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Abstract. We offer an alternate derivation for the symmetric-hyperbolic formulation
of the equations of motion for a hyperelastic material with polyconvex stored energy.
The derivation makes it clear that the expanded system is equivalent, for weak solu-
tions, to the original system. We consider motions with variable as well as constant
temperature. In addition, we present equivalent Eulerian equations of motion, which
are also symmetric-hyperbolic.

1. Introduction: Kinematics

In [21] we demonstrated that the deformation gradient, which plays an important
role in continuum mechanics, satisfies 22 divergence form conservation laws in the sense
of distributions. These equations are consistent. In fact, all of these equations are
implied, even for weak, L∞ solutions (Lipschitz motions), by the continuity equations
for a deformation gradient.

In 1990, Lefloch proposed to append additional conservation laws to the equations of
elastodynamics (see [4] p. 121 and [17] p. 252). In [17], Qin showed that the 19 evo-
lution equations for the deformation gradient, its cofactor matrix, and its determinant,
together with the standard equations for conservation of momentum, form a symmetric-
hyperbolic system when the material is hyperelastic with a polyconvex stored energy. In
[7], Demoulini, Stuart, and Tzavaras used a variational approximation scheme to prove
the existence of global measure-valued solutions to the symmetrized system of [17].

In this paper, we present an alternate derivation of this symmetric-hyperbolic system,
and we extend it to motions with variable temperature. We prove that the symmetric-
hyperbolic extension is equivalent to the original system for weak, L∞ solutions. We
present Eulerian as well as Lagrangian formulations of the extended system.

The work presented here is closely related to the theory of involutions [5, 4], and we
shall try to elucidate this relationship as we proceed.

We begin with a brief introduction. Let (a, t) be coordinates for a reference config-
uration, and let x = φ(a, t) be a motion—that is, x = φ(a, t) describes the location
in R3, at time t, of the material point labelled by a. We suppose that the mapping
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φ is locally Lipschitz continuous and one-to-one, with a locally Lipschitz inverse (bi-
Lipschitz). Then, by Rademacher’s theorem [8], φ is differentiable almost everywhere.

F = ∇φ = ∂x
∂a

is a 3 × 3 matrix called the deformation gradient, and v = ∂x
∂t

is the

velocity.
We denote the ith row of F by Fi, and we denote the αth column of F by Fα. The

(i, α) entry of F we denote by F i
α.

Then equality of mixed partial derivatives implies that ∂
∂t
F i
α = ∂

∂aα
vi, or:

(1.1)
∂F

∂t
= ∇a ⊗ v.

We will call this the continuity equation for F. As noted in [5] and also shown in [16],
if F satisfies (1.1) for t > 0, and at t = 0,

(1.2)
∂F i

α

∂aβ
=
∂F i

β

∂aα
,

then (1.2) holds for all t > 0. In [5], (1.2) is called an involution of (1.1). Since (1.1)
and (1.2) are linear constant coefficient equations, this conclusion holds in the sense of
distributions for any initial data F(a, 0) in D′(R3).

We note that (1.1, 1.2) imply that

(1.3) ωi = F i
αda

α + vidt

is a closed differential one form. In fact, F = ∂x
∂a

and v = ∂x
∂t

imply that ωi is the exact

form dxi. In [21] we proved the following theorem:

Theorem 1.1. Let α ∈ Lploc and β ∈ Lp
′

loc be differential forms of degree q and q′,

respectively, where 1
p + 1

p′
= 1, 1 ≤ p ≤ ∞ and further suppose that dα ∈ Lploc and

dβ ∈ Lp
′

loc. Then d(α ∧ β) = dα ∧ β + (−1)qα ∧ dβ, and is locally integrable.

The proof given for this theorem in [21] is valid for 1 < p <∞. Here we give a proof
that is also valid for the case p = 1, p′ =∞.

Proof. Choose a coordinate patch, and within this patch, let K ⊂ Rn be an open set
with compact closure. Standard localization and smoothing gives a sequence of smooth
differential forms αn, βn such that on K, αn → α and dαn → dα in L1 (K), while
βn → β and dβn → dβ in Lr (K) , 1 ≤ r <∞, and weak* in L∞ (K). Furthermore each
sequence converges pointwise to its limit on the Lebesgue set of the limit function. We
require the following lemma.

