂Ωf = Γf0 ∪Γout. The governing equations
are complemented with boundary conditions

v = g on Γf0, σfF−Tn = 0 on Γout, u = 0 on Γs0 ∪ Γf0 ∪ Γout, (7)

and initial conditions

u(x, 0) = 0 on Ω(0), v(x, 0) = v0(x) in Ω(0). (8)

We assume the fluid to be Newtonian, with the viscosity parameter µf . In the reference
domain the constitutive relation for the fluid reads

σf = −pfI + µf (∇vF−1 + F−T (∇v)T ) in Ωf . (9)

For the structure we consider two hyperelastic materials. The first one is the compressible
geometrically nonlinear Saint Venant–Kirchhoff material with

σs =
1
J
F(λstr(E)I + 2µsE)FT , (10)

where E = 1
2

(
FTF− I

)
is the Lagrange-Green strain tensor and λs, µs are the Lame con-

stants. The second one is the incompressible neo-Hookean material with

σs = µsFFT − psI, (11)

and a new multiplier ps. The first Piola-Kirchoff tensor for the incompressible material can
be written as

JσsF−T = µsF− JpsF−T .

For the notation convenience, we set ps = 0 in Ωs for the compressible structure and define
the global pressure variable by

p =

{
pf in Ωf ,

ps in Ωs.

Thus, the FSI problem in the reference coordinates consists in finding pressure distribu-
tion p and continuous velocity and displacement fields v, u satisfying the set of equations,
interface and boundary conditions (3)–(9), together with (10) or (11), and subject to a
given extension rule (1).

Before recalling the energy balance of the FSI problem, we note a few identities that
are useful for the design of a numerical method and its analysis. The mass balance yields
in the fluid region the equality

∂J

∂t
+ div (JF−1(v − ∂u

∂t
)) = 0 in Ωf . (12)

The Piola identity div (JF−1) = 0 implies the following equality

div (JF−1v) = J(∇v) : F−T in Ωf , (13)

where A : B :=
∑N

i,j=1AijBij . For the incompressible homogeneous material, i.e. J = 1
and ρs = const, the Piola identity also yields

J(∇v) : F−T = 0 in Ωs. (14)



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

A semi-explicit monolithic FSI finite element method 6

2.1 Energy equality

For the brevity, assume the homogeneous boundary conditions, i.e. g = 0. We make use of
the identity:
∫

Ωf

((w · ∇u)v +
1
2

((div w)uv) dx =
∫

Ωf

1
2

((w · ∇u)v− (w · ∇v)u) dx +
1
2

∫

∂Ωf

(n ·w)uv ds.

(15)
Multiplying the first equality in (3) by ρsv, the second one by Jρfv, integrating over the
reference domain, and employing (15) gives

1
2
d

dt

(∫

Ωs

ρs|v|2 dx + ρf

∫

Ωf

J |v|2 dx

)
− ρf

2

∫

Ωf

∂J

∂t
|v|2 dx

+
∫

Ωs

J(σs ◦ ξs)F−T : ∇v dx +
∫

Ωf

J(σf ◦ ξf )F−T : ∇v dx

− ρf

2

∫

Ωf

div (JF−1(v − ∂u
∂t

)) |v|2 dx +
ρf

2

∫

Γout

v · n|v|2 ds = 0.

The identity (12) leads to some cancellations and we get

1
2
d

dt

(∫

Ωs

ρs|v|2 dx + ρf

∫

Ωf

J |v|2 dx

)
+
∫

Ωs

J(σs ◦ ξs)F−T : ∇v dx

+
∫

Ωf

J(σf ◦ ξf )F−T : ∇v dx +
ρf

2

∫

Γout

v · n|v|2 ds = 0.

For the Saint Venant–Kirchhoff problem, we can rewrite the third term as
∫

Ωs

J(σs ◦ ξs)F−T : ∇v dx =
∫

Ωs

J(σs ◦ ξs)F−T : ∇∂u
∂t

dx

=
∫

Ωs

J(σs ◦ ξs)F−T :
∂F
∂t

dx =
∫

Ωs

F(λstr(E) + 2µsE) :
∂F
∂t

dx

=
∫

Ωs

(λstr(E)I + 2µsE) : FT ∂F
∂t

dx =
1
2

∫

Ωs

(λstr(E)I + 2µsE) :
∂(FTF)
∂t

dx

=
∫

Ωs

(λstr(E)I + 2µsE) :
∂E
∂t

dx =
1
2
d

dt

∫

Ωs

(λstr(E)2 + 2µs|E|2F ) dx .

Here and in the remainder, | . . . |F stands for the Frobenius norm. Using the notation
D̂(v) = 1

2(∇vF−1 +F−T (∇v)T ) for the rate of deformation tensor in the ALE coordinates,
we get with the help of (5) and (13)

∫

Ωf

J(σf ◦ ξf )F−T : ∇v dx = 2µf

∫

Ωf

J |D̂(v)|2F dx.

