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Abstract. The global existence of entropy solutions is established for the compress-
ible Euler equations for one-dimensional or plane-wave flow of an ideal gas, which
undergoes a one-step exothermic chemical reaction under Arrhenius-type kinetics. We
assume that the reaction rate is bounded away from zero and the total variation of the
initial data is bounded by a parameter that grows arbitrarily large as the equation of
state converges to that of an isothermal gas. The heat released by the reaction causes
the spatial total variation of the solution to increase. However, the increase in total
variation is proved to be bounded in t > 0 as a result of the uniform and exponential
decay of the reactant to zero as t approaches infinity.

1. Introduction

We are concerned with the large-time existence of entropy solutions to the Cauchy

problem for the equations of planar flow of an exothermically reacting ideal gas:

ρt + (ρu)x = 0, (1.1a)

(ρu)t +
(
ρu2 + p

)
x

= 0, (1.1b)

(ρE)t + ((ρE + p)u)x = qρY φ(T ), (1.1c)

(ρY )t + (ρuY )x = −ρY φ(T ), (1.1d)

(ρ, u, E, Y )(x, 0) = (ρ0, u0, E0, Y0)(x). (1.1e)

We assume, for simplicity, that the specific heats and molecular weights of the reactant

and product gases are the same. Then the constitutive relations and conditions for this
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system are

v =
1

ρ
(specific volume), E = e(v, S) +

u2

2
, (1.2a)

p = −ev(v, S) > 0, T = eS(v, S) =
p

Rρ
> 0, (1.2b)

pv(v, S) < 0, pvv(v, S) > 0, (1.2c)

on any compact set in v > 0. We assume that the reaction rate function φ is mono-

tonically increasing and Lipschitz continuous. In addition, inadmissible discontinuous

solutions are eliminated by requiring the following entropy condition:

(ρS)t + (ρuS)x ≥
qρY φ(T )

T
. (1.3)

The ideal gas assumption p = RρT implies [35] that the internal energy can be written

as a function of T alone, e(v, S) = ẽ(T ). Then ẽ′(T ) = cv(T ) is the specific heat at

constant volume. We identify cv + R = cp as the specific heat at constant pressure.

When cv is constant, then the gas is an ideal polytropic gas. For such a gas, cp is

also constant, and the ratio cp/cv = γ > 1 is the adiabatic exponent, a parameter that

determines the equation of state.

This system of equations (1.1)–(1.2) is useful for studying the behavior of plane det-

onation waves. In a detonation wave, the effects of pressure gradients, which support

the shock wave, and the conversion of chemical energy to mechanical energy are far

greater than the diffusive effects such as viscosity, heat conduction, and diffusion of

chemical species. This justifies the use of the Euler equations in (1.1)–(1.2), rather than

the Navier-Stokes equations, in this context. The shock wave solutions one observes in

this model are jump discontinuities. This is a very good representation of the shock

waves one observes experimentally, which have a width of several molecular mean free

paths. The reaction zone of a detonation wave, by way of contrast, has a width which

is generally hundreds of mean free paths.

Our interest in this system is partly stimulated by an interest in new and different

types of behavior exhibited by solutions of this system. Whereas non-reacting shock

waves are known, under reasonable assumptions, to be stable [22], linearized stability

analysis, as well as numerical and physical experiments, have shown that certain steady

detonation waves are unstable [1, 13, 14, 18, 25]. One particular kind of instability that

takes place within the context of one space dimension produces pulsating detonation

waves. In certain parameter regimes, steady planar detonation waves are unstable and
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evolve into oscillating waves. These oscillating waves generate a steady stream of waves

which propagate behind the wave. For example, a numerical calculation of such an

evolution, performed by the second author, is presented in Fig. 1. The possibility of such
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Figure 1. Computation of a pulsating detonation.

oscillation clearly indicates that we are presented with both an interesting challenge and

the possibility of discovering new and interesting mathematics.

The system (1.1)-(1.2) is a hyperbolic system of balance laws. That is, it has the form

Ut + F (U)x = G(U), (1.4)

where U(x, t) ∈ Rn, F (U), G(U) ∈ Rn, and for each U , the n× n matrix DF (U) has a

set of real eigenvectors which form a basis of Rn. One of the principal features of the

theory of quasilinear hyperbolic systems is the formation of shock waves. This shock

formation makes difficult the establishment of theorems regarding the existence and/or

the uniqueness of solutions. Classical, smooth solutions to the Cauchy problem will

not usually exist for all t > 0. However, weak, discontinuous entropy solutions to this

problem, under reasonable conditions, do exist for all t > 0, as we shall show in this

paper.

In the case where G(U) is identically zero, the system (1.4) is called a system of

conservation laws. Such a system is strictly hyperbolic if the n eigenvalues of DF (U)

are real and distinct: λ1 < · · · < λn. The right eigenvectors r1, · · · , rn correspond to

the fields of simple waves admitted by the system (1.4). The corresponding eigenvalues
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give the characteristic speeds of propagation associated with these fields. We say that

the jth wave field is genuinely nonlinear if ∇λj(U) · rj(U) 6= 0 for all U . The jth wave

field is linearly degenerate if ∇λj(U) · rj(U) = 0 for all U .

The large-time existence of entropy solutions of strictly hyperbolic and genuinely

nonlinear systems of conservation laws, with initial data of small total variation, was

proved in [15]. The equations of gas dynamics, that is, the first three equations of

(1.1), together with (1.2), omitting any terms containing Y , is not completely genuinely

nonlinear. One may compute that

λ1 = u− c, λ2 = u, λ3 = u + c,

where c = v
√
−pv is the speed of sound. The first and third wave fields propagate

acoustic waves and shock waves and are genuinely nonlinear. The second field is linearly

degenerate and propagates contact discontinuities. The large-time existence of entropy

solutions of the Cauchy problem for gas dynamics is proved in [19, 29].

The system of conservation laws for (1.1), that is, omitting the reaction rate term

ρY φ(T ), has a fourth wave field which is linearly degenerate with λ4 = λ2 = u. Thus

the system (1.1) is not strictly hyperbolic. However, it is hyperbolic, and the lack of

strict hyperbolicity does not affect the existence theory for this system. In fact one may

rewrite this system in Lagrangian coordinates:

vt − uy = 0, (1.5a)

ut + py = 0, (1.5b)

Et + (pu)y = qY φ(T ), (1.5c)

Yt = −Y φ(T ). (1.5d)

Because this choice of coordinates reduces the fourth equation of the system to an

ordinary differential equation, which is coupled with the rest of the system only through

the temperature function T , we will work primarily with the system (1.5). Any existence

theorem proved for this system can be translated into an existence theorem for (1.1) (cf.

see [31]).

Several results have been obtained regarding the existence of entropy solutions to

hyperbolic systems of balance laws [9, 10, 21, 36, 37]. However, the equations of reacting

flow considered here do not satisfy the hypotheses for these results. Our problem presents

a double eigenvalue, which is ruled out in [9] to prevent resonance. Some 2× 2 physical

systems were discussed in [10, 21, 36, 37]. The papers [9, 21] had in view applications in
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which the lower-order terms act in a way that reduces the spatial total variation of the

solution as time increases. In [37], the lower-order term has a coefficient e−Kt, so that

the lower-order term decays uniformly without the need for a priori estimates. In [36],

the first order terms constitute a system of conservation laws for which solutions exist

with arbitrarily large initial data [23]. Such a system is rather unusual, and no decay of

the lower-order terms is required in order to obtain the large-time existence of entropy

solutions.

These remarks do not apply to the system (1.1)–(1.2), or (1.5). For this system, the

exothermic reaction can increase the total variation in a number of ways. For example,

in the formation of a detonation wave, a chemical reaction behind a shock wave can

increase the strength of that shock wave. More subtle phenomena are also possible. In a

nearly constant, unreacted state, a very small variation in temperature can cause the gas

in one region to react prior to the gas in nearby regions, resulting in a large increase in

total variation. Moreover, the hot spot created by such an event would generate waves,

some of which would be shock or rarefaction waves. These waves could propagate away

from the hot spot before the remaining reactant ignites.

The theorem that we present in this paper is only a first step in dealing with these

difficulties. We assume that the initial data are such that the reaction rate function

φ(T ) never vanishes, so that there is a positive minimum value Φ := φ(T ′) > 0. In a

sense, this is a very realistic condition. Typically, φ(T ) has the Arrhenius form:

φ(T ) = Tαe−E/RT , (1.6)

which vanishes only at absolute zero temperature. However, in a typical unburned state,

φ(T ) is very small. We make this assumption in order to obtain the uniform decay of

the reactant to zero. Thus, although the total variation of the solution may very well

increase while the reaction is active, the reaction must eventually die out. Consequently,

the increase in total variation can be estimated rigorously.