Lemma 1.2. On K, αn ∧ βn → α ∧ β, dαn ∧ βn → dα ∧ β, and αn ∧ dβn → α ∧ dβ in
L1.
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Proof. (Lemma) We prove the case for αn ∧ βn. Note that:

αn ∧ βn − α ∧ β = (αn − α) ∧ βn + α ∧ (βn − β) .

Looking at the convergence of the first term, we have

(1.4) ‖(αn − α) ∧ βn‖1 ≤ ‖αn − α‖1 ‖βn‖∞ → 0,

since βn is bounded in L∞(K). For the second term, we have that pointwise,

‖α ∧ (βn − β)‖ (x) ≤ max
n
‖βn − β‖∞ ‖α(x)‖ ∈ L1(K).

Since βn → β on the Lebesgue set of β (that is, almost everywhere), we have by the
Lebesgue dominated convergence theorem that α ∧ (βn − β)→ 0 in L1(K). �

As a consequence of Lemma 1.2, we have that as distributions, d(α ∧ β) =
limn→∞ d(αn ∧ βn). Moreover,

(1.5) d(αn ∧ βn) = dαn ∧ βn + (−1)qαn ∧ dβn.
By Lemma 1.2, the right side of (1.5) converges in L1(K) and hence also as distributions,
to dα ∧ β + (−1)qα ∧ dβ. �

We define the cofactor matrix for F, to be (Cof F)iα = (−1)i+α det
(
Fi
α
′)

, where Fi
α
′
is

the 2× 2 matrix obtained from F by deleting the ith row and αth column from F. When
F is invertible, as we have assumed, then Cof F = |F|F−T [2].

We also define the Lagrangian velocity,

(1.6) u =
∂

∂t
a(x, t).

Since 0 = ∂
∂t

x (a(x, t), t) = ∂x
∂a

∂a
∂t

+ ∂
∂t

x(a, t),

(1.7)
u = −F−1v,

v = −Fu.

We are particularly interested in the case where v, F ∈ L∞loc and satisfy (1.1, 1.2). In
this case, dxi ∈ L∞loc and is closed. Theorem 1.1, together with (1.3), implies that the
following differential forms are also closed:
(1.8)

dxi ∧ dxj =
∑

1≤α<β≤3

(
F i
αF

j
β − F

i
βF

j
α

)
daα ∧ daβ +

3∑
α=1

(
F i
αv

j − F j
αv

i
)
daα ∧ dt

dx1 ∧ dx2 ∧ dx3 = |F| da1 ∧ da2 ∧ da3 −
3∑

α=1

(
3∑
i=1

vi (Cof F)iα (−1)α

)
dt ∧ daα̂

= |F| da1 ∧ da2 ∧ da3 + uα |F| dt ∧ daα̂(−1)α

Here da1̂ = da2 ∧ da3, da2̂ = da1 ∧ da3, and da3̂ = da1 ∧ da2.
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This implies that the following divergence-form differential equations hold, in the sense
of distributions, for any deformation gradient F ∈ L∞loc and v (or u ) ∈ L∞loc satisfying
(1.1, 1.2):

(1.9)

∂

∂t

(
F i
αF

j
β − F

i
βF

j
α

)
+

∂

∂aα
(
F i
βv

j − F j
βv

i
)
− ∂

∂aβ
(
F i
αv

j − F j
αv

i
)

= 0,

1 ≤ i < j ≤ 3, 1 ≤ α < β ≤ 3,

(1.10)

∂

∂a1

(
F i

2F
j
3 − F i

3F
j
2

)
− ∂

∂a2

(
F i

1F
j
3 − F i

3F
j
1

)
+

∂

∂a3

(
F i

1F
j
2 − F i

2F
j
1

)
= 0,

1 ≤ i < j ≤ 3,

(1.11)
∂

∂t
|F|+

3∑
α=1

∂

∂aα
(uα |F|) = 0

Equation (1.10) is the Piola identity ∇ ·Cof F = 0. [2, 15, 21].
Equation (1.11) is a conservation law for |F| which describes the conservation of

volume in Lagrangian coordinates.
Equation (1.9) is a conservation law for Cof F. We note that the Piola law (1.10) is

an involution for (1.9). The Piola law appears to be a new involution, but because it
expresses the fact that dxi ∧ dxj is closed as a form on R3, it is implied in the sense of
distributions by the involutions (1.2), together with the conservation law (1.1).