Therefore, the energy equality in ALE coordinates takes the form

1
2
d

dt

(∫

Ωs

ρs

∣∣∣∣
∂u
∂t

∣∣∣∣
2

dx + ρf

∫

Ωf

J |v|2 dx +
∫

Ωs

(λstr(E)2 + 2µs|E|2F ) dx

)

+ 2µf

∫

Ωf

J |D̂(v)|2F dx +
ρf

2

∫

Γout

v · n|v|2 ds = 0 , (16)
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A semi-explicit monolithic FSI finite element method 7

i.e. the variation of the total system energy is balanced by the fluid viscous dissipation
and the energy rate at the open boundary. For the FSI problem with the incompressible
neo-Hookean material, the energy balance takes the same form with the potential energy
of the structure (third term in (16)) equal

∫
Ωs
µs|F|2F dx. We shall look whether the energy

balance of our numerical method resembles (16).

3 Discretization method

In this section we introduce both time and space discretization of the FSI problem. Treating
the problem in reference coordinates allows us to avoid triangulations and finite element
function spaces dependent on time. For an alternative approach based on space-time finite
element methods see, for example, [33, 34]. Thus, consider a collection of simplexes (trian-
gles in 2D and tetrahedra in 3D), which form a consistent regular triangulation of the refer-
ence domain Ω(0) = Ωs∪Ωf . In the monolithic approach we consider conforming FE spaces
Vh ⊂ H1(Ω(0))N and Qh ⊂ L2(Ω(0)) for trial functions and the following two subspaces
for the test functions: V0

h = {v ∈ Vh : v|Γs0∪Γf0
= 0} and V00

h = {v ∈ V0
h : v|Γsf

= 0}.
We assume that V0

h and Qh form the LBB-stable finite element pair: There exists a mesh-
independent constant c0, such that

inf
qh∈Qh

sup
vh∈V0

h

(qh,div vh)
‖∇vh‖‖qh‖

≥ c0 > 0.

Assuming a constant time step ∆t, we use the notation uk(x) ≈ u(k∆t,x), and similar for
v and p.

To formulate the discretization method, we need some further notations. For a tensor
A ∈ RN×N , we denote its symmetric part as {A}s = 1

2(A + AT ). We shall emphasize the
dependence on a displacement field in F(u) := I +∇u and set

Duv = {(∇v)F−1(u)}s, E(u1,u2) = 1
2

{
F(u1)TF(u2)− I

}
s
,

S(u1,u2) = λstr(E(u1,u2))I + 2µsE(u1,u2).

Note that S(u1,u2) = ST (u1,u2) = S(u2,u1).
Let Jk := det(F(uk)). For given finite element functions f i, i = 0, . . . , k, f̃k denote

extrapolated values at t = (k + 1)∆t, and
[

∂f
∂t

]k
stand for finite difference approximations

of the time derivative at t = k∆t. For the case of the compressible Saint Venant–Kirchhoff
material, the finite element method reads: Find {uk+1,vk+1, pk+1} ∈ V0

h × Vh × Qh such
that vk+1 = gh(·, (k + 1)∆t) on Γf0, vk+1 = 0 on Γs0 and the following equations hold:

∫

Ωs

ρs

[
∂v
∂t

]k+1

ψ dx +
∫

Ωs

F(ũk)S(uk+1, ũk) : ∇ψ dx

+
∫

Ωf

ρf J̃
k

[
∂v
∂t

]k+1

ψ dx +
∫

Ωf

ρf J̃
k(∇vk+1)F−1(ũk)

( ˜
vk −

[
∂u
∂t

]k)
ψ dx

+
∫

Ωf

2µf J̃
kDũkvk+1 : Dũkψ dx−

∫

Ωf

pk+1J̃kF−T (ũk) : ∇ψ dx

+
∫

Ωf

ρf

2

([
∂J

∂t

]k

+ div
(
JkF−1(ũk)(

˜
vk −

[
∂u
∂t

]k

)
))

vk+1ψ dx = 0

(17)
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A semi-explicit monolithic FSI finite element method 8

for all ψ ∈ V0
h, ∫

Ωs

[
∂u
∂t

]k+1

φdx−
∫

Ωs

vk+1φdx = 0 (18)

for all φ ∈ V00
h , and ∫

Ωf

J̃k(∇vk+1) : F−T (ũk)q dx = 0 (19)

for all q ∈ Qh. The integrals over the interface in (17) cancel out due to the interface
condition (6). The coupling condition on Γsf is enforced strongly

[
∂u
∂t

]k+1

= vk+1 on Γsf . (20)

We note that the strong enforcement of the interface condition (20) together with (18) imply
that the equality