Following [29], we consider a one-parameter family of functions e(v, S, ε), ε ≥ 0, which

is C5 and satisfies (1.2). We assume that, when ε = 0, the equation of state is that of

an isothermal gas:

e(v, S, 0) = − ln(v) +
S

R
. (1.7)

For a polytropic gas, ε = γ − 1, and for ε > 0,

e(v, S, ε) =
1

ε

(
(v exp (−S/R))−ε − 1

)
. (1.8)
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One may easily check that this function is C∞ and that, as ε → 0+, all partial deriva-

tives converge uniformly on any compact set in v > 0 to the corresponding derivatives

of e(v, S, 0). In particular, one may use L’Hôpital’s rule to calculate

∂e

∂ε
(v, S, 0) =

1

2

(
− ln(v) +

S

R

)2

, (1.9)

and see that ∂e
∂ε

(v, S, ε) is continuous at ε = 0, v > 0.

The value ε = 0 is mathematically special because, at this value, the system (1.1) has

a complete system of Riemann invariants:

(r, s, S, Y ) = (u− ln(p), u + ln(p), S, Y ). (1.10)

Furthermore, all shock, rarefaction, and contact discontinuity curves in (r, s, S, Y )-space

are invariant under translation of the base point. Following [29], we use (r, s, S, Y ) as

the coordinates for our analysis in ε ≥ 0. Note that since p = −∂e
∂v

(v, S, ε) and e(v, S, ε)

is C5, the transformation between (v, u, S) and (r, s, S) is C4. Moreover, Temple [29]

showed that this transformation is a diffeomorphism.

Our principal result, Theorem 3.2, is somewhat complex, but a simple version may be

stated as follows.

Theorem 1.1. Let (r−∞, s−∞, S−∞) be a point in rsS-space, and let ε ∈ [0, 1]. Let w0(x)

be given initial data for (1.5), expressed in (r, s, S, Y )-coordinates, and with limx→−∞w0(x) =

(r−∞, s−∞, S−∞, 0). Then there is a function C (ε, Φ, q, ‖Y0‖∞) > 0 such that C (ε, Φ, q, ‖Y0‖∞) →
∞ as ε → 0, and such that, if

V arrsSY (w0) < C (ε, Φ, q, ‖Y0‖∞) ,

then there exists a global BV entropy solution to the Cauchy problem (1.1)–(1.2) with

initial data determined by w0.

Moreover, for ε small, C (ε, Φ, q, ‖Y0‖∞) has the form

C (ε, Φ, q, ‖Y0‖∞) =
B

ε1/3
exp

(
−Kq ‖Y0‖∞

Φ

)
.

for some constant B.

There is an interesting common thread connecting our results with previous ones

concerning balance laws. While earlier results had in view lower-order terms that exerted

a damping effect, or otherwise reduced the total variation, our result requires the decay
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of the lower-order term, even though the total variation may increase in the process.

Thus, in either case, decay of some kind seems essential.

The proof of Theorem 1.1 (and of the more sophisticated Theorem 3.2) may be outlined

as follows. In Section 2, we construct approximate solutions to the Cauchy problem using

a fractional–step method based on Glimm’s scheme. In Section 3, we establish bounds

on the spatial total variation of our approximate solutions. The proof of these bounds

involves use of Temple’s results for non-reacting gas dynamics [29]. In Section 4, we use

our bounds to prove that a subsequence from our approximate solutions converges to an

entropy solution of the Cauchy problem.

2. Approximate Solutions

In this section, we construct approximate solutions to the Cauchy problem for (1.5)

and (1.2). Using (r, s, S, Y ) as coordinates, the initial data are given by

(r, s, S, Y )|t=0 = (r0, s0, S0, Y0)(x). (2.1)

We may represent (1.5), (1.2), and (2.1) in the compact form:

Ut + F (U)x = G(U),

U |t=0 = U0(x).
(2.2)

The approximate solutions are constructed by using the Glimm scheme, combined

with a fractional–step method which incorporates the reaction rate term. We begin by

discussing the Riemann solutions for the homogeneous (non-reacting) system.

2.1. The Riemann Problem for the Non-reacting Gas. The Riemann problem for

the non-reacting gas is the following Cauchy problem:

vt − ux = 0, (2.3a)

ut + p(v, S, ε)x = 0, (2.3b)(
e(v, S, ε) + u2/2

)
t
+
(
p(v, S, ε)u

)
x

= 0, (2.3c)

Yt = 0, (2.3d)

with the initial data:

(r, s, S, Y )|t=0 =

(rL, sL, SL, YL), x < 0,

(rR, sR, SR, YR), x > 0,
(2.4)
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where ε ∈ [0, 1], and (rL, sL, SL, YL) and (rR, sR, SR, YR) are constant states. Note

that (2.3d) is independent of (2.3a,b,c). Consequently, the solution of the Riemann

problem (2.3)–(2.4) decouples into the solution of two Riemann problems: one for non-

reacting gas dynamics, (2.3a,b,c), and a second trivial Riemann problem for Y . For the

remainder of this section, we will omit any discussion of Y .

An explicit solution to the Riemann problem for the system (2.3 a,b,c) for polytropic

gases can be found in [7, 28]. For the more general case, with the internal energy given

by e(v, S, ε), the solution of the Riemann problem was proved to exist for small data

in [17], and for large data in [27, 2]. The solution to the Riemann problem consists of

forward and backward rarefaction and shock waves, together with contact discontinuities

of speed zero. These waves are separated by regions in which the solution is constant.

A backward, or 1-rarefaction wave, is a solution which is constant on the 1-characteristics

centered at a point (x0, t0):
x− t0
t− t0

= dx
dt

= λ1 ≡ −
√
−pv(v, S), where |λ1| = ρc = c/v

is the material, or Lagrangian, sound speed of the gas. In addition, the 1-Riemann

invariants S and u−
∫ v√−pv(v, S)dv are constant within the wave.

A forward, or 3-rarefaction wave, is similar to the 1-wave except that λ3 = −λ1, and

the 3-Riemann invariants are S and u +
∫ v√−pv(v, S)dv.

Forward and backward shock waves are simple jump discontinuities of U along a line
x− x0
t− t0

= dx/dt = σ, and satisfy the Rankine-Hugoniot conditions:

σ [v] = − [u] ,

σ [u] = [p] ,

σ
[
u2/2 + e

]
= [pu] .

(2.5)

Here [f ] denotes the jump in the quantity f across the shock wave. In addition to (2.5),

shock waves must satisfy the entropy condition, which states that the specific entropy

S increases as t increases, or equivalently, as the gas crosses the shock wave. Under the

conditions stated in (1.2), Weyl [34] showed that, for a fixed state U0 on the upstream

side of a shock wave, the change in entropy across the wave is monotone increasing with

the strength of the wave.

Contact discontinuities are simple jump discontinuities in S along a straight line of

speed λ2 = 0. The quantities p and u are constant across contact discontinuities.

For given wL, there are curves of states w = Hi(zi, wL, ε) emanating from wL associated

with each characteristic field such that w = Hi(zi, wL, ε) is connected to wL by an i–wave

of strength zi.
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We parametrize 1–shock curves by z1 = r−rL ≤ 0 and 3–shock curves by z3 = s−sL ≤
0, where rL and sL are the values of the coordinates r and s on the left side of the shock

wave. We parametrize 1–rarefaction curves by z1 = r− rL ≥ 0 and 3–rarefaction curves

by z3 = s − sL ≥ 0. For given wL, the 1–rarefaction and 1–shock curve based at wL

meet at wL with C2 contact to form a single curve parametrized by z1. For z1 6= 0, these

curves are at least C3 [17, 29]. Similarly, the 3–shock and 3–rarefaction curves meet at

wL to form a single curve parametrized by z3, which is C2 at wL and at least C3 for

z3 6= 0.

There is a line of states in (r, s, S)-space which are connected to wL by a contact

discontinuity. The equations for this line are p = pL, u = uL, or simply r = rL, s = sL.

We parametrize this line by z2 = S − SL.

Let z = (z1, z2, z3) and

Hg(z, wL, ε) = H3 (z3, H2 (z2, H1 (z1, wL, ε) , ε) , ε) .

Henceforth, we use a subscript g to denote a function or vector relating to non-reacting

gas dynamics. Then the Riemann problem with data (wL, wR) has a solution if and only

if wR is in the range of the map z → Hg(z, wL, ε). In [29], it is shown, using the implicit

function theorem, that for every w = (r, s, S) ∈ R3 there exists a neighborhood Ω of w

such that the Riemann problem is solvable for (wL, wR) ∈ Ω × Ω and ε ∈ [0, 1], and

that one can solve for the vector of signed wave strengths z = (z1, z2, z3) as a function

of (wL, wR, ε),

z = Bg(wL, wR, ε),

where Bg is C2 with locally Lipschitz second derivatives. The solution is unique (among

self-similar solutions) if this map is one–to–one.

