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Abstract. We use a Poisson point process approach to prove distributional convergence
to a stable law for non square-integrable observables φ : [0, 1] → R, mostly of the form

φ(x) = d(x, x0)
− 1

α ,0 < α ≤ 2, on Gibbs-Markov maps. A key result is to verify a standard
mixing condition, which ensures that large values of the observable dominate the time-
series, in the range 1 < α ≤ 2. Stable limit laws for observables on dynamical systems have
been established in two settings: “good observables” (typically Hölder) on slowly mixing
non-uniformly hyperbolic systems and “bad” observables (unbounded with fat tails) on fast
mixing dynamical systems. As an application we investigate the interplay between these
two effects in a class of intermittent-type maps.
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1. Introduction

In this paper we consider distributional convergence to stable laws for non square-integrable
observables φ : [0, 1] → R of form φ(x) = d(x, x0)

− 1
α ,0 < α ≤ 2, on Gibbs-Markov maps of

the unit interval [0, 1] (x0 ∈ [0, 1]). Our results imply distributional convergence, in some
parameter regimes, to stable laws for non square-integrable observables on certain systems
modeled by first return time Young Towers in which the base map is Gibbs-Markov, in
particular intermittent-type maps of the unit interval.

Most of our results consider distance-like observables φ(x) = d(x, x0)
− 1

α , where α ∈ (0, 2)
and x0 ∈ [0, 1]. But our result on mixing conditions, Theorem 8.1, extends to observables
φ which are regularly varying with stable index α and for which, for sufficiently large t,
∥φ1{|φ|<t}∥BV ≤ Kt for some constant K.
Stable limit laws for observables on dynamical systems have been established in two some-

what distinct settings: “good observables” (typically Hölder) on slowly mixing non-uniformly
hyperbolic systems and “bad” observables (unbounded with fat tails) on fast mixing dynam-
ical systems.

For results on the first type we refer to the influential papers [Gou04, Gou07] and [MZ15].
In the setting of “good observables” (typically Hölder) on slowly mixing non-uniformly hy-
perbolic systems the technique of inducing on a subset of phase space and constructing a
Young Tower has been used with some success. “Good” observables lift to well-behaved
observables lying in a suitable Banach space on the Young Tower. This is not the case in
general with unbounded observables with fat tails, though in [Gou04] the induction tech-
nique permits analysis of an observable which is unbounded at the fixed point x = 0 in a
family of intermittent maps. As x = 0 is not in the Young Tower the observable lifts to a
function on the Tower which is bounded on each column of the Tower and with sufficient
regularity for spectral techniques to apply.

For general results on distributional and functional stable laws for non-square integrable
observables using a Poisson point process approach we refer to the papers of Marta Tyran-
Kaminska [TK10a, TK10b]. Tyran-Kaminska considers convergence of Birkhoff sums to
stable laws and corresponding functional convergence in the J1 topology to Lévy processes.
She uses a point process approach but her work explicitly excludes clustering behavior, and
so is not applicable to observables φ(x) = d(x, x0)

− 1
α maximized at a periodic point x0 (for
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which clustering of extremes is expected). In the setting of Gibbs-Markov maps Tyran-
Kaminska shows, among other results, that functions which are measurable with respect
to the Gibbs-Markov partition and in the domain of attraction of a stable law with index
α converge (under the appropriate scaling) in the J1 topology to a Lévy process of index
α [TK10b, Theorem 3.3, Corollaries 4.1 and 4.2]. Her result is not applicable in our setting

as φ(x) = d(x, x0)
− 1

α is not measurable with respect to the Gibbs-Markov partition in the
settings we consider. However in the setting of weakly-mixing AFUmaps she showed [TK10b,
Theorem 4.4] that if an observable h is in the domain of attraction of a stable law, piecewise
monotonic with finitely many branches, and the return time to the set (|h| > εbn) diverges
then the associated point process Nn converges to that of a Lévy process of index α, Nα.
This implies convergence to a stable law in the case of 0 < α < 1. As a corollary, in [TK10b,
Example 4.4], Tyran-Kaminska shows that for the specific observable h(x) = d(x, x0)

−1/α in
the setting of AFU maps one obtains stable laws in the case 0 < α < 1 if the distinguished
point y0 is such that the return times of shrinking balls centered at y0 diverges to infinity.

It is interesting to note though that in the case of a slowly-mixing intermittent map with
an indifferent fixed point at x = 0 and a Hölder observable φ, φ(0) ̸= 0, the constant
φ(0) may be induced as a measurable function on the Gibbs-Markov base of the usual first
return tower representation. This approach is used by Melbourne and Zweimüller [MZ15] to
prove convergence to stable laws for Hölder functions on slowly-mixing systems modeled by
a Young Tower.

Marta Tyran-Kaminska’s work is based on a Poisson point process approach described by
Durrett and Resnick [Res86, Res87, DR78]. This paper follows a similar approach to the
scheme laid out by Tyran-Kaminska in that we require convergence of a counting process
to a Poisson process and a form of decay of correlations estimate for a truncation of the
observable that ensures the Birkhoff sum of small values of φ do not contribute too much and
it is the large values that dominate. We stress that we do not prove functional convergence
in the J1 topology but rather distributional convergence. In fact, as Tyran-Kaminska shows
in [TK10b, Theorem 1.1, Example 1.1] in situations where the counting process exhibits
clustering convergence in the J1 topology does not hold. Recent work has shown that in
some settings where J1 convergence does not hold that convergence is possible in the weaker
M1 topology [MZ15] and in the F

′
topology [FFT24]. We refer to these papers for helpful

discussions of the relevant topologies and related results.
In the cases where we obtain distributional rather than functional convergence, we need

only validate the weaker conditions of Davis and Tsing [DH95, Theorem 3.1] rather than the
stronger condition of [TK10b, Theorem 1.1 Condition (1.5)]. This allows us to extend the
results of [TK10b].

In the setting of Gibbs-Markov maps (or more generally Rychlik maps) Freitas, Freitas and

Magalhaes [FFMa20] have proved that observables of the type φ(x) = d(x, x0)
− 1

α , x0 ̸= 0,
have counting processes that converge to a simple Poisson point process if x0 is not periodic
and a “clustered’ point process if x0 is periodic. The convergence to a simple point process
in the non-periodic case is a consequence of [TK10b, Theorem 4.4]. Furthermore if 0 <
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α < 1 then [FFT20] have shown functional convergence of the rescaled time-series for this
observable in the F

′
topology, which implies convergence of the scaled Birkhoff sum to a

stable law. One contribution of this paper is Theorem 8.1 which verifies a mixing condition
in the case 1 < α < 2 and extends the stable law convergence to the parameter range
1 < α < 2.

One question that arose in our investigation (that was not satisfactorily resolved) can be
stated simply. Suppose (Tγ, [0, 1], µγ) is a LSV [LSV99] map of the unit interval (see Section
6) and µγ is the Lebesgue equivalent invariant measure for Tγ. Suppose φ has support in

[1/2, 1],
∫
φ dµγ = 0, and locally, near x0 ∈ [1/2, 1] is of form d(x, x0)

− 1
α (elsewhere Hölder).

We are able to show that the Birkhoff sum of the induced map on [1/2, 1] converges in
distribution to a stable law with index α. In certain parameter regions for 1 < α < 2 and
0 < γ < 1, namely 1

γ
< α < 1 + 1

γ2 − 1
γ
, we are able to show that the stable law with index

α lifts from that of the induced observable to give a stable law of index α for the original
observable φ. Does a stable law of index α lift for all 2 > α > 1

γ
and 0 < γ < 1 if

∫
φ dµγ = 0

and φ has support in [1/2, 1]?

Remark 1.1 (Added in proof). After the review of this paper was completed, provisional
investigation shows that we expect the above question to be answered in the affirmative by
proving distributional convergence. Then indeed one may assume 1

γ
< α < 2 in case (iii) of

Theorem 8.4; this will be clarified in a forthcoming publication.

Our main results are given in the section 8. We first give some background.

2. Probabilistic tools

In this section, we review some topics from Probability Theory.

