
On Young towers asso
iated with in�nite measurepreserving transformationsH. Bruin∗, M. Ni
ol†, D. Terhesiu‡June 18, 2009Abstra
tFor a σ-�nite measure preserving dynami
al system (X,µ, T ), we formulate ne
-essary and su�
ient 
onditions for a Young tower (∆, ν, F ) to be a (measure the-oreti
) extension of the original system. Be
ause F is pointwise dual ergodi
 by
onstru
tion, one immediate 
onsequen
e of these 
onditions is that the DarlingKa
 theorem 
arries over from F to T . One advantage of the Darling Ka
 theo-rem in terms of Young towers is that su�
ient 
onditions 
an be read o� from thetail behaviour and we illustrate this with relevant examples. Furthermore, any twoYoung towers with a 
ommon fa
tor T , have return time distributions with tails ofthe same order.1 Introdu
tionIf T is a 
onservative, ergodi
 measure preserving transformation (
.e.m.p.t.) ofan in�nite measure spa
e (X,B, µ), then Birkho�'s Ergodi
 Theorem is not veryinformative about the asymptoti
 behavior of the ergodi
 sums Sn(f) =
∑n−1

k=0 f ◦T
ksin
e, in 
ontrast to the �nite measure 
ase, for all f ∈ L1(µ)

Sn(f)

n
→ 0 µ-a.e. as n→ ∞.In fa
t, as proved by Aaronson in [1, Theorem 2.4.2℄, for an in�nite 
.e.m.p.t. of

(X,B, µ) there are no 
onstants cn > 0 su
h that for all f ∈ L1(µ)

Sn(f)

cn
→

∫

X
fdµ µ-a.e. as n→ ∞.Still, for 
ertain in�nite measure preserving transformations T of (X,B, µ), thereexist 
onstants an su
h that for all f ∈ L1(µ), a−1

n Sn(f) 
onverges in distribution toa non-trivial limit (see §3.2 − §3.6 in [1℄ for a des
ription of the general setting andexamples).Representative systems of this kind have been found within the 
lass of in�nitemeasure preserving transformations with a �nite number of indi�erent �xed points
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or orbits (see [1, Chapter 4℄ and referen
es therein; see also [3, 19, 20, 23, 24, 16,13, 12, 9℄). A standard example is the Pomeau-Manneville (PM) map. For a �xed
α ≥ 0, this map is given by

T : [0, 1] 	, T (x) = x+ x1+α (mod 1),and it has an indi�erent �xed point at 0. It is well known that T admits a uniquea.
.i.m. µ ≪ m (m is Lebesgue) whi
h is �nite for α < 1 and in�nite for α ≥ 1.In the works 
ited above, it has been shown that a distributional limit theorem (ofDarling Ka
 type) holds for PM maps at the threshold value α = 1 (
alled thebarely in�nite measure 
ase in [3℄). In probabilisti
 terms this is a weak law of largenumbers for α = 1: for all f ∈ L1(µ) with µ(f) 6= 0 and every ǫ > 0

lim
n→∞

ν(A ∩ {x : |a−1
n Sn(f)(x) − µ(f)| ≥ ǫ}) = 0, (1)where an = n/ log n, ν is any probability measure ν ≪ µ and A ∈ B([0, 1]) with

0 < µ(A) <∞. Distributional limit theorems for transformations similar to the oneabove have been generalized to 
ertain in�nite measure sets at the threshold value
α = 1 in [3, 16℄. Under further 
onditions, distributional limit theorems for theo

upation times of in�nite measure sets asso
iated with transformations similar tothe one above have been obtained in [3, 16, 24℄.In this work we model in�nite measure preserving transformations via Youngtowers, derive a new version of the Darling Ka
 (DK) theorem and argue for itse�
ient appli
ation in some parti
ular examples.A
knowledgement: We would like to thank the referee whose 
omments havehelped to improve the presentation of this paper 
onsiderably.2 Main results and ba
kground reviewThe study of the ergodi
 properties of dynami
al systems by means of indu
ed trans-formations and tower (sky-s
raper) 
onstru
tions goes ba
k to Renyi, Kakutani andRohlin. Originally these were formulated for �rst return maps TE(x) = TϕE(x)(x)and �rst return times ϕE(x) = min{j ≥ 1 : T j(x) ∈ E}, whenever de�ned. How-ever, return times R that are not ne
essarily �rst return times 
an be used as well,and makes the method more widely appli
able. Young in [17, 18℄ gave an axiomati
approa
h, introdu
ing 
onditions on distortion in terms of separation times, see(YT6) below. It is her approa
h that we will follow in this paper, see Se
tion 3 fordetails. Our main aim in this work is to formulate ne
essary and su�
ient 
onditionsthat ensure that the invariant measure of the tower system proje
ts to the σ-�niteinvariant measure of the original system. Building on the results of Zweimüller [21℄we show the following:Theorem 2.1. Let T be a non-singular, ergodi
 transformation of (X,B,m) with a
σ-�nite invariant measure µ ≪ m. Suppose that T has a Young tower des
ription
(∆,B(∆), F,m′) with base map (∆0, T

R,m0) and ∫

Rdm0 = ∞ and fa
tor map
π : ∆ → X. Furthermore, let ν ≪ m′ be an F -invariant measure.Then µ = π∗ν (up to a multipli
ative 
onstant) if and only iffor every set E ⊆ ∆0, 0 < π∗ν(E) <∞ and for indu
ing time

τ : E → N given by (TR)E = (TE)τ we have ∫

E τdm <∞.
(2)
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We emphasize that TE and (TR)E are the �rst return maps to E under T and
TR respe
tively; if TR happens to be the �rst return map to ∆0, then τ ≡ 1 and (2)holds trivially. If a YT satisfying (2) is found, it is immediate that F and hen
e Tis pointwise dual ergodi
 and ∆0 is a Darling Ka
 set for the Young tower (∆, F ),see Lemma 4.5. To state further 
onsequen
es of the above theorem, we �rst re
allsome important tools of in�nite ergodi
 theory.2.1 Prerequisites from in�nite ergodi
 theoryNotation. We write an ∼ bn if an

bn
→ 1 as n → ∞ and an ∝ bn if an

bn
→ c as

n → ∞ for some 0 < c < ∞. In the latter 
ase we 
all the sequen
es (an) and
(bn) asymptoti
ally equivalent. In�nite σ-�nite measures are only determined up toa positive multipli
ative 
onstant, and this means that some limits are only takenup to a multipli
ative 
onstant, see e.g. Remark 2.2 and Proposition 2.5 below.A fun
tion a : (c0,∞) → (0,∞) (or a sequen
e interpreted as t 7→ a[t]) is slowlyvarying at ∞ if a is Borel measurable and a(ct)

a(t) → 1 as t → ∞. A fun
tion b :