To this solution of the Riemann problem for the non-reacting gas, we now add the

decoupled solution of the linear Riemann problem for Y . We let H4(z4, rL, sL, SL, YL) =

(rL, sL, SL, YL + z4), and we let B(wL, wR, ε) the solution of the Riemann problem for

(2.3) with data (wL, wR) ∈ (Ω× [0, 1])2. Clearly, B will also be C2 with locally Lipschitz

second derivatives.

We will make use of B and its regularity properties in Section 3, where we will derive

conditions for the total variation stability of the fractional–step approximation scheme.

This result will depend only on the regularity of B and the size of the data measured in

total variation and in the uniform norm. Specifically, the result does not depend on the
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choice of parameters (z1, z2, z3, z4) used to describe H and B, as long as the regularity

properties of B are maintained.

2.2. The Glimm Fractional–Step Scheme. We will use a fractional–step scheme

such as that described in [9, 21] based on the Glimm scheme [15]. The construction of

the fractional–step scheme for the inhomogeneous system (1.4) is as follows.

Choose mesh lengths h > 0 and l > 0 in the t and x directions, respectively, such that

the Courant-Friedrichs-Levy condition:

Λ = max
1≤j≤4

|λj(u)| ≤ l

2h
(2.6)

is satisfied.

Partition R+ by the sequence tk = kh, k ∈ Z+, and partition R into cells with the

j-th cell centered at

xj = jl, j = 0,±1,±2, · · · .

We begin by approximating the initial data U0(x) by a function Uh(x, 0) which is con-

stant for xj−1 ≤ x < xj+1 for j even, and which converges to U0(x) pointwise a.e., and in

L1 on all bounded intervals as h → 0. Choose a random sequence χk, k = 0, 1, 2, · · · ,

from the uniform probability distribution on the interval (−1, 1). Then our approxima-

tion scheme and approximate solutions can be written in the following abstract form:

Uh(x, t) = F(t− kh,S0(t− kh, Uh(x, kh + 0))), kh ≤ t < (k + 1)h,

Uh(x, kh + 0) = Uk
j , j + k even, (j − 1)l < x < (j + 1)l,

Uk+1
j = Rk+1

j ◦ Uh(x, (k + 1)h−).

Here F(τ, ·) is the fractional–step operator, which advances the chemical reaction for

0 < τ ≤ h, S0(τ, ·) is the solution operator for the homogeneous system (2.3) (i.e.

G(U) ≡ 0) for 0 < τ ≤ h, and Rk
j is the random choice operator determined by the

random sequence. The detailed description of these operators is given below.

Assume that Uh(x, t) is defined for t < kh. Then we define Uh(x, kh + 0) as follows.

Random Operator Rk
j . We define

Uk
j = Rk

j ◦ Uh(x, kh−) ≡ Uh((j + χk)l, kh−),

Uh(x, kh + 0) ≡ Uk
j , (j − 1)l < x < (j + 1)l,

where j + k is even and χk is the kth element of the random sequence.
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Homogeneous Solution Operator S0(t, ·). In the strip kh ≤ t < (k + 1)h, we define

Uh
0 (·, t) ≡ S0(t− kh, Uh(·, kh + 0)),

where S0(τ,W ) is the solution U(·, τ) of the following Cauchy problem:

Uτ + F (U)x = 0,

U |τ=0 = W (x).
(2.7)

This Cauchy problem can be solved by constructing the Riemann solutions of the

Riemann problems (2.3)–(2.4) with Riemann data:

UL = Uk
j , UR = Uk

j+2, j = 0,±1,±2, · · · .

This construction determines the unique solution of the Cauchy problem (2.7), based

on the existence and uniqueness result for the Riemann problem of the system. This

solution is valid as long as the waves of the different Riemann problems do not inter-

act. The non-interaction of these waves is guaranteed by the Courant-Friedrichs-Levy

condition (2.6).

Fractional–Step Operator F(τ, ·). The fractional–step operator uses an approximation

to the solution of the initial value problem:

dU

dτ
= G(U(τ)),

U |τ=0 = U0.
(2.8)

This approximation must be consistent and total variation stable. These requirements

are defined as follows.

Definition 2.1. The explicit one-step approximation algorithm Ū(τ) = F(τ, U0) is a

consistent first order approximation to the solution U(τ) of the initial value problem

(2.8) in the domain D ⊂ Rn if F is Lipschitz continuous on (−δ, δ)×D → Rn and there

exists an increasing function ν(τ) > 0 such that ν(τ) converges to 0 as τ → 0 and∥∥Ū(τ)− U(τ)
∥∥ ≤ ν(τ)

∥∥G(U0

)∥∥ |τ | , (2.9)

for every U0 ∈ D.

Remark 2.1. The requirement that ν(s) converges to 0 as τ → 0 implies that F is

“uniformly differentiable” with respect to τ , at τ = 0, on D. The additional requirement

in (2.9) regarding the factor
∥∥G(U0

)∥∥ is necessary to obtain exponential decay in Y as

t →∞.
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Definition 2.2. The explicit one-step approximation algorithm Ū(τ) = F(τ, U0) is a

total variation stable approximation to the solution U(τ) of the initial value problem (2.8)

in the domain D ⊂ Rn if F , ∂F
∂τ

, and ∂2F
∂τ 2 are Lipschitz continuous on (−δ, δ)×D → Rn.

In addition, we note one more desirable property for a one-step approximation algo-

rithm. This property is specific to chemical reaction systems; it states that the algorithm

conserves total energy just as the chemical reaction does.

Definition 2.3. The explicit one-step approximation algorithm Ū(τ) = F(τ, U0) is a

conservative approximation to the initial value problem

d

dτ


v(τ)

u(τ)

E(τ)

Y (τ)

 =


0

0

qY (τ)φ
(
T (τ)

)
−Y (τ)φ

(
T (τ)

)
 ,


v(0)

u(0)

E(0)

Y (0)

 =


v0

u0

E0

Y0

 . (2.10)

if there is a function f(τ, U0) ≥ 0 such that F(τ, U0) has the form:

F(τ, v0, u0, E0, Y0) = (v0, u0, E0 + qf(τ, U0), Y0 − f(τ, U0)) . (2.11)

Lemma 2.1. If F(τ, U0) is a conservative, consistent first order one-step approximation

algorithm with f as in (2.11), then f(0, U0) = 0, and

∂f

∂τ
(0, v0, u0, T0, Y0) = Y0φ(T0).

Remark 2.2. When G is C2, standard one-step approximation methods, such as Euler’s

method and Runge-Kutta methods, are consistent first order, conservative, and total

variation stable in this sense. However, when G is merely Lipschitz continuous, methods

of order two or higher will generally not be C2 with respect to s. Such methods will be

consistent first order, but will not meet our criteria for total variation stability. Although

our definition appears to require an unusual degree of regularity in F , this regularity

appears to be necessary for our proof of stability of the approximation scheme with

respect to the total variation, as we will make clear in Section 3. Yet we have no

proof that this degree of regularity is actually necessary for total variation stability.

Furthermore, the regularity of F alone does not seem to be sufficient for global total

variation stability because, as we have already remarked, some type of decay seems

necessary.

In the study of traveling wave solutions of (1.1) and the corresponding Navier–Stokes

model (cf. [33, 32, 3]), it is customary to modify φ(T ) to be zero for T less than an
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“ignition temperature” Ti. The observation above indicates that it may be inadvisable

to make such a modification in a manner that makes φ less than C2—particularly in

conjunction with a numerical computation of time-dependent flow.

Let F(τ, U0), 0 ≤ τ ≤ h, be a conservative, consistent first order, total variation

stable, one-step approximation algorithm to the initial value problem (2.10). Given

Uh
0 (x, t), kh ≤ t < (k + 1)h, we define Uh(x, t) = F(t− kh, Uh

0 (x, t)).

We re-approximate Uh(x, (k + 1)h) using Rk+1
j :

Uk+1
j = Rk+1

j ◦ Uh(x, (k + 1)h−)

≡ F
(
h; Uh

0

(
(j + χk+1)l, (k + 1)h−

))
, jl < x < (j + 2)l.

We will guarantee condition (2.6) by showing that for all (x, t), Uh(x, t) ∈ D × [0, 1],

where D is a compact set in (r, s, S)–space. It follows that h
l

can be chosen so that

the Courant-Friedrichs-Levy condition (2.6) is satisfied for all time-steps. Therefore,

our approximate solutions for the Cauchy problem of the system (1.1–1.2) are defined

unambiguously.