2.1. Regularly varying functions and domains of attraction. We refer to Feller [Fel71]
or Bingham, Goldie and Teugels [BGT87] for the relations between domains of attraction
of stable laws and regularly varying functions. For φ regularly varying we define scaling
constants bn (related to the index) and cn (centering) by

Definition 2.1. Given a regularly varying function φ of index α ∈ (0, 2) on a probability
space (X,µ), introduce:

– a scaling sequence (bn)n≥1 by

(2.1) lim
n→∞

nµ(|φ| > bn) = 1.

– a centering sequence (cn)n≥1 by

(2.2) cn =

{
0 if α ∈ (0, 1)

nE[φ] if α ∈ (1, 2)
.
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The constants p, q are defined by

p = lim
t→∞

µ(φ > t)

µ(|φ| > t)
and q = 1− p.

Note that if φ = d(x, x0)
− 1

α is an observable on the unit interval [0, 1] equipped with a
Lebesgue equivalent measure and x0 ∈ [0, 1] then bn ∼ n1/α, where ∼ means there exists C1,
C2 > 0 with C1n

1/α ≤ bn ≤ C2n
1/α. Note also that p = 1 as φ > 0. As we did above, we will

sometimes write E[φ] for the expectation of an observable when the measure is clear from
context.

Remark 2.2. When α ∈ (0, 1) then φ is not integrable and one can choose the centering
sequence (cn) to be identically 0. When α = 1, it might happen that φ is not integrable,
and it is then necessary to truncate. We do not consider the case α = 1. In the literature if
centering is needed it is often specified as cn = nE(φ1{|φ|≤bn}) but we have opted for a simpler
centering. By [DH95, Remark 3.1], for 1 < α ≤ 2, if φ is a regularly varying function of
index α then nE(φ) may be used in centering rather than the truncation φ1{|φ|<bn} above.
The same limiting distribution S is obtained though shifted by the constant (p− q) α

α−1
. More

precisely

1

bn

(
n∑

j=1

[φ ◦ T j − µ(φ)]

)
→d S − (p− q)

α

α− 1

where q = 1− p. This is a consequence of
n

bn
[E(φ)− E(φ1{|φ|<bn})] =

n

bn
E[φ1{(bn,∞)}(|φ|)] → (p− q)

α

α− 1

using Karamata (see Proposition 2.3), so by convergence of types

1

bn

(
n∑

j=1

φ ◦ T j − cn

)
→d S − (p− q)

α

α− 1

We will use the following asymptotics for truncated moments, which can be deduced from
Karamata’s results concerning the tail behavior of regularly varying functions. Recall that

p = limx→∞
ν(φ>x)
ν(|φ|>x)

.

Proposition 2.3 (Karamata, [BGT87]). Let φ be regularly varying with index α ∈ (0, 2).
The following hold for all ε > 0:

(a) lim
n→∞

nµ(|φ| > εbn) = ε−α (from the definition of bn and the regular variation of φ)

(b) If k > α then

E(|φ|k1{|φ|≤u}) ∼
α

k − α
ukµ(|φ| > u) as u→ ∞

In particular:
(c) if α ∈ (0, 2) then

E(|φ|21{|φ|≤εbn}) ∼
α

2− α
(εbn)

2µ(|φ| > εbn)
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(d) if α ∈ (0, 1) then

E(|φ|1{|φ|≤εbn}) ∼
α

1− α
εbnµ(|φ| > εbn)

2.2. Lévy α-stable processes. A more detailed discussion of Lévy processes is given
in [TK10a, TK10b].
X(t) is a Lévy stable process if X(0) = 0, X has stationary independent increments and

X(1) has an α-stable distribution. Recall that the distribution F of a random variable X is
called α-stable if there are constants γn such that for each n, if Xi are iid with distribution
F then

n∑
j=1

Xj + γn ∼ n
1
αX1

The Lévy-Khintchine representation for the characteristic function of an α-stable random
variable Xα,β with index α ∈ (0, 2) and parameter β ∈ [−1, 1] has the form

E[eitX ] = exp

[
itaα +

∫
(eitx − 1− itx1[−1,1](x))Πα(dx)

]
where

• aα =

{
β α

1−α
α ̸= 1

0 α = 1
,

• Πα is a Lévy measure given by

dΠα = α(p1(0,∞)(x) + (1− p)1(−∞,0)(x))|x|−α−1dx

• p = β + 1

2
.

Note that p and β may equally serve as parameters for Xα,β. We will drop the β from
Xα,β, as is common in the literature, for simplicity of notation and when it plays no essential
role.

3. Stable law convergence

Let T be a measure preserving transformation of a probability space (X,µ,B).
Given φ : X → R measurable, we define the scaled Birkhoff sum by

(3.1) Sn :=
1

bn
[
n−1∑
j=0

φ ◦ T j − cn],

for some real constants bn > 0, cn.
We say Sn converges to a stable law of index α if

Sn
d→Xα

for some random variable Xα with an α-stable distribution.
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4. Poisson point processes

Suppose φ is an observable on a dynamical system (T,X, µ) with stable index α and
scaling constants bn and cn. Define the counting process

B ⊂ R \ {0} =⇒ Nn(B) = #{j ∈ [1, n] | (φ ◦ T j−1 − cn)/bn ∈ B}
For each x ∈ (X,µ), Nn(x) is an integer valued counting process on R \ {0}.
In our setting of Gibbs-Markov maps, Freitas, Freitas and Magalhaes [FFMa20] have

proved convergence of the counting measure Nn (for (T,X, µ) a Gibbs-Markov map and
φ(x) = d(x, x0)

−1/α) to a Poisson process which has the general form of [DH95, Corollary
2.4], namely

N =
∞∑
i=0

∞∑
j=1

δPiQij

where
∑∞

j=1 δPi
is a Poisson process with intensity measure Πα and

∑∞
j=1 δQij

are point

processes taking values in [−1, 1] distributed according to a measure ν. All point processes
are mutually independent. In a dynamical setting, to which this Poisson point process is
well suited, the Qij’s represent the “clustering” around an exceedance Pi (which is chosen
to be the largest value in the cluster).

5. Gibbs-Markov Maps.

We consider the following class of ergodic maps of X = [0, 1]. Let m denote Lebesgue
measure and let µ be a Lebesgue equivalent measure with density bounded above and away
from zero below. Let P be a countable partition of [0, 1] (mod m) into open intervals.

We suppose that all partition elements Ai ∈ P have m(Ai) > 0. A µ measure-preserving
transformation T on X is a Gibbs-Markov map if

(1) B is the smallest σ-algebra which contains
∨

n≥0 T
−nP which is complete with respect

to m;
(2) Markov property: for all Ai ∈ P , TAi consists of a union of partition elements and

there exists a > 0 such that m(TAi) > a for all i. If T : Ai → X is onto X mod m for all i,
we say that T has “full branches”.
(3) Local invertibility: for all Ai ∈ P , T : Ai → TAi is invertible.
(4) Expansitivity: There exists λ1 > 1 such that |T ′

(x)| > λ1 for all x where defined.
(5) Bounded Distortion: There exist constants C > 0 and λ ∈ (0, 1) such that for all

A ∈
∨n

j=0 T
−jP and all x, y ∈ A, ∣∣∣∣DT (x)DT (y)

− 1

∣∣∣∣ ≤ Cλn

A Gibbs-Markov map T has exponential decay in BV(X), meaning that there are λ ∈
(0, 1), C > 0 such that the transfer operator P : L1(µ) → L1(µ) defined by∫

X

f ◦ T · g d µ =

∫
X

f · P (g) d µ, for all f ∈ L∞(µ), g ∈ L1(µ)
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satisfies

(5.1) ∥P k(g)∥BV ≤ Cλk∥g∥BV, for g ∈ BV(X) with

∫
X

g d µ = 0, and k ≥ 0

6. Intermittent Maps.

Here we consider a simple class of intermittent type maps Tγ : [0, 1] → [0, 1], which we
will call LSV maps as defined by [LSV99], given by

(6.1) Tγ(x) :=

{
(2γxγ + 1)x if 0 ≤ x < 1

2
;

2x− 1 if 1
2
≤ x ≤ 1.