[
∂u
∂t

]k+1
= vk+1 is satisfied in the usual sense in Ωs. Equations (17)–(20)

subject to initial conditions and a choice of continuous extension of uk+1 from Ωs onto Ωf

ensuring uk+1 ∈ V0
h define the discrete problem. In our numerical experiments, we shall use

an extension based on auxiliary elasticity equation, see Section 5.
Note that although strong coupling (20) is imposed on the interface, only a linear al-

gebraic system should be solved on each time step. The finite element method (17)–(20)
becomes the second order semi-implicit scheme if one sets

f̃k := 2fk − fk−1,

[
∂f

∂t

]k

:=
3fk − 4fk−1 + fk−2

2∆t
.

In the next section we study the energy stability of the first order finite element scheme
(17)–(20).

Remark 1 The last term in (17) is consistent due to the identity (12) and is added in
the FE formulation to enforce the conservation property of the discretization. While com-
putations show that in practice this term can be skipped, numerical analysis in the next
section benefits from including it. In the analysis of FEM for incompressible Navier-Stokes
equations in the Eulerian description, including this term corresponds to the Temam’s [35]
skew-symmetric form of the convective terms.

Remark 2 The following modifications to the finite element formulation should be made
for the incompressible neo-Hookean material:
(i) Change the domain of integration in the pressure dependent term (sixths term in (17))
to the whole Ω(0), so it now reads:

−
∫

Ωs∪Ωf

pk+1J̃kF−T (ũk) : ∇ψ dx; (21)

(ii) Replace the second term in (17) with

µs

∫

Ωs

F(uk+1) : ∇ψ dx;

(iii) Consider the incompressibility condition in the form of identity (14) and add the fol-
lowing constraint to the finite element formulation:

∫

Ωs

J̃k∇vk+1 : F−T (ũk)q dx = 0 ∀ q ∈ Qh.
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A semi-explicit monolithic FSI finite element method 9

Hence instead of (19) we enforce the constraint in the whole reference domain Ω(0):
∫

Ωs∪Ωf

J̃k(∇vk+1) : F−T (ũk)q dx = 0 ∀ q ∈ Qh. (22)

4 Stability analysis

In this section, we show energy balance and stability estimate for the solution to (17)–(20).
We treat here only the first order method defined by setting

f̃k = fk,

[
∂v
∂t

]k

:=
vk − vk−1

∆t
,

[
∂u
∂t

]k

:=
uk − uk−2

2∆t
. (23)

Moreover, for the clear analysis we make the third term in (17) “more explicit” replacing
it with ∫

Ωf

ρfJ
k−1

[
∂v
∂t

]k+1

ψ dx. (24)

As common in the stability analysis, we consider the homogeneous boundary conditions on
Γf0, i.e. g = 0 in (7).

We first treat the case of the compressible Saint Venant–Kirchhoff material. Note the
following identities:

2
(
E(uk,uk+1)−E(uk−1,uk)

)
= {F(uk)TF(uk+1)}s − {F(uk−1)TF(uk)}s
= {F(uk)TF(uk+1)}s − {F(uk)TF(uk−1)}s
= {F(uk)T (F(uk+1)− F(uk−1))}s
= {F(uk)T (∇uk+1 −∇uk−1)}s.

(25)

Hence due to the symmetry of S it holds

F(uk)S(uk+1,uk) : (∇uk+1 −∇uk−1)

= S(uk+1,uk) : {F(uk)T (∇uk+1 −∇uk−1)}s
= 2S(uk+1,uk) : (E(uk,uk+1)−E(uk−1,uk)). (26)

Now we set in (17)

ψ =





[
∂u
∂t

]k+1

in Ωs,

vk+1 in Ωf .

Thanks to (20), ψ is a suitable test function, i.e. ψ ∈ V0
h. We handle each resulting term

separately and start with the first term in (17):
∫

Ωs

ρs

[
∂v
∂t

]k+1

ψ dx =
∫

Ωs

ρs

(
vk+1 − vk

∆t

)(
uk+1 − uk−1

2∆t

)
dx

=
∫

Ωs

ρs

(
uk+1 − uk − uk−1 + uk−2

(∆t)2

)(
uk+1 − uk−1

2∆t

)
dx

=
1

2∆t

∫

Ωs

ρs

(∣∣∣∣
uk+1 − uk−1

2∆t

∣∣∣∣
2

−
∣∣∣∣
uk − uk−2

2∆t

∣∣∣∣
2
)

dx

+
∆t
2

∫

Ωs

ρs

∣∣∣∣
uk+1 − uk − uk−1 + uk−2

2(∆t)2

∣∣∣∣
2

dx.