(c0,∞) → (0,∞) is regularly varying at ∞ with index γ, denoted as b ∈ Rγ , if
b(t) = tγa(t) with a(t) slowly varying at in�nity.When T is a 
.e.m.p.t. of the (σ-�nite) in�nite measure spa
e (X,B, µ), distributional
hara
terizations of T are often given in terms of a referen
e set Y of �nite measure,for instan
e Darling Ka
 type theorems in [1, 16, 23℄. Essentially, Y is a 
andidatefor being a suitable referen
e set if its wandering rate

wn(Y ) := µ(∪n−1
k=0T

−kY ) =

n−1
∑

k=0

µ(Y ∩ {ϕY > k})belongs to Rγ for some γ ∈ [0, 1] (see for instan
e [3, 16, 23℄).The asymptoti
s of the wandering rate (wn(Y )) depend on the set Y . However,for some transformations T of (X,B, µ) the wandering rates are related so that forall A,B ∈ B, 0 < µ(A), µ(B) <∞ we have wn(A) ∝ wn(B). In this situation wn(A)is a 
hara
teristi
 of the system (X,T, µ); the wandering rate wn(T ) of the systemis any sequen
e satisfying wn(T ) ∝ wn(A). One su
h situation is given by pointwisedual ergodi
 (p.d.e.) transformations, see §3 in [1℄. A 
onservative ergodi
 measurepreserving transformation T of (X,B, µ) is 
alled pointwise dual ergodi
 if there is apositive sequen
e {an(T )}n≥1, 
alled return sequen
e, su
h that for all f ∈ L1(µ)

1

an(T )

n−1
∑

k=0

T̂
k(f) →

∫

X
fdµ, µ-a.e. as n→ ∞. (3)Here T̂ : L1(µ) 	 is the asso
iated dual operator de�ned by

∫

X
T̂f · gdµ =

∫

X
f · (g ◦ T )dµfor f ∈ L1(µ) and g ∈ L∞(µ). Many proofs in the literature on pointwise ergodi
duality require that ∫

X fdµ > 0, and we will make this assumption throughout thispaper.Remark 2.2. As a 
onsequen
e of [1, Theorem 3.3.1 and Proposition 3.7.1℄ fora p.d.e. transformation, the sequen
e an(T ) in (3) above is uniquely determined3



up to asymptoti
 equivalen
e, just as the σ-�nite measure is determined up to amultipli
ative 
onstant. On
e mat
hing 
hoi
es of an(T ) and µ are made, (3) holdsfor all f ∈ L1(µ).The set A ∈ B, 0 < µ(A) < ∞ is a Darling Ka
 set for T if the 
onvergen
e in(3) takes pla
e uniformly almost everywhere on A for the indi
ator fun
tion f = 1A.The Darling-Ka
 (DK) property is dire
tly linked to pointwise dual ergodi
ity.More pre
isely, a

ording to [1, Proposition 3.7.5℄, if T is a 
.e.m.p.t. of (X,B, µ)and T has a Darling-Ka
 set, then T is pointwise dual ergodi
.Both the return sequen
e and the wandering rate of a p.d.e. transformation 
anbe obtained dire
tly by estimating these quantities for its 
orresponding measuretheoreti
 extensions.De�nition 2.3. Given that (X ′,B′, µ′, T ′) and (X,B, µ, T ) are measure preservingtransformations, T ′ is said to be a measure theoreti
 extension of T if there exist amap Θ : X ′ → X and some c > 0 su
h that
Θ−1B ⊂ B′, Θ ◦ T ′ = T ◦ Θ and µ′(Θ−1A) = cµ(A) for all A ∈ B.In this 
ase the map T is said to be a fa
tor of T ′ with fa
tor map Θ.A

ording to [1, Proposition 3.7.6℄ and [15℄, any fa
tor T of a p.d.e. transforma-tion T ′ is also p.d.e. Furthermore, wn(T ′) ∝ wn(T ) and an(T ) ∝ an(T

′).As proved in [1℄, in some 
ases an estimate of the wandering rate wn(T ) of ap.d.e. transformation gives an immediate estimate of its return sequen
e an(T ).Lemma 2.4. [1, Proposition 3.8.7℄ Let T be a p.d.e. transformation and supposethat A is a Darling-Ka
 set su
h that wn(A) ∈ Rγ for some γ ∈ [0, 1]. Then
an(T ) ∝

n

wn(A)
∈ R1−γ .The sequen
e (Un)n≥1 on X is said to 
onverge strongly in distribution to a ran-dom variable U written as Un =⇒L(µ) U , if Un =⇒P U for all probability measures

P ≪ µ.A DK type theorem for p.d.e. transformations (see also [16℄ for a di�erent proofof the same statement) reads as followsProposition 2.5 (Corollary 3.7.3, [1℄). If T is a pointwise dual ergodi
 transforma-tion of (X,B, µ) and the return sequen
e an(T ) ∈ Rγ for some γ ∈ [0, 1] then forevery f ∈ L1(µ) with µ(f) > 0

1

an(T )

n−1
∑

k=0

f ◦ T k =⇒L(µ) Yγ

∫

X
fdµ.where Yγ the normalized Mittag-Le�er distribution of order γ.2.2 The Darling-Ka
 Theorem and tail behavior.After establishing the p.d.e. property of the Young tower map F (see Lemma 4.4below and its proof), we show that one 
onsequen
e of Theorem 2.1 (together withresults re
alled in the previous se
tion) is the following version of the DK theorem:4



Corollary 2.6. Suppose that (X,B, T,m) and (∆,B(∆), F,m′) satisfy the 
ondi-tions (2) of Theorem 2.1. Let ν be the F -invariant measure and let µ = π∗ν. If
m0({R > n}) ∈ R−β for some β ∈ [0, 1], then:i1) for all f̂ ∈ L1(ν), ν(f̂ ) 6= 0, we have SF

n (f̂)
an

=⇒L(ν) Yβν(f̂);i2) for all f ∈ L1(µ), µ(f) 6= 0, we have ST
n (f)
an

=⇒L(µ) Yβµ(f),where an ∈ Rβ and Yβ is a random variable distributed a

ording to the Mittag-Le�er distribution.One interesting 
onsequen
e of Theorem 2.1 
on
erns the asymptoti
 tail be-havior of the YTs asso
iated with in�nite measure preserving transformations thathas no analog in the �nite measure 
ase. This result, whi
h provides a version of[1, Proposition 5.4.5℄ formulated in terms of renewal sequen
es for general Markovtowers, states:Corollary 2.7. Let T be a non-singular, ergodi
 transformation of (X,B,m) andassume that T admits an in�nite, σ-�nite invariant measure µ ≪ m. Suppose that
T admits two Young towers (∆1,B(∆1), F1,m

′
1) with base map (∆01

, TR1 ,m01
) and

(∆2, B(∆2), F2,m
′
2), respe
tively with base map (∆02

, TR2 ,m02
).If the base map of ea
h tower satis�es the 
onditions (2) of Theorem 2.1 andif m01

({R1 > n}) ∈ R−β for some β ∈ [0, 1], then m02
({R2 > n}) ∈ R−β. Inparti
ular, if m01