For γ ∈ [0, 1), there is a unique absolutely continuous ergodic invariant probability measure
µγ with density hγ bounded away from zero and satisfying hγ(x) ∼ Cx−γ for x near zero.
The existence of stable laws, and moreover the existence of functional limit theorems or
weak invariance principles for Hölder functions φ with

∫
φ d µγ = 0 on this class of inter-

mittent maps has been thoroughly examined in [Gou04]. For instance, when γ ∈ [0, 1/2),
n−1/2

∑n−1
i=0 φ ◦ T j

γ follows the CLT ; when γ = 1/2 and φ(0) ̸= 0, (n log n)−1/2
∑n−1

i=0 φ ◦ T j
γ

follows the CLT; when γ ∈ (1/2, 1) and φ(0) ̸= 0, n−γ
∑n−1

i=0 φ ◦ T j
γ follows a stable law

where the index is γ−1. Gouëzel [Gou04, Theorem 1.3] gives the characteristic function of
the stable law for normalized Hölder φ as

exp
(
−c|t|

1
γ (1− iβsign(t) tan(π/2γ))

)
where β = sign(φ(0)) and

c =
hγ(1/2)

4γγ−1 φ(0)γ
−1

Γ(1− 1

γ
) cos(π/2γ)

The dependence of the characteristic function on only φ(0) and hγ(1/2) is explained by the
fact that the stable law for φ may be obtained by inducing (and then lifting) the constant
function φ(0) on the usual Young Tower for Tγ with base [1/2, 1].

In this paper in the setting of LSV maps we consider ”bad” observables, for example
φ(x) = d(x, x0)

− 1
α . Our result in this setting is Corollary 8.4. For an observable φ which

behaves locally as d(x, x0)
− 1

α close to a point x0 ̸= 0 and is Hölder elsewhere one expects a
competition between the stable law coming from the slow-mixing property of the LSV map
if γ ∈ (1/2, 1) and the stable law arising from the tail of the unbounded observable φ. One
technical issue that arises immediately is to prove the convergence to a stable law for φ in
a slowly mixing system. A natural technique to try is to induce, prove that the induced
system satisfies a stable law and then lift. If 1

α
≥ γ this approach works in a straightforward

manner. Furthermore if γ > 1
α
and φ(0) − E[φ] ̸= 0 then a stable law of index 1

γ
holds for

a restriction of the observable in the neighborhood of the indifferent fixed point. This effect
dominates and in fact we obtain the same stable law with index 1

γ
we would obtain if φ were

Hölder with φ(0)−E[φ] ̸= 0 i.e. with the same formula for β and c above with φ(0) replaced
by φ(0)− E[φ].
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However suppose 1 < α < 2 and φ is locally of form d(x, x0)
− 1

α , Hölder elsewhere, with
φ(0) − E[φ] = 0, for example with E[φ] = 0 and with support bounded away from the
indifferent fixed point. In this setting if γ > 1

α
we are only able to prove we may lift in

the parameter range α < 1 + 1
γ2 − 1

γ
. If this condition holds we show that the stable law of

index α dominates and we obtain Birkhoff sum convergence to a stable law of index α. This
latter results relies on a form of the law of the iterated logarithm valid for this parameter
range [DGM12]. However, see Remark 1.1.

Finally we note that the case of φ(x) = d(x, 0)−
1
α has been clarified by Gouëzel [Gou04,

item 3. after proof of Theorem 1.3], and here the two effects combine so that a stable law

holds with scaling constants bn = nγ+ 1
α if 1/2 < γ + 1

α
< 1. If γ + 1

α
< 1/2 then CLT holds.

7. Stable limits for Birkhoff sums of dependent variables.

Our results are based upon the investigations and results of R. Davis [Dav83] and R. Davis
and T. Hsing [DH95] into the partial sum convergence of dependent random variables with
infinite variance.

We paraphrase [DH95, Theorem 3.1] below.

Proposition 7.1 ([DH95, Theorem 3.1]). Let {Xj} be a stationary sequence of random
variables on a probability space (X,µ) such that:

(i)

nµ

(
X1

bn
∈ ·
)

→v ν(·)

where
ν(dx) = [pαx−α−11(0,∞) + (1− p)α(−x)−α−11(−∞,0)]dx

and →v denotes vague convergence1 on R \ {0}; and
(ii)

Nn :=
n∑

j=1

δXj/bn →d N =
∞∑
i=1

∞∑
j=1

δPiQij

where the convergence is in the space of random counting measures,
∑∞

i=1 δPi
is a

Poisson process with intensity measure ν, Qi :=
∑∞

j=1 δQij
, i ≥ 1, are point processes

that are iid, Qij ∈ [−1, 1]/{0}, and all point processes are mutually independent.

Then:

(a) For 0 < α < 1,

1

bn

n∑
j=1

Xj →d S

where S =
∑∞

i=1

∑∞
j=1 PiQij has a stable distribution with index α.

1Recall that, for measures on R or R \ {0}, the vague convergence is defined as convergence against com-
pactly supported continuous functions, whereas weak convergence is against bounded continuous functions;
“weak convergence” is equivalent to “vague convergence and tightness”.
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(b) If 1 ≤ α < 2 and

(7.1) lim
ε→0

lim sup
n→∞

P

{∣∣∣∣∣ 1bn
n∑

j=1

Xj1{|Xj |<bnε} −
1

bn
E[

n∑
j=1

Xj1{|Xj |<bnε}]

∣∣∣∣∣ > δ

}
= 0 for all δ > 0,

then

1

bn

(
n∑

j=1

Xj − E[
n∑

j=1

Xj1{|Xj |<bn}]

)
→d S

where S is the distributional limit of

∞∑
i=1

∞∑
j=1

PiQij1(ε,∞)(|PiQij|)−
∫
ε<|x|≤1

xν(dx)

as ε→ 0. S has a stable distribution with index α.

Remark 7.2. Condition (i) above is equivalent to

(7.2) P (|X1| > x) = x−αL(x)

and

(7.3) lim
x→∞

P (X1 > x)

P (|X1| > x)
= p

for a slowly varying function L(x) and 0 ≤ p ≤ 1. See [DH95, Introduction].

Remark 7.3. By Chebyshev’s inequality, Condition (7.1) is implied by

(7.4) lim
ε→0

lim sup
n→∞

E

∣∣∣∣∣ 1bn
n−1∑
j=0

Xj1{|Xj |<bnε} −
1

bn
E(

n−1∑
j=0

Xj1{|Xj |<bnε})

∣∣∣∣∣
2
 = 0,

By [Dav83, Theorem 3], (7.4) is implied by

(7.5) lim
ε→0

lim sup
n→∞

n

b2n

n∑
j=1

max{0,E(Y1Yj)} = 0,

where Yj = Xj1{|Xj |<bnε} − E(Xj1{|Xj |<bnε}).

Remark 7.4. Marta-Tyran Kaminska’s work [TK10b, Theorem 1.3] has the same condition,
Equation (7.1), in the case 1 < α ≤ 2, but requires convergence in (ii) to a simple Poisson
process i.e. Qij = 1 for i = j = 1 and 0 otherwise. Her condition was motivated by the goal
of establishing functional limit theorems rather than distributional convergence of Birkhoff
sums.
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8. Main Results

Theorem 8.1. Suppose (T,X, µ) is a Gibbs-Markov map of the unit interval X = [0, 1]. Let
φ : X → R be in the domain of attraction of a stable law of index α ∈ (1, 2) and suppose
that

(8.1) there exists K > 0 such that ∥φ · 1{|φ|<t}∥BV ≤ Kt for t sufficiently large.

Define bn as in Definition 2.1, by limn→∞ nµ(|φ| > bn) = 1. Then for all δ > 0,
(8.2)

lim
ε→0

lim sup
n→∞

µ

{
| 1
bn

n∑
j=1

φ ◦ T j1{|φ◦T j |<bnε} −
1

bn
E[

n∑
j=1

φ ◦ T j1{|φ◦T j |<bnε}| > δ

}
= 0

Remark 8.2. The condition (8.1) is satisfied, e.g., if φ has finitely many intervals of mono-
tonicity. For example it holds for φ(x) = 3|x− x1|−2/3 − 6|x− x2|−2/3 where x1, x2 ∈ [0, 1].