(27)
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A semi-explicit monolithic FSI finite element method 10

Thanks to (25) and (26) we obtain for the second term in (17):
∫

Ωs

F(uk)S(uk+1,uk) : ∇ψ dx =
1

∆t

∫

Ωs

S(uk+1,uk) : (E(uk,uk+1)−E(uk−1,uk)) dx

=
λs

2∆t

∫

Ωs

(
[
tr(E(uk,uk+1))

]2
−
[
tr(E(uk−1,uk))

]2
) dx

+
µs

∆t

∫

Ωs

(|E(uk,uk+1)|2F − |E(uk−1,uk)|2F ) dx

+
λs

2∆t

∫

Ωs

[
tr(E(uk,uk+1))− tr(E(uk−1,uk))

]2
dx

+
µs

∆t

∫

Ωs

∣∣∣E(uk,uk+1)−E(uk−1,uk)
∣∣∣
2

F
dx.

(28)

Straightforward computations show for the third term in (17):

∫

Ωf

ρfJ
k−1

[
∂v
∂t

]k+1

ψ dx =
∫

Ωf

ρf

2
Jk|vk+1|2 − Jk−1|vk|2

∆t
dx

−
∫

Ωf

ρf |vk+1|2
2

[
∂J

∂t

]k

dx +
∫

Ωf

∆t ρfJ
k−1

2

∣∣∣∣∣

[
∂v
∂t

]k+1
∣∣∣∣∣

2

dx. (29)

Applying (15) to the fourth (inertia) term in (17) and using boundary and interface condi-
tions give

∫

Ωf

ρfJ
k(∇vk+1)F−1(uk)(vk −

[
∂u
∂t

]k

)ψ dx

= −
∫

Ωf

ρf

2
div

(
JkF−1(uk)(vk −

[
∂u
∂t

]k

)

)
|vk+1|2 dx

+
∫

Γout

ρf

2
vk · n|vk+1|2 ds. (30)

The fifth term in (17) gives
∫

Ωf

µfJ
kDuk(vk+1) : Dukψ dx =

∫

Ωf

µfJ
k
∣∣∣Duk(vk+1)

∣∣∣
2

F
dx ,

and the next pressure term vanishes due to the incompressibility condition (19). Finally,
the last term cancels with similar terms, but opposite signed, in (30) and (29). Substituting
all equalities back into (17), we obtain after some cancellations the following energy balance
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A semi-explicit monolithic FSI finite element method 11

for finite element FSI problem with the first order discretization in time:

1
2

∫

Ωs

ρs

∆t



∣∣∣∣∣

[
∂u
∂t

]k+1
∣∣∣∣∣

2

−
∣∣∣∣∣

[
∂u
∂t

]k
∣∣∣∣∣

2

 dx

+
ρf

2

∫

Ωf

1
∆t

(
Jk|vk+1|2 − Jk−1|vk|2

)
dx





variation of
kinetic energy

+
λs

2∆t

(
‖tr(E(uk,uk+1))‖2Ωs

− ‖tr(E(uk−1,uk))‖2Ωs

)

+
µs

∆t

(
‖E(uk,uk+1)‖2Ωs

− ‖E(uk−1,uk)‖2Ωs

)





variation of
potential energy

+ 2µf

∫

Ωf

Jk
∣∣∣Duk(vk+1)

∣∣∣
2

F
dx

}
energy dissipation
in fluid

+
λs∆t

2
‖ 1

∆t
(
tr(E(uk,uk+1))− tr(E(uk−1,uk))

)
‖2Ωs

+ µs∆t‖
1

∆t
(E(uk,uk+1)−E(uk−1,uk))‖2Ωs

+
ρf (∆t)

2

∫

Ωf

Jk−1

∣∣∣∣∣

[
∂v
∂t

]k+1
∣∣∣∣∣

2

dx

+
∆t
2

∥∥∥∥ρ
1
2
s
uk+1 − uk − uk−1 + uk−2

2(∆t)2

∥∥∥∥
2

Ωs





O(∆t) dissipative
terms

= −ρf

2

∫

Γout

vk · n|vk+1|2 ds .
}

energy flux through
open boundary

Here and further ‖ ·‖Ωs denotes the L2(Ωs) norm. One notes that the above equality resem-
bles the energy balance (16) of the original FSI problem up to several O(∆t) terms. In the
structure these extra terms are always dissipative, while for the fluid we need the following
assumption on the ALE displacement field. Assume that the extension of displacements to
the fluid domain is such that for all k it holds Jk > 0 in Ωf , i.e. the displacements do not

tangle the mesh. For the sake of notation we shall also use ‖ · ‖Ωk
f

:=
(∫

Ωf
Jk| · |2 dx

) 1
2 ,

which defines a k-dependent norm for Jk > 0. The terms in the fourth group on the left-
hand side are non-negative and dropping them changes the equality to inequality. If Γout

is always an outflow boundary or Γout = ∅, then the boundary term is non-negative and
standing with minus sign it can be also dropped. We end up with the inequality:

1
2

∥∥∥∥∥ρ
1
2
s

[
∂u
∂t

]k+1
∥∥∥∥∥

2

Ωs

+
ρf

2
‖vk+1‖2

Ωk
f

+
λs

2
‖tr(E(uk,uk+1))‖2Ωs

+ µs‖E(uk,uk+1)‖2Ωs
+ 2µf (∆t)‖Duk(vk+1)‖2

Ωk
f

≤ 1
2

∥∥∥∥∥ρ
1
2
s

[
∂u
∂t

]k
∥∥∥∥∥

2

Ωs

+
ρf

2
‖vk‖2

Ωk−1
f

+
λs

2
‖tr(E(uk−1,uk))‖2Ωs

+ µs‖E(uk−1,uk)‖2Ωs
.

To define the time-stepping method for k = 0, 1, we set u−2 := u−1 := u0. The energy
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A semi-explicit monolithic FSI finite element method 12

estimate follows if we sum up the above inequalities for k = 0, . . . , N − 1:

1
2

∥∥∥∥∥ρ
1
2
s

[
∂u
∂t

]N
∥∥∥∥∥

2

Ωs

+
λs

2
‖tr(E(uN−1,uN ))‖2Ωs

+ µs‖E(uN−1,uN )‖2Ωs

+
ρf

2
‖vN‖2ΩN−1

f

+ 2µf

N−1∑

k=0

∆t‖Duk(vk+1)‖2
Ωk

f

≤ ρf

2
‖v0‖2Ω0

f
+
λs

2
‖tr(E(u0,u0))‖2Ωs

+ µs‖E(u0,u0)‖2Ωs
. (31)

The analysis for the incompressible neo-Hookean material model follows the same lines.
The second stress tensor term in (17) is different. It now gives:

µs

2∆t

∫

Ωs

F(uk+1) : ∇(uk+1 − uk−1) dx =
µs

2∆t

∫

Ωs

F(uk+1) : (F(uk+1)− F(uk−1)) dx

=
µs

4∆t

∫

Ωs

|F(uk+1)− F(uk−1)|2F dx +
µs

4∆t

∫

Ωs

(
|F(uk+1)|2F − |F(uk−1)|2F

)
dx.

(32)

Similar to (31), the summation over k = 0, . . . , N − 1 gives the a priori estimate:

1
2

∥∥∥∥∥ρ
1
2
s

[
∂u
∂t

]N
∥∥∥∥∥

2

Ωs

+
µs

4
‖F(uN )‖2Ωs

+
ρf

2
‖vN‖2ΩN−1

f

+ 2µf

N−1∑

k=0

∆t‖Duk(vk+1)‖2
Ωk

f

≤ ρf

2
‖v0‖2Ω0

f
+
µs

2
‖F(u0)‖2Ωs

. (33)

We summarize the results in the following theorem.

Theorem 1 Assume that the extension of the finite element displacement field to Ωf is
such that Jk > 0 for all k = 1, . . . , N − 1, and Γout is always the outflow boundary or
Γout = ∅. Then the solution to the finite element method (17)–(20), with extrapolation
and time derivatives defined in (23), (24) satisfies the a priori estimate (31). For the
incompressible material, the changes explained in Remark 2 are applied. In this case, the
numerical solution satisfies the a priori estimate (33).

5 Numerical experiments

This section presents the numerical solution of two model FSI problems. The first problem
is suggested in [36] for the purpose of benchmarking and is commonly used for the assess-
ment of FSI numerical methods. For the second test, we simulate a 2D blood flow in a
compliant vessel with aneurysm and compute flow statistics of interest. The second order
in time variant of the semi-implicit finite element FSI scheme from section 3 is used in all
experiments. For the continuous extension of the displacement field in (1), we use the linear
elasticity equation [37]

−div (λm(div u)I + µm(∇u +∇uT )) = 0 in Ωf , (34)

with space dependent auxiliary parameters λm, µm.
We use P2-P1 (Taylor-Hood) elements for fluid variables and P2 elements for displace-

ments. For the case of incompressible material, we experiment with globally continuous P1
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A semi-explicit monolithic FSI finite element method 13

elements for the Lagrange multiplier space Qh as well as with its extension admitting dis-
continuity across Γfs. An exact sparse factorization solver was applied to handle the linear
algebraic system on each time step. We leave for the future research the development of
preconditioned iterative methods based on ILU factorizations [38] for the resulting algebraic
systems.

5.1 Flexible beam in 2D

We start with the unsteady flexible beam fluid-structure problem suggested in [36] as FSI3
test case. The problem was considered for the purpose of benchmarking by a number of
authors, see [39] for the collection of results.