We note that Dafermos ([4], p. 30-31) and Demoulini, Stuart, and Tzavaras ([7])
proved that (1.9, 1.10, 1.11) hold in the sense of distributions. However we feel that the
use of differential forms provides additional understanding of the matter.

Using (1.7), equation (1.9) can be rewritten as:

(1.12)

∂

∂t

(
F i
αF

j
β − F

i
βF

j
α

)
− ∂

∂aα
((
F i
βF

j
γ − F

j
βF

i
γ

)
uγ
)

+
∂

∂aβ
((
F i
αF

j
γ − F j

αF
i
γ

)
uγ
)

= 0,

1 ≤ i < j ≤ 3, 1 ≤ α < β ≤ 3,

where γ is summed from 1 to 3.
When i and j are distinct integers from 1 to 3, let n(i, j) = 6− i− j. Then n(i, j) is

the integer from 1 to 3 which is neither i nor j.
We wish to find a simple expression for (1.12). Let

(1.13) Aijα =
(
F i
αv

j − F j
αv

i
)

= −
3∑

γ=1

(
F i
αF

j
γ − F j

αF
i
γ

)
uγ.
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Equation (1.12) can be written:

(1.14)

∂

∂t

(
Cof F

n(i,j)
n(α,β)

)
(−1)n(i,j)+n(α,β) +

∂

∂aα
(
Aijβ
)
− ∂

∂aβ
(
Aijα
)

= 0, or

∂

∂t

(
Cof F

n(i,j)
n(α,β)

)
(−1)n(i,j)+n(α,β) −

(
∇a ×Aij

)
n(α,β)

(−1)n(α,β) = 0,

1 ≤ i < j ≤ 3, 1 ≤ α < β ≤ 3.

Since, for each fixed α,

(1.15) Aijα = − (Fα × v)n(i,j) (−1)n(i,j),

equation (1.12) has the simple form,

(1.16)
∂

∂t
(Cof F) +∇a × (F× v) = 0,

where F×v denotes the 3× 3 matrix B for which the column vector Bα = Fα×v, and
∇a ×B is the matrix C for which the row vector Ci = ∇a ×Bi.

We can also express Aijα in terms of Cof F:
(1.17)

Aijα (−1)n(i,j) = (Fα × Fu)n(i,j) ,

=
3∑

γ=1

(Fα × Fγu
γ)n(i,j) ,

=
∑
γ 6=α

(Fα × Fγ)
n(i,j)
n(α,γ) u

γ,

= −
∑

1≤γ<α

(Cof F)
n(i,j)
n(α,γ) u

γ (−1)n(α,γ) +
∑
α<γ≤3

(Cof F)
n(i,j)
n(α,γ) u

γ (−1)n(α,γ) ,

=
(
Cof Fn(i,j) × u

)
α
.

Thus, equation (1.12) can be written simply as

(1.18)

∂

∂t
(Cof F) +∇a × (F× v) = 0, or

∂

∂t
(Cof F)−∇a × (Cof F× u) = 0.

Note, however, that in the second equation of (1.18), the cross product Cof F × u

is a matrix B for which the row vector Bn(i,j) = (Cof F)n(i,j) × u. Also note that this
equation bears a superficial similarity with the vorticity equation of incompressible Euler
flow, ωt + ∇ × (ω × v) = 0—the difference being the minus sign, and the relationship
ω = ∇× v, which is not present in the cofactor equation.
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2. Elasticity and Hyperelasticity

A material is called elastic if the first Piola-Kirchhoff stress tensor has the form [2,
15, 19]

(2.1) T (a) = T̂
(
a,F(a)

)
for all a. An elastic material is called hyperelastic if, in addition to (2.1), the first
Piola-Kirchhoff stress has the form

(2.2) T̂
(
a,F

)
=
∂Ŵ

∂F

(
a,F

)
.