Although Theorem 8.1 holds for functions φ : X → R that satisfy the condition (8.1),

we will restrict now to observables of form φ(x) = d(x, x0)
− 1

α where α ∈ (0, 2]. This is
because we rely on recent work [FFMa20] which has shown that for such observables on
Gibbs-Markov maps the corresponding counting process Nn converges to a Poisson point
process, and this is key to verifying the conditions of [DH95, Theorem 3.1].

Combined with Point process convergence results of Freitas, Freitas, Magalhaes (2018)
and Pené and Saussol (2018) we have:

Corollary 8.3. Suppose (T,X, µ) is a Gibbs-Markov map of the unit interval X = [0, 1].

Let φ(x) = d(x, x0)
− 1

α where α ∈ (0, 1) ∪ (1, 2), x0 ∈ (0, 1). Define bn as in Definition 2.1,
by limn→∞ nµ(|φ| > bn) = 1.

(a) If 0 < α < 1 then

1

bn

n∑
j=1

φ ◦ T j →d S

where S =
∑∞

i=1

∑∞
j=1 PiQij has a stable distribution with index α.

(b) If 1 < α < 2 then

(8.3)
1

bn

(
n∑

j=1

φ ◦ T j − E[
n∑

j=1

φ ◦ T j1{|φ◦T j |<bn}]

)
→d S

where S is the distributional limit of

∞∑
i=1

∞∑
j=1

PiQij1(ε,∞)(|PiQij|)−
∫
ε<|x|≤1

xν(dx)

as ε→ 0. S has a stable distribution with index α.
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We now give an application to intermittent-type maps, describing the interplay between
the slow-mixing parameter γ and the heavy tails parameter α.

Theorem 8.4. Suppose (Tγ, X, µ) is a LSV map of the unit interval and 0 ≤ γ < 1,

α ∈ (0, 1) ∪ (1, 2). Suppose φ(x) = d(x, x0)
− 1

α where x0 ∈ (0, 1]. If α ∈ (1, 2) (so φ is

integrable) then let cn = E[φ] =
∫
d(x, x0)

− 1
αdµγ, otherwise let cn = 0.

(i) If 1
α
≥ γ then

1

n1/α

n∑
j=1

[φ ◦ T j − cn] →d S

where S =
∑∞

i=1

∑∞
j=1 PiQij has a stable distribution of index α;

(ii) If 1
α
< γ and φ(0)− E[φ] ̸= 0 then

1

nγ

n∑
j=1

(φ ◦ T j − E[φ]) →d S

where S has a stable distribution of index γ.
(iii) If φ(0)− E[φ] = 0 and 1

γ
< α < 1 + 1

γ2 − 1
γ
then

1

n1/α

n∑
j=1

(φ ◦ T j − E[φ]) →d S

where S has a stable distribution with index α.
However, see Remark 1.1.

Remark 8.5. To satisfy γ > 1
α
in case (ii) and case (iii) above it is necessary that α ∈ (1, 2).

The extra condition, 1
γ
< α < 1 + 1

γ2 − 1
γ
, in case (iii) occurs because we rely on a law of

the iterated logarithm result of Dedecker, Gouëzel and Merlevède [DGM12] which is shown
to hold in this parameter regime.2 This is discussed in section A.2. Our standard ‘lifting’
argument fails in this case.

Remark 8.6. In [FFT20, Section 2.2.1] it is shown that (i) holds for γ ∈ (0, 0.289) and
0 < α < 1 (actually they prove a stronger functional convergence in the F

′
topology which

implies a stable law) and it is conjectured that convergence in F
′
holds for 0 < α < 1 and

all γ < 1
2
. In [FFT24, Section 4] this is extended for certain observables to γ ∈ (0, 1).

Remark 8.7. The case where φ is a function of the distance to the origin 0 has been clarified
by Gouëzel [Gou04, item 3. after proof of Theorem 1.3]. In the set-up of the LSV maps where

0 ≤ γ < 1 if φ(x) = x−
1
α , (so that x0 = 0) and 1 > 1

α
+ γ > 1

2
then φ converges to a stable

law in distribution and the corresponding scaling constant is nγ+ 1
α . If 1

α
+ γ < 1

2
then we

have a CLT.

2The law of iterated logarithm that we found in the literature, [Cho66, Hey69], for Birkhoff sums satisfying
a stable law, is not applicable in our setting.
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9. Proof of Theorem 8.1.

Recall the Karamata estimates of Proposition 2.3 for regularly varying functions.

Remark 9.1. Although we consider the case of a Gibbs-Markov map T : X → X and
φ(x) := d(x, x0)

−1/α, we are using only the following (e.g., no need for the Markov property):

• for the map T : X → X, X ⊂ R:
– big images w.r.t. the invariant measure
– uniform expansion: there is θ ∈ (0, 1) such that |T ′(x)| ≥ θ−1 for each x where
the derivative exists

– exponential decay on BV of the transfer operator P of T w.r.t. the invariant
measure µ

– bounded distortion
– invariant measure comparable to Lebesgue: density bounded above, and away
from zero

• for the observation φ: (8.1) holds, that is, there is a constant K > 0 such that
∥φ · 1{|φ|<t}∥BV ≤ Kt for t sufficiently large.

This allows to consider, e.g., β-transformation with β > 1, not necessarily integer. Condition
(8.1) is satisfied, e.g., if φ has finitely many intervals of monotonicity.

Proof of Theorem 8.1. Let ([0, 1],B, µ, T,P) be an expanding Gibbs-Markov system as
in Section 5. We will check the hypotheses of Theorem 7.1.

Condition (i) is satisfied since φ is in the domain of attraction of a stable law of index α
(see Remark 7.2).

Condition (ii) holds by [FFMa20]. Recall that by (2.1) and (7.2)

n ∼ 1/µ(|φ| > bn) = bαnL(bn)
−1

Since L grows slower than any power (see Lemma A.1), we will sometimes abuse notation
and consider that

(9.1) bn ∼ n1/α

Consider now the case of α ∈ (1, 2).
We need to establish (7.1). By Remark 7.3, condition (7.1) is implied by

(9.2) lim
ε→0

lim sup
n→∞

n

b2n

n∑
j=1

max

{
0,

∫
Φn · Φn ◦ T jdµ

}
= 0,

where, for a fixed ε > 0, we denote

φn := φ · 1{|φ|≤εbn} and Φn := φn − E(φn).

To obtain (9.2), by the exponential decay of correlations (5.1), we need only show that

(9.3) lim
ε→0

lim sup
n→∞

n

b2n

⌊k logn⌋∑
j=1

max

{
0,

∫
ΦnΦn ◦ T jdµ

}
= 0,
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where k is independent of n and ε. Indeed, using (8.1):

n

b2n

∑
j≥⌊k logn⌋

∣∣∣∣∫ ΦnΦn ◦ T jdµ

∣∣∣∣ ≤ n

b2n

∑
j≥⌊k logn⌋

Cλj∥Φn∥BV∥Φn∥∞

≤ n

b2n

∑
j≥⌊k logn⌋

C ′λjK(εbn)
2 ≤ n

b2n
C ′′λk logn(εbn)

2 =
n

b2n
C ′′nk log λ(εbn)

2

and take k large enough that k log λ < −1.
Since µ is T -invariant, can rewrite the covariance

∫
ΦnΦn◦T jdµ as E(φn·φn◦T j)−[E(φn)]

2.
Because φ ∈ L1(µ), one can neglect the [E(φn)]

2 terms in (9.3) as their contribution is of
order

n

b2n
(E(φn))

2 log n ≤ n

b2n
(E(|φ|))2 log n ∼ (E(|φ|))2n1− 2

α log n

and α < 2.
Thus, it suffices to show

(9.4) lim
ε→0

lim sup
n→∞

n

b2n

⌊k logn⌋∑
j=1

∫
|φn| · |φn| ◦ T jdµ = 0.

Introduce
1

2
< r < 1, un := brn, Un := {|φ| ≥ un}.

Since φ is in the domain of attraction of a stable law with index α (see (7.2) in Remark 7.2),

µ(Un) = u−α
n L(un).