3. Total Variation Stability

In this section, we estimate the approximate solutions Uh(x, t) in the total variation

norm and prove that the spatial total variation of the approximate solutions is uni-

formly bounded with respect to the mesh length h. We will measure the total variation

of approximate solutions, using the sum of the absolute values of the strengths of waves

in the solution of each Riemann problem occurring in the non-reacting step of the ap-

proximation scheme. In discussing this sum and its various terms, it is convenient to

use a weighted `1 norm, ‖v‖1 = |v1| + |v2| + |v3| + M4 |v4|, for a vector v ∈ R4, and

where M4 > 0 is defined later. In addition, for a vector function U(x) with components

(r, s, S, Y ) (x), we define the total variation using the weighted `1 norm:

VarrsSY (U) = ‖(Var(r), Var(s), Var(S), Var(Y ))‖1 . (3.1)

Other equivalent definitions are possible; for example, one could use the Euclidean norm

instead of the `1 norm.

We will find that for each time step, the fractional step causes the total variation of

the approximate solution to increase by an amount that is of order h. In any fixed time

interval, the number of time-steps is of order 1
h

. Thus, when we sum these increases, we

obtain a finite, non-zero change in total variation. However, this same argument leaves
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us free to neglect terms of order h2TV (Uh(·, t)) or higher, because in the limit as h → 0

the sum of these tends to 0 on any time interval.

We formalize this argument with the following lemma, which is applicable to any

system of hyperbolic balance laws. In all that follows, we assume that the approximate

solutions Uh and Uh
0 remain in a compact domain D×[0, 1], where D will be defined later.

Note that after the random choice step, the values of the solution between ((j+χk)l, kh)

and ((j + 2 + χk)l, kh) depend only on the values of U at these points. We denote these

values by (UL, UR). The key to our total variation estimate for the reaction step is our

estimate of the change in the solution of the Riemann problem with data (UL, UR). Note

that a bound for the total variation of U prior to the random choice step can be achieved

by applying our methods to estimate the effect of the reacting step on the individual

waves between (UL, UR). We will choose D such that

• The Riemann problem for the non-reacting equations with data (UL, UR) is solv-

able for every ordered pair (UgL, UgR) ∈ D ×D.

• The function Bg(UgL, UgR, ε), which gives the wave strengths of the Riemann

solution for the data (UgL, UgR), is Lipschitz continuous, together with its first

and second derivatives, in D ×D.

Lemma 3.1. Let

z = (z1, z2, z3, z4) = B(UL, UR, ε)

be the vector of signed wave strengths in the solution of the Riemann problem with data

(UL, UR). Let F(τ, U) be a consistent first order and total variation stable approximation

to the initial value problem (2.8). Let

Γ
(
UL, z, h

)
= B

(
F(h, UL), F(h,H(z, UL)), ε

)
. (3.2)

Then

Γ(UL, z, h) = z + O(‖z‖1)h.

Proof. Note that Γ(UL, z, 0) = z and Γ(UL, 0, h) = 0. Thus we compute that

∂Γ

∂h
(UL, 0, h) =

∂2Γ

∂h2 (UL, 0, h) = 04×1.

Let L1 be a Lipschitz constant for ∂Γ
∂h

with respect to the `1 norm. Then∥∥∥∂Γ

∂h
(UL, z, h)

∥∥∥
1
≤ L1 ‖z‖1 ,
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and

‖Γ(UL, z, h)− z‖1 =
∥∥∥∫ 1

0

∂Γ

∂h
(UL, z, θh)h dθ

∥∥∥
1
≤ L1 ‖z‖1 h.

�

Lemma 3.1 implies that the fractional step increases the total variation of the approx-

imate solution at no more than an exponential rate. For a semi-linear problem, such a

rate of increase might be acceptable. However, the existence theory for entropy solutions

of quasi–linear hyperbolic systems of conservation laws, which we shall apply, requires

that the total variation remains bounded by a certain constant. In order to prove that

the total variation remains bounded, we need more detailed estimates.

Lemma 3.2. Let L2 be a Lipschitz constant for ∂2Γ
∂h2 . Since Γ(UL, 0, h) = 0, then∥∥∥Γ(UL, z, h)−

(
z +

∂Γ

∂h
(UL, z, 0)h

)∥∥∥
1
≤ L2 ‖z‖1

h2

2
. (3.3)

Proof. By Taylor’s Theorem,

Γ(UL, z, h)− z =
∂Γ

∂h
(UL, z, 0) h−

∫ 1

0

∂2Γ

∂h2 (UL, z, θh) (θ − 1) dθ h2.

�

Lemma 3.2 shows that we can estimate the increase in total variation for the reacting

step by calculating first derivatives of the solution operator for the Riemann problem.

Comparing (3.3) and Lemma 3.1, we see that the term ∂Γ
∂h

(UL, z, 0)h is O(‖z‖1)h.

In order to prove our theorem, we need to show that the sum of all increases in total

variation which are caused by the reaction, is bounded by a certain constant. In the next

subsection, we show that ‖Y ‖∞ decays exponentially as t →∞. Then we show that any

increase in total variation, due to the reaction step, is proportional to Y ‖z‖1 h. This,

together with the exponential decay of ‖Y ‖∞, will enable us to derive the conditions

under which the total increase of total variation is bounded.

3.1. Estimates on the Reacting Step. We first analyze the properties of a consistent

first order conservative fractional–step operator for the chemical reaction. As it acts

upon the conserved densities (v, u, E, Y ) of (1.5), this operator takes the form

F
(
τ, (vh

0 , uh
0 , Eh

0 , Y h
0 )
)

= (vh, uh, Eh, Y h), 0 ≤ τ < h,
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where all quantities vh
0 , vh, etc. are evaluated at (x, kh + τ), and

vh(x, kh + τ) = vh
0 ,

uh(x, kh + τ) = uh
0 ,

Eh(x, kh + τ) = Eh
0 (x, kh + τ) + qf(τ, Uh

0 (x, kh + τ)),

Y h(x, kh + τ) = Y h
0 (x, kh + τ)− f(τ, Uh

0 (x, kh + τ)).

(3.4)

We need to estimate the change in T due to F . By Lemma 3.2, we only need to calculate(
T h − T h

0

)
(x, kh + τ) =

∂T

∂E

∣∣∣∣
Uh

0

qfτ (0, U
h
0 (x, kh + τ))τ =

q

e′(T )
fτ (0, U

h
0 (x, kh + τ))τ.

By Lemma 2.1, fτ (0, U
h
0 ) = Y h

0 φ(T h
0 ). Note that this estimate is still valid for a non-

polytropic gas even though cv is not constant but varies with T .

A similar calculation applies to Y h. Thus we have proved the following lemma.

Lemma 3.3. Let F be a consistent, conservative one-step approximation algorithm.

Then, to first order in τ ,

T h = T h
0 +

q

cv

Y h
0 φ
(
T h

0

)
τ,

Y h = Y h
0 − Y h

0 φ
(
T h

0

)
τ,

(3.5)

where T h, Y h, T h
0 , and Y h

0 are all evaluated at (x, kh + τ).

We have assumed that T h
0 (x, t) ≥ T ′ > 0, 0 ≤ Y h

0 (x, t) ≤ 1, and that φ is Lipschitz

continuous, non-negative, and increasing. In particular,

T > T ′ =⇒ 0 < Φ ≤ φ(T ) ≤ C < ∞.

Note that the Arrhenius law (1.6) satisfies these conditions. Then

Y h
0 φ(T h

0 )τ ≥ Y h
0 Φτ. (3.6)

Equation (3.5), or inequality (3.6), implies the following lemma.

Lemma 3.4. In the limit as h → 0, the functions Y h(x, t) and T h(x, t) satisfy

0 ≤ Y h(x, kh + τ) ≤ Y h
0 (x, kh + τ)e−Φτ , 0 ≤ τ < h,

T h(x, kh + τ) ≥ T h
0 (x, kh + τ) ≥ c0 > 0.

Furthermore, Y h(x, t) ≤ Y h(x, 0)e−Φt for all t ≥ 0.

Henceforth, for simplicity of exposition, we shall use this estimate in the form given

by the limit as h → 0.
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3.2. Glimm Functional for the Fractional–Step Scheme. Our proof of the BV

stability of the fractional–step scheme is based on Glimm’s method. Following that

method, we define a functional on the restriction of the approximate solutions Uh to

certain “mesh curves” J . We define a mesh point to be a point (x, t) = ((j + χk)l, kh),

where k ∈ N and j ∈ Z such that j + k is even. A mesh curve J is a piecewise linear

curve in the (x, t)-space, which successively connects mesh points ((j +χk)l, kh) to mesh

points ((j + 1 + χk)l, (k± 1)h) (see Fig. 2). We define a partial order on the set of mesh

curves by stating that larger curves lie toward larger time. We call J2 an immediate

successor of J1 if J2 connects the same mesh points as J1, except for one mesh point,

and if J2 > J1.