The function Ŵ is called the stored energy function. Natural physical assumptions imply
that Ŵ cannot be convex; see [3] and [19]. However, it was discovered by John Ball [1]

that it is physically consistent to assume that Ŵ is polyconvex; that is, Ŵ has the form:

(2.3) Ŵ (a,F) = W(a,F,Cof F, |F|),

where W is convex with respect to F,Cof F, |F|.
The equations of motion for an isothermal elastic material are:

(2.4)
∂2x

∂t2
= ∇a · T̂

(
a,
∂x

∂a
(a, t)

)
This system is discussed in [12, 6]. If the operator x → ∇a · T̂

(
a, ∂x
∂a

(a, t)
)

is strongly

elliptic, (2.4) is a hyperbolic system. For a hyperelastic system, the operator is strongly

elliptic if and only if Ŵ is rank one convex [5, 4]. Using (1.1), we can write this as a
first order system, as follows:

(2.5)

∂F

∂t
= ∇a ⊗ v

∂v

∂t
= ∇a · T̂

(
a,F(a, t)

)
Qin [17] showed that if the material is hyperelastic with a polyconvex stored energy
function, then we can enlarge (2.5), by adding equation (1.11) and the nine equations
(1.9), to obtain a system which has a convex extension in the sense of Lax and Friedrichs
[9, 13]. Theorem 2.4 shows that Qin’s enlarged system is equivalent to (2.5) for weak
solutions.
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Using the velocity v, the enlarged system is:

(2.6)

∂F

∂t
−∇a ⊗ v = 0,

∂Cof F

∂t
+∇a ×

(
F× v

)
= 0,

∂ |F|
∂t
−∇a ·

(
F−1v |F|

)
= 0,

∂v

∂t
−∇a ·

∂Ŵ

∂F

(
a,F(a, t)

)
= 0.

This is the same as the enlarged system derived in [17], and studied in [7].
In terms of the Lagrangian velocity u, the system is:

(2.7)

∂F

∂t
+∇a ⊗ Fu = 0,

∂Cof F

∂t
−∇a ×

(
Cof F× u

)
= 0,

∂ |F|
∂t

+∇a · (u |F|) = 0,

∂Fu

∂t
+∇a ·

∂Ŵ

∂F

(
a,F(a, t)

)
= 0.

The convex extension to (2.6) is the conservation of total energy. The total energy is
the kinetic energy plus the stored energy. The conservation law is:

(2.8)
∂

∂t

(
1

2
‖v‖2 + Ŵ (a,F)

)
−∇a ·

(
v · ∂Ŵ

∂F

(
a,F(a, t)

))
= 0.

That this conservation law is a consequence of (2.6) for smooth solutions, follows from
the following calculation:

(2.9)

∂

∂t

(
1

2
‖v‖2 + Ŵ (a,F)

)
= v · vt +

∂Ŵ

∂F
:
∂F

∂t
,

= v ·
(
∇a ·

∂Ŵ

∂F

)
+
∂Ŵ

∂F
: ∇a ⊗ v

= vi
∂

∂aα
∂Ŵ

∂F i
α

+
∂Ŵ

∂F i
α

∂vi

∂aα
,

=
∂

∂aα

(
vi
∂Ŵ

∂F i
α

)
,

= ∇a ·

(
v · ∂Ŵ

∂F

)
.
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Because the continuity equation implies the conservation equations for the cofactor ma-
trix and the determinant, and because it does this at the level of weak solutions, we can
regard a polyconvex stored energy function as a convex function of conserved quantities.
For discontinuous solutions, (2.8) will not hold as an equality. However an associated
“entropy inequality” can be used as an admissibility criterion to eliminate spurious so-
lutions:

(2.10)
∂

∂t

(
1

2
‖v‖2 + W(a,F,Cof F, |F|)

)
−∇a ·

(
v · ∂Ŵ

∂F

(
a,F(a, t)

))
≤ 0.

Thus, except for our use of redundant, but consistent, equations for the deformation
gradient, the equations of motion for a hyperelastic material with polyconvex stored
energy function fit into the standard framework for systems of hyperbolic conservation
laws modeling physical phenomena.

We summarize these remarks in the following theorem.

Theorem 2.1. If Ŵ (a,F) is a polyconvex stored energy function, then the systems (2.6,
2.7) have a convex extension given by the conservation of total energy.