({R1 > n}) ∝ n−β for some β ∈ (0, 1], then
m01

({R1 > n}) ∝ m02
({R2 > n}) ∝ n−β.Young towers 
an be found for many σ-�nite measure preserving systems in anydimension, also when no a priori Markov partition is available. Due to the Markovstru
ture of the YT, pointwise dual ergodi
ity (whi
h is, in general, hard to 
he
k)of these systems 
an be immediately established via [1, Propositions 3.7.5 and 3.7.6℄or [2℄. Furthermore, as Corollary 2.6 establishes, su�
ient 
onditions for the DKtheorem are read o� dire
tly from the tail behavior of the return time sequen
e.Previously, Zweimüller proved the p.d.e. property for in�nite measure preservingpie
ewise monotone interval maps with indi�erent �xed points in [20℄ that are notMarkov. He used a �rst return map TY to an interval Y that is bounded awayfrom the neutral �xed points. As TY has no Markov partition, he built a 
anoni
alMarkov extension (Hofbauer tower) over (Y, TY ) to establish and analyze the TY -invariant absolutely 
ontinuous measure.1 Alternatively, as observed in [7℄, well-
hosen �rst return maps within the 
anoni
al Markov extension of an interval map

(I, T ) produ
e an indu
ed Markov map over (I, T ), for whi
h a Young tower 
an bebuilt. From either approa
h one 
an 
on
lude that (I, T ) is a pointwise dual ergodi
transformation w.r.t. its σ-�nite invariant measure µ.2 In order to establish Darling-Ka
 type theorems further spe
i�
 information about the the map in question isrequired. More pre
isely, one needs to establish the regular variation of the returnsequen
e an(T ), whi
h is a ne
essary 
ondition (see e.g. [25℄). We noti
e that forthe 
lass of maps 
onsidered in [20℄, the regular variation of an(T ) 
an be veri�edusing parti
ular properties of the original map and not of the extension.1Proving �niteness of this measure requires detailed information of the map T .2However, there are (logisti
) maps for whi
h µ(Y ) = ∞ for every nondegenerate interval Y , see [4℄;hen
e Darling-Ka
 sets, if they exist, must be more 
ompli
ated than intervals in this 
ase.5



The p.d.e. property in the DK theorem 
an sometimes be repla
ed by other easierto 
he
k 
onditions (see [16, 23℄) and in this sense 
onsidering a spe
ial extensionthat establishes this property be
omes needless.We noti
e that Zweimüller's version of the DK theorem [23, Theorem 2.1℄ is moregeneral and 
overs 
ases that 
annot be 
overed by earlier the version [16, Theorem1℄. However, in both versions, the regular variation (with some index β ≤ 1) ofthe wandering rate of a spe
ial referen
e set seems to be essential. This regularlyvarying 
ondition is not always easy to 
he
k. In Se
tion 5 we 
onsider an examplebased on Example 7.1 in [16℄, where the regular variation of the wandering rateof the spe
ial referen
e set Y (as de�ned in [16℄) is nontrivial to establish via themethods of [16, 23℄. As we argue in Se
tion 5, this example 
an be easily dealt withvia Corollary 2.6.3 Young towers with non-integrable return timeLet N = {0, 1, 2, 3, 4, . . . } and N
∗ = {1, 2, 3, 4, . . . }. A transformation (X,B, T,m)is non-singular w.r.t. m if T is m-measurable and m(A) = 0 implies m(T−1A) = 0for all A ∈ B.Suppose T : X → X is an ergodi
 non-singular transformation with respe
t to areferen
e measurem (m is not ne
essarily invariant). A Young Tower for (X,B, T,m)is a quartet (∆,B(∆), F,m

′

) with the following properties:(YT1) There exist a set ∆0 ⊆ X with 0 < m(∆0) < ∞ and a 
ountable partition
P0 := {∆0,i}i∈N of ∆0 with m(∆0,i) > 0 for ea
h i. Let m0 := m|∆0

.(YT2) There is a return time fun
tion R : ∆0 → N
∗ whi
h is 
onstant on ea
h ∆0,i,

R|∆0,i
= Ri and g.c.d.{Ri} = 1. We also assume that TRi(∆0,i) = ∆0 for all i.(YT3) The tower ∆ over T is the set

∆ := {(y, l) ∈ ∆0 × N : 0 ≤ l < R(y)}with partition P := {∆l,i} where ∆l,i = {(y, l) : y ∈ ∆0,i, l < R(y)}.(YT4) The dynami
s F : ∆ 	 on the tower is given by
F (y, l) =

{

(y, l + 1), if R(y) > l + 1,

(TR(y), 0), otherwise.The proje
tion
π : ∆ → X, π(y, l) = T lyde�nes a semi-
onjuga
y T ◦ π = π ◦ F .(YT5) The measure m′ on ∆ is obtained by 
opying m0 on ea
h level, i.e., m′ :=

m0×dl where dl is a 
ounting measure. Noti
e thatm′|∆0
= m0 andm′(∆l,i) =

m0(∆0,i).(YT6) The partition P := {∆l,i} is a generating m′-measurable partition. For x, y ∈
∆0, let

s(x, y) = min{n ≥ 0 : (FR)n(x), (FR)n(y) lie in distin
t elements of P}be the separation time of x and y. There exist 
onstants C > 0 and 0 < θ < 1su
h that for all x, y ∈ ∆0,i and all i
∣

∣

∣
log

dm0

dm|∆0,i
◦ FR

(x) − log
dm0

dm|∆0,i
◦ FR

(y)
∣

∣

∣
≤ Cθs(F

R(x),FR(y)).6



This axiomati
 stru
ture was introdu
ed by L.-S. Young in [17, 18℄ to studystatisti
al properties of a (probability measure preserving) non-uniformly hyperboli
system, by isolating the uniformly hyperboli
 system FR : ∆0 → ∆0 and using thestru
ture of the tower and the height fun
tion R to make statements about thesystem T : X → X.If the return fun
tion R is integrable w.r.t. m, then F admits an exa
t invariantprobability measure ν equivalent to m′ (see the proof of [18, Theorem 1℄). The mea-sure µ = π∗ν is then an invariant probability measure on (T,X) whi
h is absolutely
ontinuous with respe
t to m. Note that π∗ν is ne
essarily a �nite a.
.i.m. for T .Furthermore, statisti
al properties of T 
an be inferred from those of F (see forinstan
e §6 and §7 in [18℄).To study in�nite measure preserving transformations (X,T, µ) (in parti
ular, toobtain distributional limit theorems for T ) using properties of the 
orrespondingtower (∆, F,m), further 
lari�
ation about the relationship between the T -invariantand F -invariant measures is required.3.1 σ-�nite measures for FIn this se
tion we formulate a partial version of [18, Theorem 1℄ for the 
ase of anon-integrable R, see [18, �5℄ for a 
omplete version. A non-singular transformation
(X,T, α), where α is a generating measurable partition, is said to be Markov ifi) T satis�es the Markov property, i.e., m(TA∩B) > 0 ⇒ B ⊆ TA (mod m) for all
A,B ∈ α, andii) T is lo
ally invertible, i.e., for all A ∈ α,m(A) > 0, T : A → TA is one-to-oneand T−1 : TA→ A is measurable.A Markov map (X,B,m, T, α) is aperiodi
 if for all A,B ∈ α, there exist an N ∈ Nsu
h that m(A ∩ T−nB) > 0 for all n ≥ N .Proposition 3.1. Let (∆, F,m′) be a YT for some non-singular dynami
al system
(X,T,m). Let P = {∆l,i} be the partition of ∆ des
ribed above. If ∫

Rdm0 = ∞then1. F admits an in�nite, but σ-�nite invariant measure ν ≪ m′ su
h that dν
dm′ isbounded and bounded away from zero.2. The system (∆,B(∆), F,m′,P) is aperiodi
.Proof. This proof is based on that of [18, Theorem 1℄.