Figure 2. The mesh curves J(k) and J(k + 1).

Let J(k) be the unique mesh curve which connects the mesh points on t = kh to

the mesh points on t = (k + 1)h. Note that J(k) crosses all the waves in the Riemann

solutions of Uh
0 (x, t) in the strip kh ≤ t < (k + 1)h.

We will define a functional F on the set of mesh curves. The coefficients in F will

depend on a set D containing the (r, s, S) values of all approximate solutions. We will

assume that the initial data satisfy

VarrsSY (r0, s0, S0, Y0)(·) ≤ N < ∞,

(r0, s0, S0)(x) ∈ E ⊂ D.

Given values of Uh on adjacent mesh points at tk = kh: UL = Uh(xj, tk) and UR =

Uh(xj+2, tk), with B(UL, UR, ε) = z = (z1, z2, z3, z4), we define the wave strengths of the

approximate solution Uh(x, t) between (xj, tk) and (xj+2, tk) as follows. For any wave p,

let Var−r (p) denote the decreasing variation in r across p. Then, at ε = 0, we let α be
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the one–shock in z and µ be the 1–rarefaction wave in z so that

α =

 0, if z1 ≥ 0,

|z1| , if z1 < 0,

µ = z1 − α.

Similarly, let

β = 3-shock in z,

η = 3-rarefaction in z,

δ = z2 = contact wave in z.

Finally, for ε > 0, we define (see [29], eq. (3.49)):

For 1-waves, α = Var−r (α) + εVar(α), δα = VarS(α), µ = Var+
r (µ) + εVar(µ),

For 3-waves, β = Var−s (β) + εVar(β), δβ = VarS(β), η = Var+
s (η) + εVar(η),

For 2-waves, δ = S+ − S−,

For 4-waves, ζ = Y+ − Y−.

(3.7)

Here Var(α) is taken to mean the total variation of (r, s, S) along the 1–shock curve,

between the left and right states of a 1–shock wave α, and similarly for the other waves.

Note that since S is monotone along the shock curve [34], VarS(α) = |S+ − S−|.
We let C denote a constant that depends only on D and φ, and is independent of ε

and the mesh length h.

For any mesh curve J , Temple defined [29] (p. 144):

LT (J) =
∑

J

{(αi −M0δαi
) + (βi −M0δβi

) + M0 |δi|}+ ε
∑

J

{µi + ηi}+ V0,

where α, β, δ, ζ, δα, δβ, µ, and η are as defined above, for each shock wave or contact

discontinuity crossing J . The constant V0 is the total variation of (r, s, S) along the

initial data w0(x). The constant M0 is defined in Lemmas 3.10 and 3.11 (see Lemmas

4.1 and 4.2 in [29]).

We make the following modifications of LT . Let M4 be a constant, the value of which

will be specified in the proof of Lemma 3.18. Let U±∞ denote the values of U at ±∞,

along a mesh curve. Let α∞, etc. denote the wave strengths (as defined in (3.7)) in the
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solution of the Riemann problem with data
(
U−∞, U∞

)
. Let

L(J) =
∑

J

{(αi −M0δαi
) + (βi −M0δβi

) + M0 |δi|+ M4 |ζi|+ ε(µi + ηi)}

+ α∞ + β∞ + µ∞ + η∞ + |δ∞|+ M4 |ζ∞| .

The term M4 |ζi| is added as a measurement of VarY (J), in order to make L(J) equivalent

to VarrsSY (J). In LT , V0 was used as an upper estimate for |r∞ − r−∞| + |s∞ − s−∞|.
However, during the reaction step, r±∞ and s±∞ change, and this change must be

estimated. For this reason, instead of V0, we use the wave strengths in the Riemann

problem with data
(
U−∞, U∞

)
as a similar bound which works well with our estimates

on the reaction step. Note that for any mesh curve J , LT (J) ≤ L(J) + V0.

Let ai and bj, 1 ≤ i, j ≤ 3, be two waves in an approximate solution Uh, which cross

a mesh curve J , with ai to the left of bj on J . We say that the wave ai approaches the

wave bj if either i > j (ai is faster than bj), or i = j ∈ {1, 3} and at least one of the

waves is a shock wave—either ai < 0 or bj < 0.

Since ζ (that is, Y )–waves do not interact with any other waves, we can use the same

definition of Q(J) that was given in [29] as follows. Let pi denote arbitrary waves, qi

arbitrary shock or rarefaction waves, and Ri arbitrary rarefaction waves. We define

Q(J) = M1

∑
App

pi |δj|+ M2

∑
App

qiRj + M3

(∑
App

αiβj +
∑
App

αiαj +
∑
App

βiβj

)
,

where the sums are taken over all pairs of approaching waves, and pi can be either to

the left or right of |δj|, etc. We have corrected an apparent typographical error in [29],

in which the terms for shock waves of the same field were omitted.

Finally, we define

F (J) = L(J) + εQ(J).

In [29], the following functionals were also defined in order to estimate Varrs(J) for

small ε:

LT0(J) =
∑

J

{αi + βi}+ V0,

FT0(J) = LT0(J) + εQ(J).

We modify LT0 in the same way that we modified LT :

L0(J) =
∑

J

{
(αi + βi) + M4 |ζi|+ α∞ + β∞ + µ∞ + η∞ + |δ∞|+ M4q |ζ∞|

}
.
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Let F0 = L0 + εQ, FT = LT + εQ and FT0 = LT0 + εQ. Note that for any mesh curve

J , FT (J) ≤ F (J) + V0, and FT0(J) ≤ F0(J) + V0.

We will see in Lemmas 3.5–3.13 and 3.18 that all of the constants M0, M2, M3, M4

depend only on D.

3.3. Temple’s Results. Before we prove the total variation stability of the approximate

solutions, we first review the following lemmas from Temple [29] on which our analysis

depends. Lemmas 3.5 to 3.9 below correspond to Lemmas 3.1 to 3.5 of [29].

Lemma 3.5. For every compact convex open set Drs in the rs-plane, there exist con-

stants M > 0, 1
2
≤ C0 < 1, and G > 1 such that, at ε = 0, the following estimates

hold across any interaction < wL, wM > + < wM , wR >→< wL, wR > of states whose

projections onto the rs-plane lie in Drs:

α′ − α1 − α2 = A, β′ − β1 − β2 = B,

where A + B ≤ (C0 − 1)ξ and A = −ξ or B = −ξ. Moreover,

|δ′| − |δ1| − |δ2|+ (δα1 + δα2 − δα′) + (δβ1 + δβ2 − δβ′) ≤ −M(A + B),

|δ′| − |δ1| − |δ2| ≤ G(D2 + D3),

µ′ − µ1 − µ2 ≤ GD3, η′ − η1 − η2 ≤ GD3.

Here D2 and D3 are quadratic wave interaction terms which are dominated by the

decrease in Q, as is shown in [29]. Our concern is with the constant M .

Lemma 3.6. Let D = Drs × [S∗, S
∗] in rsS-space, there exists ε1 > 0 and G > 1 such

that interactions are defined for every wL, wM , and wR in D and such that, for each

wave field, the following estimate holds in any interaction:

(Change in strength at ε) ≤ (Change in strength at ε = 0) + GεQ.

Lemma 3.7. There exists an M > 0 depending only on Drs and an ε1 > 0 such that,

if wL, wR ∈ D, the associated Riemann problem is solvable for each ε ∈ [0, ε1], and the
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waves in these Riemann problems satisfy the following estimates:

M Var−r (α) > VarrsS(α), Var−s (α) < α,

M Var−s (β) > VarrsS(β), Var−r (β) < β,

2Var+
r (µ) > VarrsS(µ), Var−r (µ) = 0,

2Var+
s (η) > VarrsS(η), Var−s (η) = 0,

Vars(µ) <
1

4
µ, Varr(η) <

1

4
η.

Note that r and s are constant on contact waves so that VarrsS(δ) = |δ| and VarrsS(ζ) =

|ζ|.

Remark 3.1. The above lemma imposes additional requirements on M , namely,

M ≥ 1 +
VarS(α)

Varr(α)
+

Vars(α)

Varr(α)
, (3.8)

for all 1–shock curves in D and for ε ∈ [0, ε1]. The constant M must also satisfy a similar

requirement with regard to 3–shock curves in D. Proposition 3.2 of [29] requires that,

at ε = 0,

M ≥ M̃

1− C0

,

M̃ = 2 max
ε=0

(
sup

1−shocks

∣∣∣∣dS

dr

∣∣∣∣ , sup
3−shocks

∣∣∣∣dS

ds

∣∣∣∣) .