From Karamata’s Theorem 2.3, (7.2) and that un = brn, we have

(9.5)

∫
φn

2dµ =

∫
φ2 · 1{|φ|≤εbn}dµ ∼ α

2− α
(εbn)

2µ(|φ| > εbn) = Cαε
2b2n(εbn)

−αL(εbn)

(9.6)

∫
Uc
n

φ2dµ ∼ α

2− α
u2nµ(|φ| > un) = Cαb

2r
n b

−αr
n L(un)

We decompose the sum of integrals in (9.4) as (I) + (II) + (III), where

(I) =

⌊k logn⌋∑
j=1

∫
Un∩T−jUn

|φn| · |φn| ◦ T jdµ,

(II) =

⌊k logn⌋∑
j=1

∫
Un∩T−jUc

n

|φn| · |φn| ◦ T jdµ

and

(III) =

⌊k logn⌋∑
j=1

∫
Uc
n

|φn| · |φn| ◦ T jdµ.
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Consider (II) and (III) first.
For (III), using that µ is T -invariant, we have

(9.7)∫
Uc
n

|φn| · |φn| ◦ T jdµ ≤
(∫

Uc
n

φ2dµ

) 1
2
(∫

φ2
n ◦ T jdµ

) 1
2

=

(∫
Uc
n

φ2dµ

) 1
2
(∫

φ2
ndµ

) 1
2

.

Similarly, for (II),
(9.8)∫

Un∩T−jUc
n

|φn| · |φn| ◦ T jdµ ≤
(∫

φ2
ndµ

) 1
2
(∫

T−jUc
n

φ2 ◦ T jdµ

) 1
2

=

(∫
φ2
ndµ

) 1
2
(∫

(φ2 · 1Uc
n
) ◦ T jdµ

) 1
2

=

(∫
φ2
ndµ

) 1
2
(∫

φ2 · 1Uc
n
dµ

) 1
2

=

(∫
φ2
ndµ

) 1
2
(∫

Uc
n

φ2dµ

) 1
2

By (9.5) and (9.6) we obtain(∫
φ2
ndµ

) 1
2
(∫

Uc
n

φ2dµ

) 1
2

≤ Cαε
1−α

2 b
(1−α

2
)(1+r)

n L(εbn)
1/2L(brn)

1/2

By (2.1) and (7.2),

n ∼ 1/µ(|φ| > bn) = bαnL(bn)
−1

which gives

n

b2n
[(II) + (III)] ≤ 2Cαkε

1−α
2 b

−(1−α
2
)(1−r)

n log n ·
(
L(εbn)L(b

r
n)

L(bn)2

)1/2

Since L is slowly varying, it grows slower than any power (see Lemma A.1), so, because
r < 1,

(9.9) lim sup
n→∞

n

b2n
[(II) + (III)] = 0

It remains to bound (I).

Denote by {A(m)
t }t≥1 the partition induced by

∨m−1
j=0 T

−jP .

Consider some fixed 1 ≤ j ≤ k log n; in order to estimate
∫
Un∩T−jUn

|φn| · |φn| ◦ T jdµ, we
have the following three possibilities.

Case 1: Un ⊂ A
(j)
r for some r ∈ N.
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Using the Hölder inequality and the expression of the transfer operator P ,

aj :=

∫
Un∩T−jUn

|φn| · |φn| ◦ T jdµ ≤
(∫

X

φ2
ndµ

)1/2(∫
Un

φ2
n ◦ T jdµ

)1/2

=

(∫
X

φ2
ndµ

)1/2(∫
X

P j(1Un)φ
2
n

)1/2

with

P j(1Un)|x =
h(y)

h(x)
· 1

(T j)′(y)

where y ∈ Un ⊂ A
(j)
r is the unique point such that T j(y) = x, and h is the density of the

invariant measure, d µ = h d Leb, bounded above and away from zero. Since T is piecewise
expanding, we obtain that

∥P j(1Un)∥L∞(X) ≤ Cθj

for C > 0 independent of j and n. Thus

aj ≤ Cθj
∫
φ2
n d µ

Case 2: Un ⊂ A
(j)
r ∪ A(j)

r+1 for some r ∈ N.
Consider Un ∩ A(j)

r and Un ∩ A(j)
r+1. They both satisfy Case 1, and therefore we have

bj :=

∫
Un

|φn(x)||φn(T
jx)| d µ ≤ 2Cθj

∫
φ2
n d µ

Case 3: A
(j)
r ⊂ Un for some r ∈ N.

There exists r1, r2 ∈ N such that A
(j)
r1 , A

(j)
r2 cover the endpoints of Un, therefore, by Case 1,

cj :=

∫
Un∩(A(j)

r1
∪A(j)

r2
)

|φn||φn| ◦ T j d µ ≤ 2Cθj
∫
φ2
n d µ

For the sets A
(j)
r ⊂ Un, by the bounded distortion of Gibbs-Markov system,

µ(A(j)
r ∩ T−jUn) ≤ Cµ(A(j)

r )µ(Un)/µ(T
jA(j)

r ).

Therefore, by the big image property,∑
A

(j)
r ⊂Un

µ(A(j)
r ∩ T−jUn) ≤ C̃

∑
A

(j)
r ⊂Un

µ(A(j)
r )µ(Un) ≤ C̃µ(Un)

2
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and then

dj :=
∑

{r:A(j)
r ⊂Un}

∫
A

(j)
r ∩(Un∩T−jUn)

|φn||φn| ◦ T j d µ ≤
∑

{r:A(j)
r ⊂Un}

∫
A

(j)
r ∩T−jUn

|φn||φn| ◦ T j d µ

≤

 ∑
{r:A(j)

r ⊂Un}

µ(A(j)
r ∩ T−jUn)

 ∥φn∥2L∞ ≤ Cµ(Un)
2∥φn∥2L∞

We now collect all these estimates.
Using Karamata’s estimate (9.5) of E(φ2

n), the choice of bn given by (2.1), and the expres-
sion of µ(Un) = µ(|φ| > un) given by (7.2):

n

b2n
(I) ≤ n

b2n

⌊k logn⌋∑
j=1

[aj + bj + cj + dj] ≤ C
n

b2n

⌊k logn⌋∑
j=1

[
θjE(φ2

n) + µ(Un)
2∥φn∥2L∞

]
≤ C

n

b2n

[
ε2b2nP(|φ| ≥ εbn) + u−2α

n L(un)
2(εbn)

2 log n
]

= C[ε2nP(|φ| ≥ εbn) + nb−2αr
n ε2L(brn)

2 log n] → Cε2 as n→ ∞

because r > 1/2 and L grows slower than any power, Lemma A.1.
Together with (9.9), this shows that condition (9.4) is satisfied. □

10. Proof of Theorem 8.4

Tyran-Kaminska [TK10b, Theorem 4.4] has proved convergence to a simple Poisson pro-
cess in our setting of Gibbs-Markov maps if limn→∞ τ(|φ| > εbn) = ∞ for all ε > 0, where τ
is the return time function. This non-recurrence condition is not satisfied if φ is maximized
at a periodic point. However recently the complete convergence of Nn to a Poisson process
has been established in the case of φ(x) = d(x, x0)

− 1
α if x0 is periodic [FFMa20]. These two

results cover all cases as shown by a dichotomy result in [FFMa20].
We will induce and model the system as a Young tower over a Gibbs-Markov base map.

As x0 need not be contained in [1/2, 1] we may need to induce over a base larger than the
usual Young Tower base of [1/2, 1] used for the LSV map.

Let TL denote the left branch of T . We consider the partition of (0, 1] into sets (Ai) and
(Bj). We define Ai ⊂ [1/2, 1] to be that set of points in [1/2, 1) where the first return time

to [1/2, 1] under T is i and then define Bj = [T−j−1
L (1/2), T−j

L (1/2)] ⊂ (0, 1], j ≥ 0. Note
that the sets {Ai}i constitute the usual partition of the base [1/2, 1) for the usual Young
tower for the LSV map but we will adjoin some of the sets Bj. Since x0 ̸= 0 there exists a
minimal M such that x0 ∈ [1/2, 1]∪ (∪M

j=1Bj). Define Y := [1/2, 1]∪ (∪M
j=1Bj). Inducing on

Y the return map to Y is a Gibbs-Markov map (though not necessarily with full branches).
We take a Tower model for (Tγ, X, µ) as a tower over Y with countable partition of the
base Y consisting of (Ai) and (Bj) in Y . If R(x) is the first return to Y then TRAi = BM

for all Ai ⊂ [0, 1]. If 2 ≤ j ≤ M then TRBj = Bj−1 and TRB1 = [1/2, 1]. The map
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F := TR : Y → Y is a Gibbs-Markov map, though not necessarily with full branches. Note
that if x0 ∈ [1/2, 1) then we we may take Y = [1/2, 1], and F : Y → Y is a full-branched
Gibbs-Markov map.