i) S �nite FR-invariant measure ν0 ≪ m|∆0
on ∆0 with dν0

dm0
bounded andbounded away from 0. is obtained, exa
tly as in the 
ase of integrable R, i.e., usingan argument based on the Arzela-As
oli Theorem (see the proof of [18, Theorem 1℄).The measure ν(A) :=

∑∞
l=0 ν0(F

−lA ∩ {R > l}) is F -invariant, absolutely 
on-tinuous with respe
t to m′ and σ-�nite invariant. This measure is not �nite sin
e
∫

Rdm0 = ∞ and thus ν(∆) = ∞.
ii) It is 
lear that (∆,B(∆), F,m′,P) is a Markov map. Aperiodi
ity followsfrom g.c.d.{Ri} = 1 by the standard argument, whi
h we re
all here for 
omplete-ness. Sin
e 1∆0

(x)R(x) = 1∆0
(x)ϕ∆0

(x) for all x and g.c.d.{Ri} = 1 we have that
g.c.d.{ϕ∆0

(x) : 0 < 1∆0
(x)ϕ∆0

(x) < ∞} = 1. Thus, for all [A] ∈ P, there existan N ∈ N su
h that [A] ∩ F−n(∆0) 6= ∅ for all n ≥ N . Sin
e we also know thatfor all B ∈ P, there exist N ′ ∈ N su
h that ∆0 ∩ F−N ′

([B]) 6= ∅, the aperiodi
ityfollows. 7



If in the setting of this proposition, ∫

Rdm0 <∞, then the resulting F -invariantmeasure ν ≪ m′ is �nite, and µ = (
∫

R dν
dm′m0)

−1π∗ν is an absolutely 
ontinuous
T -invariant probability measure.If ∫

Rdm0 = ∞, then sin
e ν is always σ-�nite, the measure π∗ν is still anabsolutely 
ontinuous T -invariant measure for T . This is an immediate 
onsequen
eof the fa
t that ν ≪ m is invariant for F; see also [21, Proposition 1.1℄ for therelationship between the invariant measures of a general indu
ed transformation TRand that of the original system. However, it is not always true that π∗ν is a σ-�nitemeasure for T .Further 
onditions are required for a 
anoni
al link between the T -invariant mea-sure and the proje
tion of F -invariant measures.3.2 σ-�nite measures for TIn this se
tion we give 
onditions under whi
h the σ-�nite measure ν on the YTproje
ts to a σ-�nite measure µ = π∗ν on (X,T ). We start with example showingthat this is not automati
: the YT 
onstru
tion 
an produ
e an in�nite T -invariantmeasure whi
h is not σ-�nite, if a non-integrable return time fun
tion is suitably
hosen (see also a similar Example 2.2 in [21℄).Example 1. Let T : [0, 1] → [0, 1] be the doubling map T (x) = 2x mod 1.The 
ountable partition {In}, where In = ( 1
2n+1 ,

1
2n ] is Markov for T . Subdivideea
h interval In into 22n intervals of equal length and 
all them In,j. It follows that

m(In,j) = 1/2n+2n and ∑

jm(In,j) = m(In) = 1/2n.Let ∆0 = (0, 1] and 
onsider the 
ountable partition {∆0,i} := {In,j}. De�ne
R : ∆ → N su
h that R|In,j

= n + 2n. This 
hoi
e gives TR(In,j) = ∆0 and thus
(Y T1) and (Y T2) are veri�ed. Noti
e that (Y T6) is trivially satis�ed for m0 := mbe
ause T is expanding and linear on ea
h bran
h. Furthermore, it is obvious thatthe TR-invariant measure is exa
tly m. Thus, one obtains the exa
t form of thetower F by applying (Y T3), (Y T4) and (Y T5). Also, sin
e ∑

jm(In,j) = 1/2n, onehas
∫

Rdm =
∑

n

∑

j

R|In,j
m(In,j) =

∑

n

(n+ 2n)
∑

j

m(In,j) =
∑

n

n+ 2n

2n
= ∞.So, we are in the non-integrable 
ase. By Proposition 3.1 we know that F admitsan in�nite, but σ-�nite invariant measure ν ≪ m given by ν(A) :=

∑∞
l=0m(F−lA∩

{R > l}).Sin
e F−l ◦ π−1 = π−1 ◦ T−l
1 , by proje
ting ba
k with π we have

π∗ν(E) = ν(π−1E) =
∑

l≥0

m({R > l}) ∩ F−lπ−1E)

=
∑

l≥0

m(π−1({R > l}) ∩ T−lE))

=
∑

l≥0

m({R > l} ∩ T−lE) (4)and thus π∗ν([0, 1]) = ∞. It is always the 
ase that the measure µ := π∗ν isinvariant for T and µ ≪ m. However, in this parti
ular 
ase the measure µ 
annotbe σ-�nite sin
e already Lebesgue measure m is ergodi
 and T -invariant, and everypair of equivalent σ-�nite invariant ergodi
 measures di�er by a �nite multipli
ative
onstant. 8



The example given above shows that when the return fun
tion is non-integrable, theaxiomati
 stru
ture of the tower is not enough to guarantee that the measure π∗νis σ-�nite and thus if one wants to use YT 
onstru
tions to study in�nite measurepreserving transformations, then some further 
onstraints are required.If R is the �rst return time of T to ∆0, i.e., TR = Tϕ∆0 , then the measure π∗νis always σ-�nite as a 
onsequen
e of [14℄, see also [1, 20, 21℄. Indeed, the expli
itformula
µ(E) :=

∑

n≥0

ν0(T
−nE ∩ {ϕ∆0

> n}) (5)for ν0 = ν|∆0
shows that the sets X \ ∪kT

−k(∆0) and T n({φ∆0
) > n}), n ≥ 0,form a 
ountable partition of X into sets of �nite measure. Conversely, if µ≪ m is

T -invariant then ν0 := µ|∆0
is T∆0

-invariant.A standard example of an in�nite m.p.t. that 
an be modeled by a YT by taking
R as the �rst return time of T to ∆0 is the PM map (with α ≥ 1) mentioned in theintrodu
tion, the 
onstru
tion being identi
al to the �nite 
ase (given by α < 1).Another well-understood non-integrable R 
ase is given by the 
lass of trans-formations (T,X,m) for whi
h the base tower map (TR,∆0,m0) 
an be obtainedby letting R be the �rst passage time of T to some set A with T (A) = ∆0, i.e.,
τ(x) := 1 + min{n ≥ 0 : T n(x) ∈ A}. As proved by S
hweiger (see e.g. [14, 21, 1℄)the map T τ is similar to Tϕ∆0 (that is, they have a 
ommon measure theoreti
 exten-sion), whi
h implies that if T τ admits a probability invariant measure ν0 ≪ m0 then
Tϕ∆0 admits a probability invariant measure ν̃0 ≪ m0 and there exist Θ : ∆0 → Xand c > 0 su
h that

Θ−1(∆0 ∩ B(X)) ⊂ B(X),Θ ◦ Tϕ∆0 = T τ ◦ Θ and ν̃0(Θ
−1A) = cν0(A) (6)for all A ∈ B(X). As a 
onsequen
e,