An absolutely rigid circle of radius r = 0.05 and center (0.2, 0.2) is placed in the two-
dimensional rectangular domain [0, 2.5] × [0, 0.41]. Here and further in section 5.1 we use
meters and seconds for distance and time units. A rectangular structure (a beam) of width
0.02 and length 0.35 with a mid-line passing through the center of the circle parallel to
x-axis is attached to the circle. The fluid part Ωf comprises the whole domain except
the circle and the beam. The solid part Ωs represents the beam only. The statistics of
interest are the x- and y-deflection of the point A(t) of the beam, with initial coordinates
A(0) = (0.6, 0.19), the drag and lift forces FD, FL exerted by the fluid on the whole body,
i.e. the cylinder and the beam, and the frequencies f1 and f2 of x- and y-deflections of the
beam, when a periodic motion is settled.

The beam is treated as a compressible Saint-Venant Kirchoff structure. The fluid and
material parameters are summarized in Table 1. On the inflow boundary the parabolic

Table 1: Fluid and material parameters for FSI3 test

ρs λs µs ρf µf

1 000 kg/m3 8 000 000 Pa 2 000 000 Pa 1 000 kg/m3 1 Pa · s

profile

v1(0, y, t) =
12

0.1681
v(t)y(0.41− y), y ∈ [0, 0.41],

is prescribed, with

v(t) =





1
2

(
1− cos

(
πt

2

))
for t < 2,

1 for t ≥ 2.

The outflow boundary is located at x = 2.5.
To apply the finite element method (17)–(20), we build three conforming meshes in the

reference domain Ωf ∪ Ωs, all of them are fitted to the flow-structure interface and are
locally refined in Ωs and in the vicinity of the beam . The numbers of elements for all three
meshes and corresponding numbers of degrees of freedom are given in Table 2. A zoom of
mesh 2 is shown in Figure 1.

The elasticity parameters in the extension equation (19) were taken ad hoc piecewise
constant in Ωf :

λm(x) =

{
20λs if the cell is adjacent to the beam,
λs otherwise,
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Table 2: Meshes for FSI3 test

# of cells in Ωf # of cells in Ωs # of active DOFs

Mesh 1 8652 162 76557

Mesh 2 17540 334 154242

Mesh 3 35545 658 310997

Figure 1: Deformed (virtual) mesh at t = 7.96, corresponding to the largest displacement
in a cross-flow direction. A part of the domain close to the cylinder and the beam is shown.

µm(x) =

{
20µs if the cell is adjacent to the beam,
µs otherwise.

The increased stiffness for small mesh elements near the beam provides more uniform mesh
deformation over the fluid domain, thus ensuring J ≥ c0 > 0 in Ωf , see [40].

Figure 2: The velocity vector field of the periodic solution at t = 8.

The simulations were run with fixed time steps until the final time t = 8. By the time
t = 4, the computed solution attains an unsteady periodic regime. The velocity field of the
periodic solution computed with Mesh 2 at t = 8 is shown in Figure 2. The street of vertices
detaching from the structure is clearly seen. Figure 3 shows the graphs of displacements
u1(A(t)) and u2(A(t)) on time interval [7, 8].

The flow and structure statistics of interest computed for the three meshes and with time
steps ∆t ∈ {4 · 10−3, 2 · 10−3, 10−3} are summarized in Table 3. They were computed for
the time interval [7, 8]. The mean values of the displacements and forces were calculated by
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Figure 3: The plots of the x- and y-deflections of the beam at point A

Table 3: Computed statistics for FSI3 test for the time interval [7,8], reference intervals
based on various results from [39], and reference values from [41].

Mesh Time step u1(A) · 103 u2(A) · 103 FD FL f1 f2

1 10−3 −2.8± 2.6 1.5± 34.3 432.9± 22.3 0.98± 152.1 10.81 5.48

2 10−3 −3.0± 2.8 1.4± 35.9 453.8± 26.8 2.6± 154.0 10.81 5.41

3 10−3 −3.0± 2.9 1.4± 36.1 458.0± 27.6 3.0± 154.5 10.81 5.40

3 2 · 10−3 −3.0± 2.8 1.4± 35.9 458.4± 26.7 3.2± 152.3 10.87 5.43

3 4 · 10−3 −3.0± 2.8 1.4± 35.7 459.2± 26.1 3.8± 143.0 10.87 5.43

[39] [−3.04,−2.84] [1.28, 1.55] [452.4, 474.9] [1.81, 3.86] [10.84, 11.63] [4.98, 5.46]
±[2.67, 2.87] ±[34.61, 46.63] ±[26.19, 36.63] ±[152.7, 165.9]

[41] −2.91± 2.74 1.46± 35.2 460.3± 27.67 2.41± 157 10.95 5.48

averaging the maximum and the minimum values over the time interval [7, 8]. The periods f1

and f2 are computed by measuring time lapses between peek values. All statistics converge
when the spatial mesh and time step are refined (the best resolution is shown in the bold
font). The converged values are in good agreement with the results from [39] computed
with other approaches, using at least 50000 degrees of freedom, and with results from [41]
computed with higher order finite elements and as many as 525226 degrees of freedom.