(3.9)

Here 1
2
≤ C0 < 1 is a constant defined in Lemma 3.1 and Proposition 3.1 of [29]. Note

that we have corrected a typographical error in [29] which defined M = (1− C0)M̃ .

We require, in addition to the above, that

M ≥ max
0≤ε≤ε1

(
sup

1−shocks

∣∣∣∣dS

dr

∣∣∣∣ , sup
3−shocks

∣∣∣∣dS

ds

∣∣∣∣)
holds for all 1-shock and 3-shock curves in D, making M larger as needed. As a result,

with M0 ≤ 1
2M , α −M0δα is monotone along all 1–shock curves in D and β −M0δβ is

monotone along all 3–shock curves in D, for 0 ≤ ε ≤ ε1.

Lemma 3.8. For every compact set E in rsS–space, there exists a constant 0 < C1 < 1

such that, for every BC1(w) with w in E (BC1(w) = ball of radius C1 with center w),

interaction problems in BC1(w) are solvable for each ε ∈ [0, 1] with solution waves that

satisfy the estimates of Lemma 3.6.
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Let E be an arbitrary compact set in rsS-space. Let D̃ = D̃rs× [S∗, S
∗] be a compact

set in rsS-space that contains the points within a distance C1 of E, where C1 is given

by Lemma 3.8. Choose ε̃1 > 0 so that Lemmas 3.5 to 3.8 apply to D̃. Then Riemann

problems 〈wL, wR〉 in D̃ are uniquely solvable if ε ≤ ε̃1, or if wL, wR ∈ BC1(w) for some

w ∈ E and 0 ≤ ε ≤ 1. Let Ṽ (wL, wR) denote the variation in the solution of one of these

Riemann problems at any time t > 0.

Lemma 3.9. There exists a constant K0 > 1 such that, for (wL, wR) ∈ D̃ × D̃,

Ṽ (wL, wR) ≤ K0 ‖wL − wR‖1 .

Note that for the reacting equations, ζ or Y waves are decoupled from the acoustic

and entropy waves so that Lemmas 3.8 and 3.9 generalize to our problem with no change

to the constants C1 and K0.

Lemmas 3.10 and 3.11 below correspond to Lemmas 4.1 and 4.2 of [29].

Lemma 3.10. Let D = Drs × [S∗, S
∗] , ε1, and M satisfy the conditions of Lemmas 3.5

to 3.7. Let J1 be a mesh curve which evolves at ε ≤ ε1 from initial data w0(x) of variation

V0 through mesh curves J such that w(U(J)) ⊂ D. Then the following estimates hold

for any M0 ≤ 1
2M and any J2 which is an immediate successor of J1:

(i) Varrs(J2) ≤ 20LT0(J2);

(ii) VarrsS(J2) ≤ KLT (J2), where K =
20

M2
0

, M0 ≤
1

2M
.

Lemma 3.10 easily generalizes to:

(i) Varrs(J2) ≤ 20L0(J2);

(ii) VarrsSY (J2) ≤ KL(J2),

since K > 1 and VarY (ζi) = M4 |ζi|. An examination of the proof of this Lemma (Lemma

4.1 in [29]) reveals that our substitution of the “waves at infinity” for V0 in L has no

effect on the proof.

The next lemma is similar to the previous one, except that it concerns ε ∈ [0, 1].

Lemma 3.11. Let D̃ = D̃rs ×
[
S̃∗, S̃

∗] ⊂ E, ε̃1, M̃ , and C1 satisfy the conditions of

Lemmas 3.5 to 3.9. Let J1 be a mesh curve which evolves at ε ∈ [0, 1] from initial data

of total variation V0, through mesh curves J < J1 for which U(J) ⊂ BC1(w) for some
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w ∈ E. Then the following estimate holds for any J2 which is an immediate successor

of J1, so long as M0 satisfies M0 ≤ min
(
ε̃2
1/2,

(
2M̃
)−1)

= M̃0:

VarrsS(J2) ≤ KLT (J2), K =
20

M2
0

.

This lemma can similarly be generalized to:

VarrsSY (J2) ≤ KL(J2).

The main theorem in [29] (Theorem 4.1) is as follows:

Lemma 3.12. Let E be any compact set in rsS-space, and let N > 1 be any positive

constant. Then there exists a constant C = C(E, N) such that, for initial data w0(x) ⊂
E with Var(w0(x)) = V0 ≤ N and Y ≡ 0, if εV0 < C, then FT (J) is non-increasing,

FT (J0) < ∞, and there exists a global weak solution to (1.5a,b,c) with initial data w0(x).

The proof of Lemma 3.12 is in two different settings. For small ε, a compact convex

set D̃ = D̃rs×
[
S̃∗, S̃

∗
]

in rsS–space is chosen, together with constants ε1, M̃0, K0, and

C1, such that D̃ contains all points within distance C1 of the set E (see [29], p. 142),

and such that Lemmas 3.5–3.9 and Lemma 3.11 hold. Let Drs be the set of points in the

rs–plane within a distance of 120K0N of D̃rs. New values of M and C0 are chosen so

that Lemmas 3.5–3.7 and Lemma 3.10 are satisfied on Drs for ε ∈ [0, ε1]. These Lemmas

require M0 ≤ 1
2M so that

M0 = min

{
1

2M
, M̃0

}
, K = max

{
20

M2
0

, 1

}
are defined. Choose S∗ < S̃∗ − 6K0KN , and S∗ > S̃∗ + 6K0KN , and define D =

Drs × [S∗, S
∗]. The mesh parameters (l, h) are chosen so that the Courant-Friedrichs-

Levy condition (2.6) is satisfied for values in D. Later, a number ε0 ≤ ε1 is chosen.

Then, for 0 ≤ ε ≤ ε0, bounds on F imply bounds on VarrsS

(
Uh(J)

)
which imply that

w(Uh(J)) ⊂ D. The functional F is proved to be finite and non-increasing for solutions

which remain in D.

For large ε, that is, ε ∈ [0, 1], smaller initial total variation is required, so that bounds

on F ensure that VarrsS

(
Uh(J)

)
< C1. This implies that w(Uh(J)) ⊂ BC1(w̃) ⊂ D for

some w̃ ∈ E — for example, we could choose w̃ = limx→−∞w0(x). Note that the ball

BC1(w̃) should be defined in the `1 norm.

We will need an estimate of the form F (J) ≤ CVarrsSY (J). For this purpose, we

extract the following lemma from the proof of Lemma 3.12 [29].
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Lemma 3.13. Let E be a compact set in (r, s, S) space, and let N ∈ (1, 1/ε] be given.

Suppose that the mesh curves J and J0 satisfy the conditions of Lemmas 3.10 or 3.11.

Then there are constants K1(E, N) > 1 and ε0(E, N) ∈ (0, 1) such that, for initial data

w0(x) with VarrsS(w0) = V0 < N , we have

F (J0) ≤ 5K0V0, 0 < ε ≤ ε0, (3.10)

F (J0) ≤ K1V0, ε0 < ε ≤ 1. (3.11)

Moreover, for approximate solutions Uh(x, t), for which VarrsSY

(
Uh(J)

)
≤ N , we have

F (J) ≤ 5VarrsSY

(
Uh(J)

)
, 0 < ε ≤ ε0, (3.12)

F (J) ≤ K1

K0

VarrsSY

(
Uh(J)

)
, ε0 < ε ≤ 1. (3.13)

Proof. We denote L
(
Uh(J)

)
and Var

(
Uh(J)

)
by L(J) and Var(J). Note that by (3.7),

pi ≤ 2VarrsS (pi) for any wave pi, pi 6= ζi, while, by (3.1), M4 |ζi| = Var(ζi). Hence, for

any mesh curve J , ∑
J, pi 6=ζi

(pi + M4 |ζi|) ≤
∑

J

2Var(pi) = 2VarrsSY (J) ,

L
(
J
)
≤

∑
J, pi 6=ζi

(pi + M4 |ζi|) + α∞ + β∞ + µ∞ + η∞ + |δ∞|+ M4 |ζ∞| ≤ 4VarrsSY

(
J
)
.

(3.14)

Let K = 20
M2

0

> 1. Choose G > 1 so that Lemmas 3.5 and 3.6 hold. Let

M1 = 8G,

M2 = 8G + 2M1K(4K0N)G,

M3 = 8G + 2M1K(4K0N)G + 4M2K(4K0N)G,

K1 = 4K0 + 4M3K
2
0 .

(3.15)

Lemma 3.9 implies that VarrsSY

(
J0

)
≤ K0V0 if ε ≤ ε0 or if V0 ≤ C1. Then, by (3.14),

L(J0) ≤ 4Var
(
J0

)
≤ 4K0V0,

L0(J0) ≤ 4Var
(
J0

)
≤ 4K0V0.