π∗ν(E) = ν(π−1E) =
∑

l≥0

ν0({τ > l} ∩ F−lπ−1E)

=
∑

l≥0

ν0(π
−1({τ > l} ∩ (T̃ τ )−lE)

=
∑

l≥0

ν0({τ > l} ∩ (T̃ τ )−lE). (7)Therefore, the last equation is exa
tly the σ-�nite measure of (5) and thus, π∗νis σ-�nite.Example 2. We 
onsider the Farey map given by T : [0, 1] → [0, 1] with
T (x) :=

{

T1(x) = x
1−x , if x < 1/2

T2(x) = 1−x
x , if x ≥ 1/2Let m denote Lebesgue measure. There exists a 
ountable Markov partition α =

{An}n≥0, where An = ( 1
n+1 ,

1
n ]. Take A = A1 = (1

2 , 1] and ∆0 = T (A). Thenindu
ing on A w.r.t. �rst passage time τ yields the Gauss map G(x) = 1
x − ⌊ 1

x⌋,see e.g. [11℄, for whi
h good distortion properties are well known. From here on,the tower 
onstru
tion is standard. Take ∆0 := (0, 1] and let R(x) := τ(x) for all
x ∈ ∆0. Let {∆0,i} := {A0}n≥0. It is easy to see that (YT1) and (YT2) hold. We
an use standard arguments (see e.g. [11℄) to 
on
lude that for all x, y ∈ ∆0,i andfor all i

∣

∣

∣

∣

log
(T τ )′(x)

(T τ )′(y)

∣

∣

∣

∣

=

∣

∣

∣

∣

log
G′(x)

G′(y)

∣

∣

∣

∣

≤
C

D
θs(x,y)9



where θ = 1/2 and s(x, y) is the separation time w.r.t. T τ . Thus, taking m0 := m,(YT6) is satis�ed. The tower 
onstru
tion is 
ompleted by applying (YT3), (YT4)and (YT5), whi
h give the exa
t form of F . Sin
e τ is the �rst passage time, (7)guarantees that π∗ν is σ-�nite.Ne
essary and su�
ient 
onditions for when a TR-invariant measure 
orresponds to a
σ-�nite T -invariant measure (via formula (8) below) in the 
ase of a general indu
edmap TR with non-integrable R 
an be obtained based on results of Zweimüller, [21℄.For 
larity of exposition, we provide these results below. To avoid 
onfusion lateron, when we apply these results to the 
ontext of YTs, we will state them keepingour notation TR : ∆0 → ∆0 even though in [21℄, R and ∆0 do not need to be
hosen so that they produ
e a YT (∆,B(∆), F,m′) for the original transformation
(X,B, T,m). Namely, [21℄ works with the following general setting:The setting of [21℄. Let (X,B, T,m) be a nonsingular transformation. For anarbitrary set ∆0 ⊆ X, m(∆0) > 0, the measurable fun
tion R : ∆0 → N

∗ is a generalindu
ing time (mod m) for T on ∆0, if it is �nite m-a.e. and TRx := TR(x)x ∈ ∆0for m-a.e. x ∈ ∆0. Hen
e TR is a nonsingular transformation of (∆0,B(∆0),m0),where m0 := m|∆0
and B(∆0) = {A ∈ B : A ⊂ ∆0}. (This is now more generalthan the YT setting be
ause we do not assume that TR(∆i) = ∆0 or the distortion
onstraint of (YT6).) Given any measure ν̃ on ∆0, a new T -invariant measure on

(X,B) 
an be de�ned as follows:
R×T ν̃(A) :=

∑

l≥0

ν̃({R > l} ∩ T−lA). (8)The work of [21℄ provides an answer for the following two questions:(i) The original liftability problem, i.e., given that µ is a σ-�nite invariant measurefor T , is there a TR-invariant measure ν̃ ≪ µ su
h that µ = R×T ν̃?(ii) The inverse liftability problem, i.e., given that ν̃ ≪ m0 is TR-invariant, is themeasure R×T ν̃ a σ-�nite invariant measure for T ?We will 
onsider Zweimüller's results on the inverse liftability problem in the
ontext of YTs. We re
all the following:Lemma 3.2. [21, Lemma 4.1℄ Let (X,B, T,m) be a nonsingular transformation.Let E ⊆ ∆0 ⊆ X, m(E) > 0. Let ρ be an indu
ing time for T on E, let R be anindu
ing time for T on ∆0 and let ψ be an indu
ing time for TR on E su
h that
ρ = Rψ :=

∑ψ−1
k=0 R ◦ (TR)k. This implies that T ρ = (TR)ψ. Moreover, let ν̃ ≪ mbe a measure (not ne
essarily TR-invariant) on (∆0,B(∆0)). Then

ρ×T ν̃ = R×T (ψ ×TR ν̃).Fa
t 3.3. As observed in [21℄, the �rst return map of TR to some set E ∈ B(∆0),
m(E) > 0, 
an be represented as T ρ = (TR)E = (TE)τ , where ρ : E → N and
τ : E → N are general indu
ing times for T and TE, respe
tively. We noti
e that
(TR)E = (TR)ϕ

R
E , where ϕRE(x) := min{n ≥ 1 : (TR)n(x) ∈ E}. Also, the indu
ingtime ρ 
an be equivalently represented as

ρ(x) =

ϕR
E

∑

k=0

R ◦ (TR)k and ρ(x) = ϕE,τ :=

τ
∑

k=0

ϕE ◦ (TE)k.10



In the 
ontext of YTs we have brie�y mentioned that the integrability of thereturn time is a su�
ient 
ondition for the inverse liftability problem. The resultbelow says that this 
ondition is also su�
ient for the original liftability problemand it is already well known.Lemma 3.4. ([21, Theorem 1.1℄) Let (X,B, T, µ) be an e.m.p.t. and let τ be ageneral indu
ing time for T on E ∈ B, µ(E) > 0. If ∫

E τdµ < ∞, then T τ has aninvariant measure ν satisfying µ = τ ×T ν.The next two lemmas by Zweimüller lead up to the main result of this se
tion.Lemma 3.5. ([21, Proposition 4.1℄) Let T be 
.e.m.p.t. of the σ-�nite measurespa
e (X,B, T, µ). Let R be an indu
ing time for T on ∆0 ⊆ X, 0 < µ(∆0) < ∞.Suppose that E ∈ (∆0,B(∆0)), µ(E) > 0 with (TR)E = (TE)τ . Then
ν̃ satis�es µ = R×T ν̃if and only if

ν̂ satis�es µ|E = τ ×TE
ν̂.If one of the two measures ν̃ and ν̂ exists (and thus both) then ν̂ = ν̃|E or equivalently

ν̃ = (ϕRE) ×TR
ν̂.Lemma 3.6. [22, Proposition 1℄ Let T be a measurable transformation (X,B) andlet E ∈ B. Let ρ and τ be indu
ing times for T and TE on E su
h that T ρ = (TE)τ .Moreover, let ν̃ be a measure on E. Then