The induced map F = TR : Y → Y has an invariant probability measure µY , whose
density is Lipschitz and bounded away from infinity and 0.

Denote by EY the expectation on Y with respect to µY ; let R̄ =
∫
Y
RdµY = 1

µ(Y )
, by Kac’s

lemma.
We denote Rn(x) = R(x) +R(F (x)) + . . .+R(F n−1(x)).
We begin with Case (ii).

Case (ii): γ > 1
α
and φ(0)− E[φ] ̸= 0. .

The assumption that γ > 1
α
implies that α ∈ (1, 2) and hence E[φ] < ∞. Note also that

the assumption that γ > 1
α
excludes the case 0 ≤ γ ≤ 1

2
.

We decompose φ as φ = φ1 + φ2 with φ1(x) := φ(x)1Y c and φ2(x) := φ(x)1Y . Note that
φ1 − E[φ1] induces in a good way on the base Y . In fact the induced version of φ1 − E[φ1]
lies in the Banach space of functions to which the results of [Gou04, Theorem 1.2] apply.

Following [MZ15] we will write φ1 − E[φ1] = (φ(0) − E[φ1]) − 1
µ(Y )

(φ(0) − E[φ1])1Y + ψ

where ψ is defined by this equation. Note that E[ψ] = 0, ψ(0) = 0 and ψ is piecewise Hölder.
Thus ψ satisfies a CLT and so its Birkhoff sum converges to zero in distribution under any
scaling bn = nκ, κ > 1

2
. Hence the effect of ψ is negligible, as a scaling by nγ or n1/α will

ensure that the scaled Birkhoff sum ψ converges in distribution to zero.
Note that g := (φ(0)−E[φ1])− 1

µ(Y )
(φ(0)−E[φ1])1Y has expectation zero, E[g] = 0. The

function g induces the function

Φ1 = (φ(0)− E[φ1])(R(x)− R̄)

on Y . For x ∈ Y ,

R̄n∑
j=0

g ◦ T j =
n∑

j=0

Φ1 ◦ F j + Vn(x)

where

Vn(x) =



R̄n∑
Rn(x)

g ◦ T j(x) if R̄n ≥ Rn(x)

−
Rn(x)∑
R̄n

g ◦ T j(x) if R̄n < Rn(x)
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Thus we have

(10.1)

R̄n∑
j=0

g ◦ T j =
n∑

j=0

Φ1 ◦ F j +
R̄n∑
n=0

ψ ◦ T j + Vn(x)

= (φ(0)− E[φ1](Rn(x)− nR̄) + Vn(x) +
R̄n∑
n=0

ψ ◦ T j

We will use this observation when considering the induced form of φ2 − E[φ2].

We induce the observable φ2 on the Gibbs-Markov base Y by defining Φ2(x) =
∑R(x)−1

i=0 φ2◦
T i(x) where R is the first return time to Y under T . Since φ2 has support in Y , Φ2 = 0 on
all levels of the tower except for the base level, identified with Y , and on Y we have φ2 = Φ2.

Φ2 is in the domain of attraction of a stable law of index α on the probability space (Y, µY )
and EY [Φ2] = E[φ2]/µ(Y ). Note that for large t, µY (Φ2 > t) = 1

µ(Y )
µ(φ > t) and hence the

bn scaling for Φ2 is (nR̄)
1
α .

From our result on Gibbs-Markov maps Φ2 satisfies a stable law with index α under
F := TR with scaling (nR̄)

1
α . By our main theorem, Corollary 8.3

(nR̄)−
1
α

n∑
j=1

(Φ2 ◦ F j − R̄E[φ2])
d→Xα

We write
[R̄n]∑
j=0

(φ2 ◦ T j − E[φ2]) =

Rn(x)∑
j=0

(φ2 ◦ T j − E[φ2]) +Wn(x)

where, as for Vn(x),

Wn(x) =

[R̄n]∑
Rn(x)

(φ2 ◦ T j(x)− E[φ2]) or Wn(x) = −
Rn(x)∑
[R̄n]

(φ2 ◦ T j(x)− E[φ2]).

Furthermore
Rn(x)∑
j=0

(φ2 ◦ T j − E[φ2]) =
n∑

j=0

(Φ2 ◦ F j − R̄E[φ2])

−E[φ2][Rn(x)− nR̄]

Thus

[R̄n]∑
j=0

(φ2 ◦ T j − E[φ2]) =
n∑

j=0

(Φ2 ◦ F j − R̄E[φ2])(10.2)

− E[φ2][Rn(x)− nR̄] +Wn(x)
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Adding Equations (10.1) and (10.2) we obtain the representation

[R̄n]∑
j=0

(φ ◦ T j − E[φ]) =
n∑

j=0

(Φ2 ◦ F j − R̄E[φ2]) +
R̄n∑
j=0

ψ ◦ T j(10.3)

+ (φ(0)− E[φ1]− E[φ2])[Rn(x)− nR̄] + Vn(x) +Wn(x)

As noted before n−κ
∑R̄n

j=0 ψ ◦ T j converges in distribution to zero for any κ > 1
2
.

We will show that

(10.4)
1

(R̄n)γ
Wn(x)

d→ 0

and

(10.5)
1

(R̄n)γ
Vn(x)

d→ 0.

These imply that

(R̄n)−
1
α

[R̄n]∑
j=0

(φ ◦ T j − E[φ]) d→ (R̄n)−
1
α

n∑
j=0

(Φ2 ◦ F j − R̄E[φ2])

and hence

(R̄n)−
1
α

[R̄n]∑
j=0

(φ ◦ T j − E[φ]) d→Xα

We prove next the claim (10.4) about Wn(x). The proof of (10.5) for Vn(x) is the same
mutatis mutandis.

Proof of (10.4): We will show that

1

(R̄n)γ
Wn(x)

d→ 0.

Since γ > 1
2

Rn − nR̄

nγ

d→X 1
γ

as the return time function R lies in the domain of attraction of X 1
γ
and satisfies the condi-

tions of [Gou04, Theorem 1.2]. Thus

P
(∣∣∣∣Rn(x)− nR̄

nγ

∣∣∣∣ ∈ [0, L−1) ∪ (L,∞))

)
→ P

(
X 1

γ
∈ [0, L−1) ∪ (L,∞))

)
as n→ ∞

Therefore, given ε > 0, there are (large) L = L(ε) and N1 = N1(ε) such that

(10.6) P
(∣∣∣∣Rn(x)− nR̄

nγ

∣∣∣∣ ∈ [0, L−1) ∪ (L,∞))

)
< ε for n ≥ N1(ε)
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Denote
φ̃2 = φ2 − E(φ2)

and
∆n(x) =

∣∣Rn(x)− nR̄
∣∣ .