One important consequence of the existence of a convex extension, is that Lax and
Friedrichs [9] (see also Godunov [10], and Mock [11]) showed that such a system has a
quasilinear form which is symmetric-hyperbolic. If the system has the form

(2.11)
∂U

∂t
+

n∑
i=1

∂F i(U)

∂xi
= 0,

with entropy inequality

(2.12)
∂η(U)

∂t
+

n∑
i=1

∂qi(U)

∂xi
≤ 0,

with η(U) strictly convex, and ∇η(U) = ∇qi(U) · DF i(U), then multiplying (2.11) by
D2η(U) yields the following system, valid for classical solutions:

(2.13) D2η(U)
∂U

∂t
+

n∑
i=1

D2η(U)DF i(U)
∂U

∂xi
= 0,

where D2η(U) is symmetric positive-definite and D2η(U)DF i(U) are all symmetric. For
symmetric hyperbolic systems, the Cauchy problem is known to be well-posed for small
smooth initial data, for short time [14]. Also, we are guaranteed that a full set of
characteristic eigenvectors exist in every wave direction. Thus, for each non-zero vector
n ∈ Rn, the matrix DF ini is diagonalizable.

Applying Theorem 2.1 of [14], we have the following Corollary to Theorem 2.1, which
ignores the important issue of boundary conditions.
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Corollary 2.2. Let x = φ0(a) be given, with φ0 bi-Lipschitz on R3, and φ0(a) = a
outside of a compact set. Let F0, Cof F0, and D0 be the deformation gradient of φ0

and its cofactor matrix and determinant, respectively. Let v0(a) be the initial velocity;

assume v0(a) = 0 outside of a compact set. Let Ŵ (a,F) be a smooth strictly polyconvex
stored energy function with domain R3×K, where K is a convex subset of R19∩{D > 0}.

Let s > 5
2 . If U0 =

(
F0−I, Cof F0−I, D0−1, v0

)
∈ Hs (R3,R22) and

(
F0, Cof F0,

D0, v0

)
has values in a compact subset G of K ×R3, then there exists T > 0, such that

the equations (2.6) have a unique classical solution U(x, t) ∈ C1 (R3 × [0, T ] , G) with
initial data U0. Furthermore,

U ∈ C ([0, T ] , Hs) ∩ C1
(
[0, t] , Hs−1

)
,

and T depends on ‖U0‖s and G.

Corollary 2.2 is very similar to the theorem proved regarding system (2.4) in [12].
The paper [6] proves existence for initial-boundary value problems for (2.4), but with
stronger regularity requirements on the initial data. However, both [12, 6] only require
the stress to be strongly elliptic, whereas Corollary 2.2 requires, in addition, that the
stored energy be convex in F, Cof F, and D.

Dafermos’ theory of involutions [5, 4] provides an alternative approach to the well-
posedness of the Cauchy problem. For systems that are hyperbolic, but lack which
lack a strictly convex extension, involutions can provide additional constraints on os-
cillations that compensate for this lack. Specifically, one needs a C3 entropy η(U) for
which D2η(U) is positive definite in the direction of the “involution cone.” Under such
conditions Dafermos proved an existence theorem similar to Corollary 2.2. Again, for
elasticity this Dafermos’ theorem is more general than Corollary 2.2 because it does not
require a polyconvex stored energy.

One can also consider the equations of motion and of conservation of energy for a hy-
perelastic material in which thermal effects are of interest. For such a material, the natu-
ral assumption on the stored energy function is that Ŵ (a,F, S) = W(a,F,Cof F, |F | , S)
is convex as a function of F,Cof F, |F | and S, where S is the density of entropy with
respect to mass [4]. In this case, one still has

(2.14)
T̂ (a,F) =

∂Ŵ

∂F
,

=
∂W
∂F

+
∂W

∂Cof F

∂Cof F

∂F
+

∂W
∂ |F |

∂ |F |
∂F

.
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The absolute temperature is θ = ∂Ŵ
∂S

. We assume that θ > 0. If the heat conductivity

is zero, then the equations of motion and of conservation of energy are:

(2.15)

∂F

∂t
−∇a ⊗ v = 0,

∂Cof F

∂t
+∇a ×

(
F× v

)
= 0,

∂ |F|
∂t
−∇a ·

(
F−1v |F|

)
= 0,

∂v

∂t
−∇a ·

∂Ŵ

∂F

(
a,F(a, t), S(a, t)

)
= 0.