ρ×T ν̃(E) =

∫

E
τdν̃.Equipped with the above, we 
an pro
eed toProof of Theorem 2.1. First, we observe that by Proposition 3.1 the F -invariantmeasure ν ≪ m′ is σ-�nite. Then, under the assumptions of the proposition, equa-tion (4) holds and thus, π∗ν = R ×T ν0. By the same assumptions, (TR,∆0, ν0) isan ergodi
 transformation preserving the probability measure ν0 ≪ m.Let E ⊆ ∆0 and 
onsider the �rst return time of TR to E. By Fa
t 3.3 we may write

T ρ = (TR)E = (TE)τ for some measurable fun
tions ρ : E → N and τ : E → N. Let
ν̃E = ν0|E be a �nite measure on E.By Lemma 3.2 applied to T ρ = (TR)E we have

ρ×T ν̃E(A) = R×T (ϕRE ×TR ν̃E)(A). (9)On the other hand, another appli
ation of Lemma 3.2 to T ρ = (TE)τ gives
ρ×T ν̃E(A) = ϕE ×T (τ ×TE

ν̃E)(A). (10)Sin
e µ ≪ m (by assumption) and ν0 ≪ m (when
e ν̃E ≪ m), Lemma 3.5 impliesthat
ν0 is a solution for µ = R×T ν0if and only if

ν̃E is a solution for µ|E = τ ×TE
ν̃E.In this 
ase, ν0 = (ϕRE) ×TR

ν̃E, whi
h further implies that11



µ = R×T ν0 = R×T (ϕRE ×TR ν̃E). (11)Therefore, if ν̃E is a solution for µ|E = τ ×TE
ν̃E (or equivalently if ν0 is a solutionfor µ = R×T ν0), then (9), (10) and (11) imply that

µ = R×T ν0 = R×T (ϕRE ×TR ν̃E) = ρ×T ν̃E = ϕE ×T (τ ×TE
ν̃E) (12)We now take a look at the �nite e.m.p.t. (TE , E, µ|E) (the ergodi
ity of TE followsfrom our assumption that T is ergodi
). Re
all that τ is an indu
ing time for TE on

E. Therefore, if ∫

E τdm <∞, then by Lemma 3.4, ν̃E satis�es µ|E = τ ×TE
ν̃E and

(TE)τ has a (unique) �nite invariant measure ν̃E ≪ m. By our dis
ussion above,this further implies that ν0 satis�es µ = R ×T ν0, whi
h proves the �if� part of theproposition.Conversely, assume that there exist E and τ as above su
h that ∫

E τdm = ∞.By Lemma 3.6 we have
ρ×T ν̃E(E) =

∫

E
τdν̃E =

∫

E
τdm = ∞.Suppose that ν̃E is a solution for µ|E = τ ×TE

ν̃E. But then the above equationtogether with (12) implies
π∗ν(E) = R×T ν0 =

∫

E
τdm = ∞whi
h 
ontradi
ts the hypothesis and we are done.Remark 3.7. As µ is σ-�nite, there is E ∈ B su
h that 0 < µ(E) < ∞ and bythe proof of the proposition above, we know 0 < π∗ν(E) < ∞. Thus the aboveproposition implies that if µ = π∗ν then there exists a set E ⊆ ∆0, m(E) > 0 with

τ : E → N given by (TR)E = (TE)τ su
h that ∫

E τdm < ∞. This would be
ome asu�
ient 
ondition as well if we also assume that the indu
ing time ρ is de�ned and�nite π∗ν-a.e., sin
e this would guarantee that ⋃

n≥0 T
−nE = X mod π∗ν and thusthat π∗ν is σ-�nite.4 Pointwise dual ergodi
ityTo prove Corollary 2.6 we only need to establish the p.d.e. property for the towermap F . Then the result follows immediately from Theorem 2.1, an estimate of thewandering rate wn(F ) together with Proposition 3.7.5 in [1℄ and Proposition 2.5.Corollary 2.7 follows by a similar argument together with the following standardresults on regularly varying fun
tions (sequen
es).Proposition 4.1 (Karamata's Theorem [5℄). The fun
tion a(t) is slowly varyingand lo
ally bounded if and only if for any 
onstant c:

•
∫ x
c t

γa(t)dt ∼ xγ+1

γ+1 a(x), if γ > −1

•
∫ ∞
x tγa(t)dt ∼ xγ+1

|γ+1| a(x), if γ < −1Furthermore, the following theorem gives an exa
t 
hara
terization of fun
tions(sequen
es) that produ
e regularly varying fun
tions (sequen
es):12



Proposition 4.2 (Monotone Density Theorem [5℄). Let U(x) =
∫ x
0 u(y)dy andsuppose U(x) ∼ xγa(x) for some γ ∈ R and fun
tion a ∈ R0. If u is monotone,then

u(x) ∼ γxγ−1a(x).4.1 Pointwise dual ergodi
ity for FIn the following we show that a YT is p.d.e. under a less restri
tive 
ondition than(YT2) formulated in Se
tion 3. That is, we repla
e the previous YT2 with:(YT2') There is a return time fun
tion R : ∆0 → N
∗ whi
h is 
onstant on ea
h ∆0,i. Wealso assume that TRi(∆0,i) is a union of ∆0,k's and infi∈Nm0(T

Ri(∆0,i)) > 0.In order to obtain good properties of the F -invariant measure, under the weaker(YT2') above, we need the following extra-assumption, (see also [8℄ for obtainingestimates of the 
orrelation de
ay on towers via 
one te
hniques under (YT2')):(YT7) (∆,B(∆), F,m′) is aperiodi
.We �rst re
all the following 
on
epts and results. Let (X,B,m, T ) be a Markovmap with Markov partition α and for a0, . . . , an−1 ∈ α let [a0, . . . , an−1] = ∩n−1
i=0 T

−iaidenote an n-
ylinder. Let αn−1
0 =

∨n−1
k=0 T

−k(α) and α+ = {a ∈ ∪n∈N∗αn−1
0 : m(a) >

0}. A 
olle
tion of 
ylinders ζ ⊆ α+ is said to be a S
hweiger 
olle
tion for T ifi) for every b ∈ ζ and a ∈ α+ if the 
on
atenation [a, b] 6= ∅ then [a, b] ∈ ζ;ii) ∪b∈ζb = X (mod m);iii) if there exist r ∈ (0, 1) and C > 1 su
h that for every n-
ylinder b ∈ ζ and
m×m-a.e. (x, y) ∈ b× b

∣

∣

∣
log

dm

dm ◦ T n
|b(x) − log

dm

dm ◦ T n
|b(y)

∣

∣

∣
≤ Crs(x,y) (13)where

s(x, y) := min{n ≥ 1 : x, y lie in distin
t 
ylinders of ζ}.The existen
e of a S
hweiger 
olle
tion for a 
.m.p.t. and aperiodi
ity have thefollowing 
onsequen
es:Lemma 4.3 (Theorem 3.1 and Theorem 3.2, [2℄). Let (X,B,m, T, α) be a 
onser-vative, aperiodi
 Markov map and suppose that ζ ⊆ α+ is a S
hweiger 
olle
tion for
T . Then T admits a σ-�nite invariant measure µ ∼ m su
h that

log
dµ

dm
∈ L∞(b) for all b ∈ ζand µ is exa
t under T . Moreover, any A ∈ α+ is a Darling Ka
 set whose returntime pro
ess is 
ontinued fra
tion mixing.We now showLemma 4.4. Let (∆,B(∆), F,m′) be a YT that satis�es (YT2') and (YT7) above.3Then the following hold:1. F admits an in�nite, but σ-�nite invariant measure ν equivalent to m′ su
hthat dν

dm′ is bounded and bounded away from zero. Furthermore, ν is exa
tunder F .3so the original 
ondition (YT2) of Se
tion 3 need not be satis�ed13