Note that

(10.7)
1

nγ
|Wn(x)| =

∣∣Rn(x)− nR̄
∣∣

nγ
·

∣∣∣∣∑|Rn(x)−nR̄|
j=0 φ̃ ◦ T j(y)

∣∣∣∣∣∣Rn(x)− nR̄
∣∣

where y is either TRn(x)(x) or T [nR̄](x). The first factor is controlled by (10.6); for the second
we use Wiener’s Maximal Inequality, Theorem (10.1), see e.g. [Dur19, Exercise 6.2.3]

Theorem 10.1 (Wiener’s Maximal Inequality). For T a measure preserving transformation
on the probability space (Ω, ν), f ∈ L1(ν) and a > 0:

(10.8) P

(
sup
n≥1

∣∣∣∣∣ 1n
n∑

k=1

f ◦ T k

∣∣∣∣∣ > a

)
≤ E(|f |)

a

Since T is ergodic, the L2-coboundaries are L2-dense in the set of zero-expectation func-
tions (see e.g. [SS05, Lemma 6.5.2]). Approximating φ̃2 ∈ L1 by L2 functions, one has:

(10.9) for δ2 > 0 there are ξ, ψ ∈ L2(µ) such that ψ = ξ ◦ T − ξ and ∥φ̃2 − ψ∥L1 < δ2

Applying Wiener’s Maximal Inequality, Theorem 10.1,

(10.10) P

(
sup
n

1

n

∣∣∣∣∣
n∑

j=1

(φ̃2 − ψ) ◦ T j

∣∣∣∣∣ > δ3
L

)
≤ E(|φ̃2 − ψ|)

δ3/L
≤ Lδ2

δ3

Since ψ is an L2-coboundary,

(10.11) lim
n→∞

P

(
1

n

∣∣∣∣∣
n∑

j=1

ψ ◦ T j

∣∣∣∣∣ > δ3

)
= 0,

so there is N2(δ2, δ3, δ3/L) such that

(10.12) P

(
1

n

∣∣∣∣∣
n∑

j=1

(ψ ◦ T j)

∣∣∣∣∣ > δ3
L

)
<
δ2
δ3

for n ≥ N2(δ2, δ3, δ3/L)

and therefore, for n ≥ N2(δ2, δ3, δ3/L)

(10.13)

P

(
1

n

∣∣∣∣∣
n∑

j=1

φ̃2 ◦ T j

∣∣∣∣∣ > 2
δ3
L

)
≤ P

(
1

n

∣∣∣∣∣
n∑

j=1

(φ̃2 − ψ) ◦ T j

∣∣∣∣∣ > δ3
L

)

+ P

(
1

n

∣∣∣∣∣
n∑

j=1

ψ ◦ T j

∣∣∣∣∣ > δ3
L

)
≤ (L+ 1)

δ2
δ3
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One has the bound

(10.14)

P
(

1

nγ
|Wn| > 2δ3

)
≤P
((

1

nγ
|Wn| > 2δ3

)
&

(∣∣∣∣Rn(x)− nR̄

nγ

∣∣∣∣ ∈ [L−1, L]

))
+ P

(∣∣∣∣Rn(x)− nR̄

nγ

∣∣∣∣ ∈ [0, L−1) ∪ (L,∞)

)
By (10.6), the second term in (10.14) is at most ε for n ≥ N1(ε). In view of (10.7), the

first term in (10.14) is bounded by

P

∆n ≥ nγ/L and

∣∣∣∑∆n

j=0 φ̃ ◦ T j
∣∣∣

∆n

> 2δ3/L


which, by (10.13), it is not more than

(L+ 1)
δ2
δ3

for nγ/L ≥ N2(δ2, δ3, δ3/L). In conclusion (recall that L = L(ε)):

P
(

1

nγ
|Wn| > 2δ3

)
≤ (L(ε)+1)

δ2
δ3

+ ε if nγ ≥ L(ε) ·N2(δ2, δ3, δ3/L(ε)) and n ≥ N1(ε)

This shows that (10.4) holds: pick ε > 0 arbitrary, set δ3 = ε/2 and then take δ2 > 0 small
enough that (L(ε) + 1)δ2/δ3 < ε. □

Case (i): 1
α
≥ γ. We suppose 1 < α < 2; recall that EY [Φ2] is the expectation on (Y, µY ),

so EY [Φ2] = R̄E[φ2]. The argument we give works equally well for 0 < α < 1 by taking
EY [Φ2] = 0.

From our result on Gibbs-Markov maps

(R̄n)−
1
α

n∑
j=0

(
Φ2 ◦ F j − EY [Φ2]

)
converges on Y to a stable law Xα of index α. We will use [Gou08, Theorem 4.6] (see
section A.1) to lift this stable law to a stable law for φ2 under T . We verify condition (b) of
Proposition A.2 to show that

n− 1
α

n∑
j=0

(φ2 ◦ T j − E(φ2))

converges in distribution to Xα. In condition (b) of Proposition A.2 we take α(n) = nγ,

An = nEY [Φ2] and Bn = (nR̄)
1
α .

The return time R is integrable on the probability space (Y, µY ) with expectation R̄.
Recall that Rn(x) = R(x) +R(Fx) + . . .+R(F n−1x).

Note that R satisfies a stable law of index 1
γ
under F (this result is well-known). Indeed,

the return-time function R is constant on partition elements of Y and hence measurable with
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respect to the partition on Y . R is in the domain of attraction of a stable law of index 1
γ
if

1
2
< γ < 1 or the CLT if γ < 1

2
. By [TK10b, Corollary 4.3]

1

nγ

n∑
j=0

[R ◦ F j − R̄]

converges to a stable law of index 1
γ
on Y . Hence{

n−γ

n∑
j=0

[R ◦ F j − R̄]

}
n≥1

is tight.
Therefore, can apply [Gou08, Theorem 4.6] (see Proposition A.2, part (b)) to conclude

that φ2 satisfies on X a stable law of index α with scaling bn = n
1
α and centering E(φ2)/R̄

(which is EY (Φ2)).
Now φ1 satisfies either a CLT (if φ1(0) − E[φ] = 0) or a stable law with scaling nγ (if

φ1(0)− E[φ1] ̸= 0), and thus the scaled Birkhoff sum n− 1
α

∑n
j=0[φ1 ◦ T j − E(φ1)] converges

in distribution to zero. This proves that

n− 1
α

(
n∑

j=1

(φ1 ◦ T j − E(φ1)) + (φ2 ◦ T j − E(φ2))

)

= n− 1
α

(
n∑

j=1

(φ ◦ T j − E(φ)

)
d→Xα

where Xα has a stable distribution with index α given by [DH95].

Case (iii): γ > 1
α
, φ(0)− E[φ] = 0 and α < 1 + 1

γ2 − 1
γ
. Recall the representation (10.3),

[R̄n]∑
j=0

(φ ◦ T j − E[φ]) =
n∑

j=0

(Φ2 ◦ F j − R̄E[φ2]) +
R̄n∑
j=0

ψ ◦ T j

+ (φ(0)− E[φ1]− E[φ2])[Rn(x)− nR̄] + Vn(x) +Wn(x)

As before n− 1
α

∑R̄n
j=0 ψ ◦ T j converges to zero in distribution and under our assumption that

φ(0)− E[φ] = 0 we have

(R̄n)−
1
α

[R̄n]∑
j=0

(φ ◦ T j − E[φ])−

[
(R̄n)−

1
α

n∑
j=0

(Φ2 ◦ F j − R̄E[φ2]) + (R̄n)−
1
α [Vn(x) +Wn(x)]

]
d→ 0

By Corollary A.3 of a result by Dedecker, Gouëzel and Merlevède [DGM12, Theorem 1.7]
we have

lim
n→∞

n− 1
α

nγ∑
j=0

(φ2 ◦ T j − E[φ2]) = 0 (µ-a.e. x ∈ X)
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and

lim
n→∞

n− 1
α

nγ∑
j=0

(φ1 ◦ T j − E[φ1]) = 0 (µ-a.e. x ∈ X)

in the parameter range we consider. By the Ergodic Theorem

lim
n→∞

1

n

n∑
j=0

[φ2 ◦ T j(x)− E(φ2)] = 0 (µ-a.e. x ∈ X)

Since [nR̄ − Rn(.)]/n
γ converges in distribution to a stable law of index 1

γ
, given ε > 0 we

may choose τ > 0 and M1 large enough that

µY

{
x ∈ Y : |nR̄−Rn(x)| > τnγ

}
< ε

for all n ≥M1.
Thus for all n ≥M1 the set

Bn := {x ∈ Y : |nR̄−Rn(x)| > τnγ}

satisfies µY (Bn) < ε.
Choose M2 > M1 large enough that

µY

{
x ∈ Y : max

M2≤k≤τnγ
n− 1

α

∣∣∣∣∣
k∑

j=0

[φ2 ◦ T j(x)− E(φ2)]