∂

∂t

(
1

2
‖v‖2 + W(a,F,Cof F, |F| , S)

)
−∇a ·

(
v · ∂Ŵ

∂F

(
a,F(a, t), S

))
= 0.

and the convex extension is given by the entropy function −S; the equation is simply
St = 0, and the admissibility criterion is St ≥ 0. We require the following theorem,
which is based on an idea due to Andrew Majda; see [20].

Theorem 2.3. Let W(a,F,Cof F, |F| , S) be convex in (F,Cof F, |F| , S), and let

E = ‖v‖2 /2 + W. Suppose also that θ = ∂Ŵ
∂S

> 0. Then there exists a function

S(a,F, Cof F, |F| , v, E) such that −S is convex in (F, Cof F, |F| , v, E), and

(2.16) E = ‖v‖2 /2 + W
(
a,F,Cof F, |F| , S(a,F, Cof F, |F| , v, E)

)
.

Proof. For a,F, Cof F, |F| , v fixed, the relationship between E and S is one to one

since ∂Ŵ
∂S

> 0. Therefore S(a,F, Cof F, |F| , v, E) is uniquely determined by (2.16).

We note that E is a convex function of F, Cof F, |F| , S, and v, and that the graph of
S as a function of F, Cof F, |F| , v, and E is the same surface as the graph of E, with
a simple exchange of the dependent variable E with the independent variable S. Thus

S is either convex or concave. Since θ = ∂Ŵ
∂S

> 0, S must be concave and −S is convex

in (F, Cof F, |F| , v, E). �
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We may emphasize the independence of F, C = Cof F, and D = |F| by rewriting
(2.15) as:

(2.17)

∂F

∂t
−∇a ⊗ v = 0,

∂C

∂t
+∇a ×

(
F× v

)
= 0,

∂D

∂t
−∇a ·

(
F−1vD

)
= 0,

∂v

∂t
−∇a ·

∂Ŵ

∂F

(
a,F(a, t), S(a, t)

)
= 0.

∂

∂t

(
1

2
‖v‖2 + W(a,F,C, D, S)

)
−∇a ·

(
v
∂Ŵ

∂F

(
a,F(a, t), S

))
= 0.

Note that the equation for D may be replaced by:

(2.18)
∂D

∂t
−∇a ·

(
CTv

)
= 0.

Initial conditions for the Cauchy problem for (2.6, 2.7), or (2.15) must be posed in
a consistent manner. These systems are all symmetric hyperbolic, and the Cauchy
problem is well posed for short time, for initial data which is sufficiently smooth and
small. However, we must require that the initial data for C and D actually be the
cofactor matrix and determinant of the initial data for F. In addition, as was noted
before, F must be a gradient at t = 0. The continuity equation then ensures that F
remains a gradient for t > 0.

We have already seen that the cofactor matrix and determinant of F satisfy the
equations for C and D. The question arises, however, whether C(a, t) = Cof F(a, t) and
D(a, t) = |F| (a, t) for t > 0. This is a question of uniqueness of solutions. Uniqueness of
weak solutions to nonlinear systems of hyperbolic conservation laws is a difficult subject
with important unresolved issues. However, if we treat F, v and S as known, then the
conservation laws for C and D together with initial data, are linear in those unknowns,
and determine C(a, t) and D(a, t) uniquely. We have proved the following theorem.

Theorem 2.4. Let Ω be an open set in R3 and let T > 0. Let(
F(a, t), C(a, t), D(a, t), v(a, t), S(a, t)

)
be an L∞ solution of (2.17) on Ω× [0, T ], such that C(a, 0) = Cof F(a, 0) and D(a, 0) =
|F| (a, 0) for all a ∈ Ω. Then C(a, t) = Cof F(a, t) and D(a, t) = |F| (a, t) in Ω× [0, T ].