2. For any n ∈ N, every n-
ylinder is a Darling-Ka
 set whose return time pro
essis 
ontinued fra
tion mixing.3. F is pointwise dual ergodi
 w.r.t. ν.Proof. Let P be the generating partition of ∆ and let [A0, . . . , An−1] =
⋂n−1
i=0 F

−iAifor A0, . . . , An−1 ∈ P denote an n-
ylinder. It is 
lear that (∆,B(∆), F,m′,P)is a 
onservative Markov map. By (YT1), m(∆0,i) > 0 for ea
h i and hen
e
m(A) > 0 for all A ∈ P and and thus m′ is positive on all n-
ylinders. Also, itis 
lear that (∆0,B(∆), FR,m0) is a 
onservative Markov map w.r.t. the 
ount-able partition P0 = {∆0,i}; let R := {TR(∆0,i)} be the image partition and
R̃+ := {a ∈ ∪k∈N

∨k−1
0 (FR)−kR}.It follows from (YT6) that there exist C > 1 and 0 < θ < 1 su
h that for all

x, y ∈ b, for all b ∈ R+, and for all k ∈ N and k-
ylinders b
∣

∣

∣

k−1
∑

j=0

log
dm0

dmb ◦ (FR)j
(x) −

k−1
∑

j=0

log
dm0

dmb ◦ (FR)j
(y)

∣

∣

∣
≤ Cθs(x,y) (14)and thus R+ is a S
hweiger 
olle
tion for FR w.r.t. the measure m0. By [2, Lemma2.1℄ (whi
h requires 
ondition (YT2')), there exist an FR-invariant probability mea-sure ν0 ≪ m0 su
h that dν0

dm0
is bounded and bounded away from zero.By aperiodi
ity and (YT2'), there exist N ∈ N and b ∈ P0 su
h that (FR)N (b) =

∆0. Therefore for all a ∈ P0 and x ∈ a we 
an �nd x′ ∈ b su
h that (FR)N (x′) = x,and we have
dν0

dm0
(x) ≥

dm0

dmb ◦ (FR)N
·
ν0

m0
(x′) > 0uniformly over all a ∈ P and x ∈ a. This also implies that ν0 ∼ m0.Fix some arbitrary ∆l,i and let

P∆l,i
= {[A0, . . . , An−1] : A0, . . . , An−1 ∈ P, n ∈ N

∗, An−1 = ∆l,i}be the 
olle
tion of 
ylinders that land on ∆l,i after some number of iterates. Noti
ethat P∆l,i
⊂ P+ := {A ∈ ∪k∈N

∨k−1
0 F−kP}.For all x′, y′ ∈ ∆l,i there exist unique x, y ∈ ∆0,i su
h that F l(x′) = x, F l(y′) = y;let us extend the de�nition of separation time to ∆l,i by setting s(x, y) = s(x′, y′). Itfollows from (14) that there exist C > 1 and 0 < θ < 1 su
h that for all x′, y′ ∈ ∆l,iand for t = R− l

∣

∣

∣

t−1
∑

k=0

log
dm′

dm′|∆l,i
◦ F k

(x′) −
t−1
∑

k=0

log
dm′

dm′|∆l,i
◦ F k

(y′)
∣

∣

∣
≤ Cθs(x

′,y′)whi
h further implies for all B ∈ P∆l,i
and for all x, y ∈ B we have

∣

∣

∣

t−1
∑

k=0

log
dm′

dm′|B ◦ F k
(x) −

t−1
∑

k=0

log
dm′

dm′|B ◦ F k
(y)

∣

∣

∣
≤ Cθs(x,y).Also, for every B ∈ P∆l,i

and A ∈ P+ if [A,B] 6= ∅ then [A,B] ∈ P∆l,i
. Furthermore,by aperiodi
ity for all A ∈ P there exist N = N(A) ∈ N su
h that for all j ≥ N ,

m′(F−jA ∩ (∪B∈P∆l,i
B)) > 0. As a 
onsequen
e, ∪B∈P∆l,i

B = ∆ (mod m′) andthus, P∆l,i
is a S
hweiger 
olle
tion for F w.r.t. m′. Therefore, by Lemma 4.3, Fadmits an exa
t, σ-�nite invariant measure ν ∼ m′ and dν

dm′ is bounded away from
0 and ∞ uniformly on ∆l,i. 14



The same lemma implies that ea
h element of P∆l,i
is a Darling-Ka
 set for Fw.r.t. ν. Thus, by Theorem 3.8.3 in [1℄, F is pointwise dual ergodi
 w.r.t. ν. Thatis, there exist a positive sequen
e {an(F )}n≥1 su
h that for all f ∈ L1(ν) with

∫

X fdν > 0

1

an(F )

n−1
∑

k=0

F̂
k(f) →

∫

∆
fdν, ν − a.e. as n→ ∞ (15)where F̂ : L1(ν) → L1(ν) is the dual operator of F .Sin
e ν ∼ m′ is exa
t, it follows that this measure is unique and thus ν isindependent of ∆l,i. In fa
t ν|∆0

= ν0 and we saw already that dν0
dm0

is boundedaway from zero and ∞, so dν
dm′ is bounded away from zero and ∞ uniformly on ∆.Similarly, all elements of ∪l,iP∆l,i

are Darling-Ka
 sets for F w.r.t. µ. This 
on
ludesthe proof.4.2 Pointwise dual ergodi
ity for T .Pointwise dual ergodi
ity for T 
an be immediately derived from that of F :Lemma 4.5. Suppose that (X,B, T,m) and (∆,B(∆), F,m′) satisfy the 
onditionsof Theorem 2.1. Then T is pointwise dual ergodi
 w.r.t. its invariant measure µ =
π∗ν and the return sequen
e an(F ) from (15) 
oin
ides, up to asymptoti
 equivalen
e,with the return sequen
e for T .Proof. We �rst observe that Theorem 2.1 ensures that F is indeed a measure theo-reti
 extension of T , or equivalently T is a fa
tor of F . By Proposition 3.7.6 in [1℄,we know that any fa
tor of a p.d.e. transformation is also p.d.e. This together with(3) of Lemma 4.4 implies that T is indeed pointwise dual ergodi
. Furthermore, a
-
ording to Proposition 3.7.6 in [1℄, an(F ) is a return sequen
e for T , whi
h is uniqueup to asymptoti
 equivalen
e.Next we will estimate the return sequen
e an(F ).Lemma 4.6. Let (∆,B(∆), F,m′) be a Young tower with base ∆0 (for some non-singular dynami
al system (X,B,m, T )) and suppose that m0({R > n}) ∝ n−β forsome 0 < β ≤ 1. Then wn(F ) ∈ R−β and an(F ) ∈ Rβ.Proof. Let ϕ∆0