(3.16)

Furthermore, Q(J0) ≤ M3 (2Var(J0))
2 ≤ 4M3K

2
0V

2
0 ≤ 4M3K

2
0NV0. Thus, for 0 ≤ ε ≤ 1,

since εN ≤ 1,

F (J0) ≤ 4K0V0 + ε4M3K
2
0NV0 ≤ K1V0. (3.17)
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We now require ε0 ≤ 1
K1

. Then ε ≤ ε0 =⇒ εQ(J0) ≤ 4εM3K
2
0NV0 ≤ 1

2
εK1V0 ≤ V0,

and
F (J0) = L

(
J0

)
+ εQ

(
J0

)
≤ 4K0V0 + V0 ≤ 5K0V0,

F0(J0) = L0

(
J0

)
+ εQ

(
J0

)
≤ 5K0V0,

ε ≤ ε0. (3.18)

The proof of estimates (3.12) and (3.13) is nearly identical, except that the constant K0

is not needed since in this case we do not need to estimate total variation of Riemann

solutions from initial data. �

Note that ε0 and Mi depend only on E and N . We now continue with the derivation

of the constant C(E, N) from Lemma 3.12, with modifications for small ε based on the

estimate F (J0) ≤ 5K0V0 .

For ε ≤ ε0, we define

C0(E, N) =
1

20M3KK0

min

(
1

3G− 1
, 1− C0

)
. (3.19)

Using Lemma 3.13, if εV0 < C0(E, N), then εF (J0) ≤ ε5K0V0 < 5K0C0(E, N) so that

εF (J0) <
1

4M3K
min

(
1

3G− 1
, 1− C0

)
. (3.20)

For ε0 < ε ≤ 1, we proceed as follows. Let C2 = ε0C1
K1K

. If ε ≥ ε0 and εV0 < C2, then

KK1V0 < C1. Thus, by (3.17),

KF (J0) < C1, ε ≥ ε0. (3.21)

Since C1 ≤ 1 and K ≥ 1, C1
K ≤ 1. This, plus K0N > 1, implies that F

(
J0

)
≤ 5K0N for

ε0 ≤ ε ≤ 1. Let

C3 =
1

4M3KK1

min

(
1

3G
, 1− C0

)
, (3.22)

and let C(E, N) = min(C2, C3). Then, if εV0 < C(E, N), we have εF
(
J0

)
≤ εK1V0 ≤

K1C(E, N) so that (3.20) holds for ε0 < ε ≤ 1.

3.4. TV Stability of the Reaction Step. We now prove the TV stability of the

approximate solutions during the reaction step. Our total variation bounds imply bounds

on the length of Uh(J), but we must also deal with the “drift” of the solution due to

the source term G(U). We solve this problem by deriving conditions, under which the

sum of the drift at one point, say, x = −∞, plus the total variation, remains less than

Temple’s total variation bounds.
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As we have already noted, we require a positive lower bound T ′ for T in order to

assure the uniform decay of the reactant.

Lemma 3.14. There exists T ′(ε) such that, for ε ∈ [0, ε0], T (w) ≥ T ′(ε) for all w ∈ D,

and, for ε ∈ [ε0, 1], T (w) ≥ T ′(ε) for all w ∈ BC1(w̃). Moreover, T ′(ε) has a positive

minimum for ε ∈ [0, 1].

Proof. Note that ln(p) = s− r
2 , so that bounds on s − r imply bounds on ln(p). Such

bounds imply that there exist constants p′ and p′′ independent of ε such that, for all

w ∈ D, 0 < p′ ≤ p(w) ≤ p′′ < ∞. Similarly, bounds on s + r = 2u imply bounds on the

velocity u. Thus, a compact set in (r, s, S)-space, considered in the (u, p, S)-coordinates,

is a compact set in R× (0,∞)× R.

Since the map from (u, v, S) to (r, s, S) is a C4 diffeomorphism (see Section 2), and

T = eS(v, S, ε) is C4, we have that T is a continuous function on the compact set

D × [0, 1]. Therefore, for each ε ∈ [0, 1], T has a minimum value T ′(ε) on this set. For

ε ∈ [ε0, 1], we can take this minimum value on the smaller set BC1(w0). Since all values

of T on D are strictly positive (note, for ε = 0, T = 1
R), the minimum value of T ′ on

[0, 1] is strictly positive. �

Note that M0 was defined so that, if the strength of α varies with fixed left state,

α−M0δα is strictly increasing in α for 0 ≤ ε ≤ ε1. We require a similar property to hold

for ε ∈ [0, 1].

Lemma 3.15. Let α and α̃ be the strengths of two 1–shock waves in D, as defined in

(3.7) for a common value of ε ∈ [0, 1]. Let the left states of α and α̃ be UL and ŨL,

respectively. Then there is a constant C such that∣∣α−M0δα −
(
α̃−M0δα̃

)∣∣ ≤ |α− α̃|+ C
∥∥∥UL − ŨL

∥∥∥
1
α̃. (3.23)

Similarly, if β and β̃ are the strengths of two 3–shock waves in D with right states UR

and ŨR, respectively, then there is a constant C such that∣∣∣β −M0δβ −
(
β̃ −M0δβ̃

)∣∣∣ ≤ ∣∣∣β − β̃
∣∣∣+ C

∥∥∥UR − ŨR

∥∥∥
1
β̃. (3.24)

Proof. Let α0 be a 1–shock wave with the same left state as α and such that α0 = α̃

as wave strengths. Since S is monotone along any shock curve [34], VarS(α) = δα. We

have that∣∣α−M0δα −
(
α̃−M0δα̃

)∣∣ ≤ |α−M0δα − (α0 −M0δα0)|+ M0 |δα0 − δα̃| . (3.25)
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In accordance with Lemma 3.11, M0 is chosen so that M0 ≤ ε1
2 . Thus, for ε ≤ M0 < ε1,

since α and α0 have the same left state, and since α − M0δα is monotone in α with

derivative less than 1,

|α−M0δα − (α0 −M0δα0)| ≤ |α− α0| = |α− α̃| .

For ε ≥ M0,

|α−M0δα − (α0 −M0δα0)|

=
∣∣(1 + ε)

(
Varr(α)− Varr(α0)

)
+ ε
(
Vars(α)− Vars(α0)

)
+ (ε−M0) (δα − δα0)

∣∣ .
Since α0 and α have the same left state, each of the terms

(
Varr(α) − Varr(α0)

)
,(

Vars(α)− Vars(α̃0)
)
, and (δα − δα0) have the same sign. Thus,∣∣α−M0δα −
(
α0 −M0δα0

)∣∣
≤ |(1 + ε) (Varr(α)− Varr(α0)) + ε (Vars(α)− Vars(α0)) + ε (δα − δα0)|

= |α− α0| = |α− α̃| .

Let G
(
ŨL, UL, α̃

)
= δα0 − δα̃. Observe that G

(
ŨL, UL, α̃

)
= 0 if α̃ = 0 or UL = ŨL. Since

G is C3 for α̃ ≥ 0, an argument similar to the proof of Lemmas 3.1 and 3.2 shows that

there is a constant C such that
∣∣G(ŨL, UL, α̃

)∣∣ ≤ Cα̃
∥∥UL − ŨL

∥∥
1
. �

One consequence of Lemma 3.7 is the following lemma.

Lemma 3.16. Let Jσ be a connected segment of a mesh curve J , and let Uσ be the

restriction of an approximate solution Uh to Jσ. Then there are positive constants c and

C such that, for all Uσ with w
(
Uσ

)
∈ D,

c VarrsSY

(
Uσ

)
≤
∑
Jσ

(α + β + µ + η + |δ|+ |ζ|) ≤ C VarrsSY

(
Uσ

)
.

Corollary 3.1. Let J be any mesh curve, and let Uσ be the restriction of an approximate

solution Uh to J . Let

L1(J) =
∑

J

(α + β + µ + η + |δ|+ M4 |ζ|) ,

where the sum is understood to include the “extra” Riemann problem for
(
U−∞, U∞

)
.

Then there are positive constants c and C such that, for all Uσ with w
(
Uσ

)
∈ D,

c VarrsSY

(
Uσ

)
≤ L1(J) ≤ C VarrsSY

(
Uσ

)
.
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Note that (3.7) implies that, for ε ≤ 1,

L(J) ≤ 2VarrsSY

(
Uσ

)
. (3.26)

This estimate, together with the conclusions of Lemmas 3.10 and 3.11, implies that L(J)

is equivalent to VarrsSY

(
Uσ

)
, just as Corollary 3.1 does for L1(J).