In addition, if if there is a map x : Ω → R3 such that, in the sense of distributions,
F(a, 0) = ∇x(a), then x extends to a Lipschitz map on Ω × [0, T ] such that F(a, t) =

∇x(a, t) and v(a, t) = ∂a
∂t

.
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3. Eulerian equations

The papers [16, 18] discussed the Eulerian formulation of the equations of motion for
elastic materials. Our paper [21] clarified an incompatibility between these two papers
regarding Eulerian continuity equations. Here, we briefly outline the derivation of the
Eulerian equations, using differential forms, and we add the results of Section 2 regarding
convex extensions.

In Eulerian coordinates (x, t), the forms dxi, dxi ∧ dxj, and dx1 ∧ dx2 ∧ dx3 are closed
and exact, trivially. There is nothing to be gained by transforming the Lagrangian
equations corresponding to these differential forms into Eulerian coordinates.

Significant partial differential equations can be derived, however, from the forms
daα, daα ∧ daβ, and da1 ∧ da2 ∧ da3. These equations are the same as (1.9, 1.10, 1.11),
with F replaced by F−1, a by x, and v by u or by −F−1v—the algebra is exactly the
same. Let G = F−1. The continuity equations come from daα:

(3.1)
∂

∂t
Gα
i =

∂uα

∂xi
,

with involution

(3.2)
∂

∂xi
Gα
j =

∂

∂xj
Gα
i

The cofactor equations come from daα ∧ daβ:

(3.3)

∂

∂t

(
Gα
i G

β
j −Gα

jG
β
i

)
+

∂

∂xi

(
Gα
j u

β −Gβ
j u

α
)
− ∂

∂xj

(
Gα
i u

β −Gβ
i u

α
)

= 0,

1 ≤ i < j ≤ 3, 1 ≤ α < β ≤ 3,

with involution

(3.4)
∂

∂x1

(
Gi

2G
j
3 −Gi

3G
j
2

)
− ∂

∂x2

(
Gi

1G
j
3 −Gi

3G
j
1

)
+

∂

∂x3

(
Gi

1G
j
2 −Gi

2G
j
1

)
= 0,

The conservation of mass comes from da1 ∧ da2 ∧ da3:

(3.5)
∂

∂t
|G|+

3∑
i=1

∂

∂xi
(
vi |G|

)
= 0

In fact we can proceed directly to the following forms for these equations. Using the
Lagrangian velocity u, the equations for G, Cof G, and |G| are:

(3.6)

∂G

∂t
−∇x ⊗ u = 0,

∂Cof G

∂t
+∇x ×

(
G× u

)
= 0,

∂ |G|
∂t
−∇x ·

(
G−1u |G|

)
= 0,
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In terms of the Eulerian (i.e., usual) velocity v, these equations are:

(3.7)

∂G

∂t
+∇x ⊗Gv = 0,

∂Cof G

∂t
−∇x ×

(
Cof G× v

)
= 0,

∂ |G|
∂t

+∇x · (v |G|) = 0,

Equation (3.5) and the corresponding equations of (3.6, 3.7) describe the conservation
of mass.

Thus, for kinematics, there is complete symmetry between the Lagrangian and Euler-
ian equations for continuity, for the cofactor matrix, and for the conservation of mass or
volume. The conservation of momentum, however, is a physical law which is not tied to
any coordinate system. Therefore we must take the differential form corresponding to
this conservation law, and express it in the Eulerian coordinate system to obtain partial
differential equations.

The conservation of momentum equation is (2.5):

(3.8)
∂v

∂t
= ∇a · T̂

(
a,F(a, t)

)
.

The closed differential form corresponding to this equation is

(3.9) µ = vda1 ∧ da2 ∧ da3 −
3∑

α=1

T̂αdt ∧ daα̂(−1)α

The conservation of mass (3.7) says that the following differential form, which we call
the mass form, is closed:

(3.10) ρ = da1 ∧ da2 ∧ da3 = |G| dx1 ∧ dx2 ∧ dx3 +
3∑
i=1

vi |G| dt ∧ dx̂i(−1)i.