(x) := min{n ≥ 1 : Fn(x) ∈ ∆0} be the �rst return time fun
tionof F to ∆0 and observe that ϕ∆0
(x) = R(x) for all x ∈ ∆0. From Lemma 4.4 weknow that F admits an invariant measure ν with ν|∆0

= ν0 where ν0 ∼ m0 is theinvariant for measure for Fϕ∆0 . Thus,there exist c > 0 su
h that,
wn(∆0) = ν(∪n−1

k=0F
−k∆0) =

n−1
∑

k=0

ν(∆0 ∩ {ϕ∆0
> k})

= c
n−1
∑

k=0

ν0({R > k}) ∝
n−1
∑

k=0

m0({R > k}) ∈ R1−β ,where ∑n−1
k=0 m0({R > k}) ∈ R1−β by Karamata's Theorem (part 1) if 0 < β < 1and ∑n−1

k=0 m0({R > k}) = (log n)l(n) if β = 1, where l(n) ∈ R0.From Lemma 4.4 we know that ∆0 is a Darling-Ka
 set for F . Therefore, wn(F ) ∈
R−β by Theorem 3.8.3 in [1℄. Furthermore, an(F ) ∈ Rβ by Lemma 2.4.We 
an now 
on
lude 15



Proof of Corollary 2.6. Sin
e an(F ) ∈ Rβ with β ∈ [0, 1], i1) follows by Proposi-tion 2.5.i2) follows by the same argument sin
e an(F ) is also a return sequen
e for T .Proof of Corollary 2.7. The 
onditions of Theorem 2.1 together with Lemma 4.5and Lemma 4.6 implies that wn(T ) ∝ wn(F1) ∈ R−β as n → ∞. By the sameargument for F2, wn(T ) ∝ wn(F2) =
∑n−1

k=0 m02
({R2 > k}). Thus,

n−1
∑

k=0

m02
({R2 > k}) ∝

n−1
∑

k=0

m01
({R1 > k})and the 
on
lusion follows immediately by Proposition 4.1 and Proposition 4.2.Remark 4.7. We noti
e that from the above proof we have that

wn(T ) ∝
∑

k>n

m01
({R1 > k}) ∝

∑

k>n

m02
({R2 > k})independently of the assumption of the regular variation of the tail sequen
es. Thefa
t that ∑

k>nm01
({R1 > k}) ∝

∑

k>nm02
({R2 > k}) trivially holds in the proba-bility 
ase β > 1, γ > 1, sin
e the two tail sequen
es are summable. However, as it isobvious from the proof, in this 
ase, the 
on
lusion m01

({R1 > k}) ∝ m02
({R2 > k})does not follow.5 In�nite os
illation at one of the indi�erent�xed pointsAs mentioned in Se
tion 2.2, we 
on
lude with one example that illustrates the useof Corollary 2.6 and as su
h, the usefulness of modelling in�nite measure preservingtransformations via YTs. Darling Ka
-like theorems were proved for in
reasinglygeneral systems. The version in Aaronson's book [1, Theorem 3.6.4. and Corollary3.7.3℄ requires that T is p.d.e. and the return sequen
e (an) is regularly varying,whi
h is in general di�
ult to 
he
k. In [20℄, the p.d.e. property was established fornon-uniformly expanding interval maps with indi�erent �xed points (AFN-maps).Thaler and Zweimüller [16, Theorem 1℄ then repla
ed the regular variation of thereturn sequen
e by that of the wandering rate wn(T ) (whi
h is easier to 
he
k)together with the requirement that

hN :=
1

wN (Y )

N−1
∑

n=0

T̂1{x∈X\Y :R(x)=n}be 
onvergent4 uniformly on the Darling Ka
 set Y . In [23, Theorem 2.1℄ �nally,Zweimüller weakened the 
onvergen
e requirement to (hN )N∈N being pre
ompa
t in
L∞(µ). This enabled him to treat maps with multiple indi�erent �xed points wherethe strength of the one mutually majorizes and minorizes the strength of another,depending on the distan
e to these �xed points.The example we 
onsider below is a parti
ular 
ase of the somewhat abstra
tExample 7.1 in [23℄ whi
h Zweimüller gave to show the advantage of [23℄ over [16℄.The regular variation of the wandering rate wn(T ) with some index β ∈ [0, 1] inExample 7.1 of [23℄ is expli
itly given, whi
h allows an immediate appli
ation of [23,4with a uniformly sweeping limit 16



Theorem 2.1℄. In 
ontrast, the example below does not provide an expli
it form of
wn(T ). By 
onsidering an appropriate YT extension for T , we simultaneously obtainthe p.d.e. property, regular variation of the return sequen
e an, and our DK versionCorollary 2.6.Let T : [0, 1] → [0, 1] be a map with two indi�erent �xed points at 0 and 1 with
T ([0, 1/2)) = (0, 1), T ([1/2, 1)) = (0, 1) su
h that for a, b 6= 0 and p > 1,

T (x) =

{

x+ bx1+pl(1/x) + o(x1+pl(1/x)) as x→ 0,
x+ a(1 − x)1+p + o((1 − x)1+p) as x→ 1,

(16)where l(t) = exp[(log t)1/3 cos(log t)1/3], t > 0 is in R0 with in�nite os
illation, i.e.,
lim
t→∞

inf l(t) = 0 and lim
t→∞

sup l(t) = ∞.Take 0 < · · · < x2 < x1 < x0 = 1/2 = x′0 < x′1 < x′2 < · · · < 1 su
h that
T (xn) = xn−1 and T (x′n) = x′n−1 for all n ≥ 1. Let In = (xn+1, xn), I ′n = (x′n, x

′
n+1)for n ≥ 0 and let R|In∪I′n := n + 1. By (16), the asymptoti
 of {xn}, {xn}′ are asfollows:

xn ∼ n−pl(n) and 1 − x′n ∼ n−p.Thus the tail of the indu
ing s
heme is
m({R > n}) =

∑

k≥n

m(Ik ∪ I
′
k) ∼ n−p(l(n) + 1).Constru
t a Young tower with ∆0 = (0, 1), partition {∆0,i} = {Ii}∪{I ′i} and returntime R as indi
ated. Then TR(In) = (1

2 , 1) and TR(I ′n) = (0, 1
2) for ea
h n, so(YT2') of Se
tion 4.1 is satis�ed.The distortion 
ondition (YT6) follows by the argument of Lemma 5 in [17℄.Also, noti
e that g.c.d(Ri) = 1, (so (YT7) holds) and thus, the good properties for

F follow immediately by Lemma 4.4.To 
he
k the 
onditions of Theorem 2.1, we just need to observe that indu
ingw.r.t. �rst returns on any ∆0,i gives rise to a �nite (TR)
ϕR

∆0,i -invariant measure,whi
h proves the integrability of ϕ∆R
0,i

on ∆0,i. Thus, if τ and ρ are given by
T ρ = (TR)∆0,i

= (T∆0,i
)τ , the integrability of τ follows immediately sin
e {τ >

n} = {ρ > ϕ∆R
0,i
} by Fa
t 3.3 (see also [21℄ for details). Be
ause we also have

m({R > n}) ∈ R1/p, Corollary 2.6 immediately applies. In parti
ular, Lemma 2.4gives the exa
t form of an(T ).Referen
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