5.2 Blood flow in a vessel with aneurysm

Our second test case is a variant of the 2D hemodynamic model problem from [42]. The
computational domain Ω(0) ⊂ [−8, 0]× [0, 8] and the grid are shown in Figure 4. In section
5.2 we use millimeters and seconds for distance and time units. The shaded part is the
structure (the compliant wall of the vessel) and the rest is the fluid domain. The dilatation
of the vessel models an aneurysm. The aneurysm wall is typically thinner than that of
the healthy artery part, which can lead to possible rupture and bleeding. The goal of this
numerical experiment is to demonstrate the reliability of the semi-implicit finite element
method (17)–(20) for the hemodynamic simulations. We shall also study the influence of
elasticity model parameters on the flow dynamics and the wall response for aneurysm.

In [42], the authors look at the difference of flow dynamics depending on whether the
vessels wall is treated as rigid or neo-Hookean compressible material. Here we are interested
in the response of the system towards the variation of material parameters and constitutive
relations describing the elastic structure. In particular, we compare compressible and incom-
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Figure 4: The triangulated computational domain for the model hemodynamic problem.
The upper open part of the boundary is the inflow. The bottom open part of the boundary
serves as the outflow.

pressible elasticity models for the walls. For the compressible case, we use the neo-Hookean
material with Cauchy stress tensor given by

σs =
µs

J2

(
FFT − 1

2
tr (FFT )I

)
+
(
λs +

2µs

3

)
(J − 1)I. (35)

The constitutive relation is different from the St. Venant-Kirchhoff model in (10) and is
not covered by the analysis of the paper. Numerical experiments, however, show stability
of the semi-implicit finite element method in this case as well.

Since we are interested in having a linear system of equations on every time step, we
perform the time discretization of the elasticity part in the case of the neo-Hookean law as
follows. The first Piola-Kirchoff stress tensor is

P =
µs

J

(
F− 1

2
tr (FFT )F−T

)
+
(
λs +

2µs

3

)
J(J − 1)F−T .

In 2D, taking into account

F−T =
1
J

(I + ∇̂u), tr (FFT ) = 2 + 2 div u +∇u : ∇u, J = 1 + div u +
1
2
∇̂u : ∇u,

the first Piola-Kirchoff stress tensor can be rewritten as

P =
µs

J
∇u +

µs

2J2
(∇̂u : ∇u−∇u : ∇u)I− µs

J2
(1 + div u +

1
2
∇u : ∇u)∇̂u

+
(
λs +

2µs

3

)
J(J − 1)F−T
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with ∇̂u =

(
∂u2
∂y −∂u2

∂x

−∂u1
∂y

∂u1
∂x

)
. We use the following linearization at time step k + 1:

Pk+1 ≈ µs

J̃k
∇uk+1 +

µs

2(J̃k)2
((∇̂ũk −∇ũk) : ∇uk+1)I

− µs

(J̃k)2
(1 + div ũk +

1
2
∇ũk : ∇ũk)∇̂uk+1

+
(
λs +

2µs

3

)

(

1 +
∂̃u2

∂y

)k
∂u1

∂x

k+1

− ∂̃u2

∂x

k
∂u1

∂y

k+1

+
∂u2

∂y

k+1


 (I + ∇̂ũk).

In the incompressible case, we use the elasticity model defined in (11). We take the same µs

for both models, and vary λs in (35) to change the response to compressional deformations.
In the limit λs →∞, the above neo-Hookean model is expected to behave similarly to the
incompressible one with respect to compressional deformations. We shall see that this is
the case in the discrete setting only if one allows finite element Lagrange multiplier to be
discontinuous across Γfs.

Figure 5: Both plots show the evolution of the area of Ωs for different models of vessels wall:
neo-Hookean compressible and neo-Hookean incompressible. The bottom plot excludes the
incompressible case and shows the area evolution for the other models in a different scale.

Following [42], we impose the pulsatile incoming flow according to

v1(0, y, t) = −50(8− y)(y − 6)(1 + 0.75 sin(2πt)), 6 ≤ y ≤ 8.

The upper and lower ends of the artery walls are fixed. The flow and material parameters are
given in Table 4. The values of ρs, ρf , and µf are taken from [42], while the shear modulus
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µs is taken from [43], where it was experimentally measured for a dog’s artery. The time step
is equal to 10−3. Finally, for the extension equation (34), we set µm = µs and λm = 4λs.
For the compressible material, the second parameter was varied: λs ∈ {104, 106, 108} kPa.