∣∣∣∣∣ > ε

}
< ε

Note that this implies that for all n > M2,

µY

{
x ∈ Y : for all M2 ≤ k ≤ τnγ, n− 1

α

∣∣∣∣∣
k∑

j=0

[φ2 ◦ T j(x)− E(φ2)]

∣∣∣∣∣ < ε

}
> 1− ε

By measure preservation

µY {x ∈ Y : for all M2 ≤ k ≤ τnγ, |n− 1
α

k∑
j=0

[φ2 ◦ T j(T nR̄x)− E(φ2)]| < ε1} > 1− ε

and

µY {x ∈ Y : for all M2 ≤ k ≤ τnγ, |n− 1
α

k∑
j=nR̄−nγ

[φ2 ◦ T j(T nR̄−nγ

x)− E(φ2)]| < ε} > 1− ε

Thus except for a set of points x ∈ Y of µY measure less than 2ε∣∣∣∣∣n− 1
α

(
nR̄∑
j=0

[φ2 ◦ T j(x)− E(φ2)]

)
− (nR̄)−

1
α

n∑
j=0

(
Φ2 ◦ F j(x)− EY [Φ2]

)∣∣∣∣∣ < 2ε
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Since (nR̄)−
1
α

∑n
j=0(Φ2 ◦ F j(x)− EY [Φ2]) converges in distribution to a stable law of index

α we see that

n− 1
α

nR̄∑
j=0

(φ2 ◦ T j(x)− E[φ2])

converges in distribution to a stable law of index α.
Thus the stable law for Φ2 lifts to φ2. If φ(0) − E(φ) = 0 then the scaling is n

1
α and if

φ(0)− E(φ) ̸= 0 then the scaling is nγ. □

11. Discussion

In Case (iii) of Theorem 8.4, when φ(0) − E[φ] = 0 and γ > 1
α
, we require the condition

α < 1+ 1
γ2 +

1
γ
which arises from the dependence of our proof on the almost sure convergence

result of [DGM12, Theorem 7.1]. A weaker distributional convergence would suffice and we
conjecture that α < 1 + 1

γ2 + 1
γ
is not necessary. See Remark 1.1. It is still an interesting

open question as to what can be said about almost sure convergence.
In Theorem 8.1 we show that small jumps are “negligible” for a wide class of heavy-tailed

functions on Gibbs-Markov maps. This result is used to investigate the interplay between the
effects of heavy-tails and slow-mixing in a common model of intermittency for observables
of form φ(x) = d(x, x0)

− 1
α . Our results are for stable laws but suggest that convergence in

stronger topologies may hold for all α > 1
γ
, 0 < γ < 1.

Appendix A.

Lemma A.1. A slowly varying function L grows slower than any power.

Proof. Let δ > 0 be arbitrary. Using the Representation Theorem (see e.g. [BGT87, Theorem
1.3.1]):

L(x)

xδ
∼
c(x) exp

(∫ x

1
ε(s)
s
ds
)

exp(δ
∫ x

1
1
s
d s)

= c(x) exp

(∫ x

1

ε(s)− δ

s
ds

)
with c(x) → c ∈ (0,∞) and ε(x) → 0 as x→ ∞. □

A.1. A result of Gouëzel. We use the following result of Gouëzel [Gou08, Theorem 4.6]:

Proposition A.2. Let (T,X, µ) be an ergodic probability preserving map, let α(n) and and
Bn be two sequences of integers which are regularly varying with positive indices. Let An ∈ R
and let Y ⊂ X be a subset with positive measure. We will denote by µY (.) :=

µ|Y
µ(Y )

the induced

probability measure. Let R : Y → N be the return time of T to Y and F = TR : Y → Y be
the induced map. Define R̄ =

∫
Y
Rdµ = 1

µ(Y )
. Consider a measurable function φ : X → R

and define Φ : Y → R by Φ(y) =
∑R(y)−1

j=0 φ◦T j. Define Sn(Φ) =
∑n−1

j=0 Φ◦F j. Assume that

Sn(Φ)− An

Bn
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converges in distribution (with respect to µY ) to a random variable S.
Additionally assume that either:

(a)
∑n

j=0 R◦F j−nR̄

α(n)
tends in probability to zero and max0≤k≤α(n)

|Sk(Φ)|
Bn

is tight

or

(b)
∑n

j=0 R◦F j−nR̄

α(n)
is tight and max0≤k≤α(n)

|Sk(Φ)|
Bn

tends in probability to zero.

Then ( n−1∑
j=0

φ ◦ T j − A⌊nµ(Y )⌋
)
/B⌊nµ(Y )⌋

converges in distribution (with respect to µ) to S.

A.2. A result of Dedecker, Gouëzel and Merlevède. For the benefit of the reader we
paraphrase the results of Dedecker, Gouëzel and Merlevède [DGM12, Theorem 1.7] that we
use.

They consider “generalized Pomeau-Manneville maps” with parameter γ ∈ (0, 1), which
include the map (6.1). For µ be a probability measure on R and H a tail function, let
Mon(H,µ) denote the set of functions f : R → R which are monotonic on some open
interval and null elsewhere else, such that µ(|f | > t) ≤ H(t). Define F(H,µ) to be the

closure in L1(µ) of the set of functions that can be written as
∑l

j=0 ajfj where
∑l

j=0 |aj| ≤ 1

and fj ∈ Mon(H,µ).
Suppose the LSV map has parameter 0 < γ < 1, φ is an observable in F(H,µ) with

H(t) ∼ t−α (so µ(|φ| > t) ≤ t−α). As a special case of [DGM12, Theorem 1.7]: if

(i) 1 < p ≤ 2 and 0 < γ < 1
p

(ii) H(t)(1−pγ)/(1−γ) ≤ Ct−p

then for any b > 1
p

n− 1
p (ln(n))−b

n−1∑
j=0

[φ ◦ T j − µ(φ)] → 0 µ-a.e.

Corollary A.3. Suppose φ(x) = d(x, x0)
− 1

α , x0 ̸= 0, is an observable on a LSV map given
by Equation (6.1). Define φ1 = φ1Y c and φ2 = φ1Y where Y is an interval containing x0.
If 1

γ
< α < 1 + 1

γ2 − 1
γ
then for i = 1, 2

lim
n→∞

n− 1
α

nγ∑
j=0

(φi ◦ T j − E[φi]) = 0 µ-a.e.

Proof of Corollary. In the expression

n− 1
α

nγ∑
j=0

(φ ◦ T j − Eµ[φ])
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let m = nγ (leaving out integer part notation) then we may rewrite the expression above as

m− 1
αγ

m∑
j=0

(φ ◦ T j − Eµ[φ])

For any sufficiently small δ > 0 we will show that we may take p = αγ + δ in [DGM12,
Theorem 1.7] and conclude that

lim
m→∞

m− 1
αγ

m∑
j=0

(φ ◦ T j − Eµ[φ]) = 0 µ-a.e.

For that, we need to check the conditions of [DGM12, Theorem 1.7]. Our functions φi,
i = 1, 2 fall in F(H,µ) for the tail function H(t) ∼ t−α as t → ∞. It can be seen that the
result for φ1, which is bounded, follows immediately. Estimates are required for φ2, which
satisfies µ(φ2 > t) ∼ t−α. For small δ > 0 and p = αγ + δ, condition (i) above, that is
1 < p ≤ 2 and γ < 1

p
, is satisfied provided γ2 < 1

α
. Now we consider condition (ii) above,

which is [DGM12, condition (1.7)]:

H(t)(1−pγ)/(1−γ) ≤ Ct−p

This condition is satisfied if p < α
αγ+1−γ

. Taking δ > 0 small this condition follows if γ <
1

αγ+1−γ
, which is equivalent to γ−γ2 < 1−αγ2. The condition γ−γ2 < 1−αγ2 imposes more

restrictions than γ2 < 1
α
. Thus the conditions of Dedecker, Gouëzel and Merlevède [DGM12,

Theorem 1.7] are satisfied in our setting for both φ1 and φ2 if 1
γ
< α < 1 + 1

γ2 − 1
γ
, with

p = αγ + δ. As an illustrative example, if γ = 2
3
we require 3

2
< α < 7

4
.
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