Then,
(3.11)

µ = vρ−
3∑

α=1

T̂αdt ∧ daα̂(−1)α

= v

(
|G| dx1 ∧ dx2 ∧ dx3 +

3∑
i=1

vi |G| dt ∧ dx̂i(−1)i

)
−

3∑
α=1

T̂αdt ∧ daα̂(−1)α

To transform the last term of (3.11), we either compute that

dt ∧ daα̂(−1)α = dt ∧
3∑
i=1

Cof Gα
i dx̂i(−1)i,
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or apply the Piola transform [2, 15, 19]: T̂φ(x, t) = T̂(a, t)Cof G. We obtain that
(3.12)

µ =

(
v |G| dx1 ∧ dx2 ∧ dx3 +

3∑
i=1

(
vvi |G| − T̂(a(x, t), t)Cof G

)
dt ∧ dx̂i(−1)i

)
Thus, the Eulerian equations of motion take the form:

(3.13)

∂

∂t
G +∇x ⊗ (Gv) = 0,

∂

∂t
Cof G−∇x × (Cof G× v) = 0,

∂

∂t
|G|+∇x · (|G|v) = 0,

∂

∂t
(|G|v) +∇x ·

(
|G|v ⊗ v − T̂ Cof G

)
= 0.

Furthermore, when the material is hyperelastic with a polyconvex stored energy function
W
(
F,Cof F, |F|

)
, the Eulerian energy density provides a convex extension, as follows.

The energy density is Eφ = |G|
(
‖v‖2 /2 + W

)
. The following theorem is a paraphrase

of a result of [20].

Theorem 3.1. Let f be convex on a subset Ω of R+×Rn−1. Let φ : Ω→ Ωφ ⊂ R+×Rn−1

be defined by

(3.14) φ(u1, . . . , un) =
(
u−1

1 , u2/u1, . . . , un/u1

)
.

Then

(3.15) g(v1, . . . , vn) = v1f
(
v−1

1 , v2/v1, . . . , vn/v1

)
defines a convex function on Ωφ.

Proof. Since f is convex, it is a supremum of a family affine functions:

(3.16) f(u1, . . . , un) = sup
c

(c0 + c1u1 + · · ·+ cnun) .

Since u1 and v1 are positive, we may compute:

(3.17)

g(v1, . . . , vn) = v1f
(
v−1

1 , v2/v1, . . . , vn/v1

)
= v1 sup

c

(
c0 + c1v

−1
1 + c2v2/v1 + · · ·+ cnvn/v1

)
,

= sup
c

(
c0v1 + c1 + c2v2 + · · ·+ cnvn

)
.

Thus g is a supremum of affine functions of v1, . . . , vn and is hence convex. �

Since F = G−1 = Cof GT |G|−1, and Cof F = F−T |F| = GT |G|−1, Theorem 3.1
implies that

(3.18) Wφ
(
G,Cof G, |G|

)
= |G|W

(
Cof GT |G|−1 ,GT |G|−1 , |G|−1)
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is convex, and that Eφ is a convex function of v, G, Cof G, and |G|.
The energy form is:

(3.19)

ε = Eρ−
3∑

α=1

3∑
j=1

vj
∂Ŵ

∂Fj
α

dt ∧ daα̂(−1)α,

= Eρ−
3∑
i=1

3∑
α=1

3∑
j=1

vj
∂Ŵ

∂Fj
α

(Cof G)αi dt ∧ dx̂i(−1)i.

Thus the Eulerian conservation law for energy is:

(3.20)

∂Eφ

∂t
+∇x ·

(
Eφv

)
−

3∑
i=1

∂

∂xi

3∑
α=1

3∑
j=1

vj
∂Ŵ

∂Fj
α

(Cof G)αi = 0, or

∂Eφ

∂t
+∇x ·

(
Eφv

)
−∇x ·

(
v · T̂φ

)
= 0,

For weak solutions with discontinuities in G or v, we may use the corresponding “entropy
condition”

(3.21)
∂Eφ

∂t
+∇x ·

(
Eφv

)
−∇x ·

(
v · T̂φ

)
≤ 0,

as an admissibility criterion. For non-isothermal motions the conservation of energy
equation (3.20) must hold in the sense of distributions, together with (3.13), and the
appropriate admissibility criterion is given by the increase of entropy,

(3.22)
∂S |G|
∂t

+∇x · (S |G|v) ≥ 0.
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