Table 4: Fluid and material parameters for the blood flow in a vessel test

ρs µs ρf µf

1.12 · 103 kg/m3 270000 Pa 1.035 · 103 kg/m3 3.4983 · 10−3 Pa · s

The corresponding Poisson’s ratios ν = 1
2λs/(λs + µs) are equal to 0.4869, 0.499865 and

0.49999865, respectively.
First we compute the area of the solid domain over the time interval [1, 3] for different

elasticity models. Figure 5 shows how the area of the solid domain changes over time. In this
figure and further in the text, P 1 marks results with globally continuous P1 space Qh, while
P 1

disc marks results with Qh discontinuous across Γfs. Two phenomena become apparent.
First, for the large values of the second elasticity parameter λs, the neo-Hookean compress-
ible model produces minor variations of the walls volume comparable to those shown by
the incompressible model with discontinuous finite element Lagrange multiplier. Otherwise,
using globally continuous P1 elements for Qh space leads to a noticeable deviation of the
structure area from the reference value. This phenomena is numerical and results from
the inconsistency between the continuity of functions in Qh and the non-matching of the
interface values of fluid pressure and the multiplier ph in the structure. One may expect the
numerical inconsistency to decay for a finer mesh. This is what experiments demonstrate.
Indeed, Figure 6 shows the variation of area(Ωs) for the mesh shown in Figure 4 and for
a finer mesh with 3 and 5 layers of triangles in the aneurysm and the healthy part of the
vessel wall, respectively. The mesh in the fluid domain was correspondingly modified to
match the refined mesh in Ωs. The results in Figure 6 suggest the mesh-convergence of
the finite element incompressible model to the ‘true’ incompressible limit (the ‘reference’
is the area in the incompressible limit). The second phenomena clearly seen in Figure 5 is

Figure 6: The plot demonstrates the improvement in the area conservation by the finite
element incompressible model if the mesh is refined.

the development of non-physical oscillations for λs = 108 kPa. These oscillations are small
in amplitude (note the scaling of the ‘area’ axis). They may result from solving algebraic
systems with poor conditioned matrices in finite precision arithmetics. A closer look at this
phenomena requires additional studies. Such studies will be done elsewhere. We remark
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that we also experimented with the enforcement of the incompressibility condition through
the linearized J − 1 = 0 condition and using the same space for the finite element Lagrange
multiplier. We observed results close to those computed with the enforcement of the incom-
pressibility condition using (22), but we have no analysis of thus modified finite element
method.

Wall shear stress (WSS) values is another statistic of common interest. According to
[44] measuring WSS peak values along the vessel wall is crucial in estimating the risk of
both aneurysm formation in the initial stages and the eventual rupture. In Figure 7, we
present the maximum and the average of the absolute values of WSS evaluated along the
dilatation wall. The overprediction of the WSS is seen for the incompressible case, if globally
continuous finite element Lagrange multiplier is used.

Figure 7: The absolute value of the wall shear stress on the inside of the aneurysm wall;
Top: maximum along the wall; Bottom: average along the wall.

6 Conclusion

In this paper we focused on the numerical model of FSI involving incompressible viscous
Newtonian fluid and hyperelastic compressible or incompressible material. The monolithic
finite element method based on Arbitrary Lagrangian–Eulerian formulation was addressed.
Within this approach the fluid and solid equations are discretized in a triangulated reference
domain. We introduced the semi-explicit time discretization, which leads to a linear system
to be solved on every time step and the strong enforcement of coupling conditions on the
fluid-structure interface. This yields the numerically stable FSI method which avoids inner
iterations between subdomains. The energy balance and stability estimate for the numerical
solutions were shown in the fully discrete setting and without any model simplifications or
time-step restrictions. An assumption was that the ALE displacement field in the fluid
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domain should provide an untangled (virtual) triangulation. This may limit the method to
simulations of problems where the structure displacements are moderate and no topological
changes occur. The finite element method was numerically tested on the benchmark FSI3
problem from [39] and the model hemodynamic problem for the flow in the complaint vessel
with aneurysm [42]. The numerical results confirmed the stability and numerical efficiency
of the FSI algorithm.

Since our approach treats compressible and incompressible materials in a unified man-
ner, we experimented with the dependence of flow statistics on the choice of the model and
parameters of the model. We found that in the finite element setting, when the incom-
pressibility constraint is enforced weakly using globally continuous Lagrange multiplier, the
numerical inconsistency may lead to noticeable errors in structure volume and predicted
wall shear stresses. Computed results for a compressible material with Poisson ratio ap-
proaching 1

2 were found to be close to those for the purely incompressible case with the
numerically consistent choice of discontinuous at interface Γfs Lagrange multipliers.
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