We now make a more detailed estimate of the increase in total variation for the

solution of the Riemann problem as a result of the reaction step. To be specific, we

estimate the increase in F (J). Our goal is to derive conditions on F (J0) that ensure

that VarrsS(J) satisfies the conditions imposed by Lemma 3.12 on V0, namely V0 ≤ N

and εV0 < C(E, N); these conditions are refined in Theorem 3.2. We will assume that

these conditions are satisfied for all predecessors of J . Under these conditions, F does

not increase in the non-reacting step. Lemma 3.11 implies that VarrsS(J) ≤ KL(J). By

definition, L(J) ≤ F (J). Thus, we require KF (J) ≤ N and εKF (J) < C(E, N). These

bounds are implicitly assumed in the following lemmas.

In order to be consistent with the estimates in Section 3.3, we must work in the

(r, s, S, Y )-coordinates.

Lemma 3.17. In the (r, s, S, Y )-coordinates, for the system (1.5), we have

G(U) = qc(U) · Y φ(T ),

where c(U) is the vector
(
− 1

cvT
, 1
cvT

, 1
T ,−1

q
)T

. If the gas is not polytropic, we let cv

denote ẽ′(T ).

Proof. We have that r = u − ln(p) = u − ln(R) − ln(T ) + ln(v). In the reaction step

de(T )/dY = cv(T )dT/dY = −q, and (v, u) remain unchanged. Thus,

dr

dY
=

q

cvT
. (3.27)

Similar calculations hold for r and S. �

We will find it convenient to denote
(
− 1

cvT
, 1
cvT

, 1
T

)>
by cg(U).

In order to discuss the effect of the exothermic reaction on the functionals L and Q,

it is convenient to identify a new “mesh curve” J̃ which, as a curve, is the same as a

given mesh curve J , but upon which the value of U differs from the value of U on J by

a single reaction step along all of J . We take J̃ to represent values before the reaction

step and J to represent values after the reaction step.
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Lemma 3.18. Let D be given as above. Let F(τ, U) be a consistent, total variation

stable, and conservative approximation algorithm for the solution of the initial value

problem (2.8). There is a constant C, which depends only on D, such that if U(Jk) has

evolved at ε from initial data of variation V through mesh curves J for which w(U(J)) ⊂
D, then, for each k, to first order in h,

L
(
Jk

)
≤ L(J̃k) + Chq ‖Y0‖∞ e−ΦkhL(J̃k),

L0 (Jk) ≤ L0

(
J̃k

)
+ Chq ‖Y0‖∞ e−ΦkhL(J̃k).

Proof. Note that

L
(
Jk

)
− L

(
J̃k

)
=

∑
−∞<i<∞

{
αi −M0δαi

+ βi −M0δβi
+ M0 |δi|+ ε (µi + ηi) + M4ζi

−
(
α̃i −M0δα̃i

+ β̃i −M0δβ̃i
+ M0

∣∣δ̃i

∣∣+ ε (µ̃i + η̃i) + M4ζ̃i

)}
+ α∞ + β∞ + µ∞ + η∞ + |δ∞|+ M4ζ∞

−
(
α̃∞ + β̃∞ + µ̃∞ + η̃∞ +

∣∣δ̃∞∣∣+ M4ζ̃∞
)
.

(3.28)

We denote the vector of the end-terms by z∞ = B
(
U−, U+

)
. From Lemma 3.15, this

sum is less than∑
−∞<i≤∞

{
|αi − α̃i|+ C

∥∥F(h, Ui

)
− Ui

∥∥ α̃ +
∣∣βi − β̃i

∣∣+ C
∥∥F(h, Ui+1

)
− Ui+1

∥∥ β̃

+
∣∣∣∣∣δi

∣∣− ∣∣δ̃i

∣∣∣∣∣+ |µi − µ̃i|+ |ηi − η̃i|+ M4

∣∣∣∣∣ζi

∣∣− ∣∣ζ̃i

∣∣∣∣∣}
≤

∑
−∞<i≤∞

{∥∥Γ(Ui, zi, h
)
− Γ

(
Ui, zi, 0

)∥∥
1
+ C

∥∥F(h, Ui

)
− Ui

∥∥ (α̃i + β̃i−1

)}
.

(3.29)

In the limit as h → 0+, we obtain

L
(
Jk

)
− L

(
J̃k

)
≤

∑
−∞<i≤∞

{∥∥∥∥∂Γ

∂h

(
Ui, zi, 0

)∥∥∥∥
1

h + CqYiφ (Ti)
(
α̃i + β̃i−1

)
h

}
. (3.30)

Note that ∑
−∞<i≤∞

CqYiφ (Ti)
(
α̃i + β̃i−1

)
h ≤ Cq ‖Y ‖∞ L1

(
J̃k

)
h. (3.31)

We calculate (recall (3.2))

∂Γ

∂h
(Ui, zi, 0) =

∂B

∂UL

∂F
∂h

(0, Ui) +
∂B

∂UR

∂F
∂h

(
0, H (Ui, zi)

)
. (3.32)
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For brevity, we note that Ui+1 = H
(
Ui, zi

)
. By Lemmas 3.3 and 3.17,

∂F
∂h

(0, U) = G(U) = qc(U)Y φ(T ).

We denote c
(
Ui

)
by ci. Thus,

∂Γ

∂h
(Ui, zi, 0) = q

(
∂B

∂UL

ciYiφ(Ti) +
∂B

∂UR

ci+1Yi+1φ
(
Ti+1

))
= q

(
Yi

(
∂B

∂UL

φ(Ti)ci +
∂B

∂UR

φ
(
Ti+1

)
ci+1

)
+ (Yi+1 − Yi)

∂B

∂UR

φ
(
Ti+1

)
ci+1

)
.

(3.33)

As we noted in Section 2, Y is decoupled from (r, s, S) in the solution of the non–reacting

Riemann problem. This means that ∂B
∂UL

and ∂B
∂UR

are block diagonal 4 × 4 matrices

with the upper left 3×3 block relating to non-reacting gas dynamics, i.e., the derivatives

of wave strengths for acoustic waves and entropy waves, with respect to r, s, and S. The

remaining 1×1 block contains the derivative of the wave strength of the Y -contact with

respect to Y —the value of this derivative is 1 for ∂B4/∂YR and −1 for ∂B4/∂YL. We

have that

∂B

∂UR

· ci+1 =
∂B

∂ (r, s, S)R

· cg(i+1) −
(

0
0
0
1

)
. (3.34)

Due to this block structure, ∂B
∂ (r, s, S)R

has no Y -wave component. Thus the (r, s, S)

components of (3.33) have the form:

∂Γg

∂h
(Ui, zi, 0) = qYi

(
∂Bg

∂ (r, s, S)L

φ(Ti)cgi +
∂Bg

∂ (r, s, S)R

φ(Ti+1)cg(i+1)

)
+ q (Yi+1 − Yi)

∂Bg

∂ (r, s, S)i+1

φ(Ti+1)cg(i+1).

(3.35)

Let

A(Ui, zi) =
∂Bg

∂ (r, s, S)R

φ(Ti)cgi +
∂Bg

∂ (r, s, S)R

φ
(
Ti+1

)
cg(i+1). (3.36)

Then

∂Γg

∂h
(Ui, zi, 0) = qYiA(Ui, zi) + q (Yi+1 − Yi)

∂Bg

∂ (r, s, S)R

φ
(
Ti+1

)
cg(i+1). (3.37)

Since B is Lipschitz continuous, together with its first and second derivative, the function

A(UL, z) is Lipschitz continuous, together with its first derivatives. Furthermore, if
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zgi = 0, then Ug(i+1) = Ugi and, in particular, Ti+1 = Ti. Since Bg(Ug, Ug) is the vector

of wave strengths for a Riemann problem with equal states,

Ag(Ug,0) = φ(T )
∂Bg

∂ (r, s, S)
(Ug, Ug)cg = 0.

Thus, if C is a Lipschitz constant for zg → Ag(Ug, zg) on D taken with respect to the `1

norm of zg, the first term in (3.37) can be estimated by

‖YiAg(Ugi, zgi)q‖1 ≤ CYi ‖zgi‖1 q.

We now examine the last term of (3.37), because it is not bounded by ‖Y ‖∞
∑

i ‖zi‖1.

In fact, it is the only such term in our estimate of the increase in total variation resulting

from the reaction step. This term of (3.37) has the form

(Yi+1 − Yi)
∂Bg

∂ (r, s, S)R

cg(i+1)φ(Ti+1)q. (3.38)

The fourth component of equation (3.33) is the equation for the strength of the Y -

wave. This equation is

∂

∂h
(Yi+1 − Yi) = Yi

(
φ(Ti)− φ(Ti+1)

)
− (Yi+1 − Yi) φ(Ti+1),

so that
∂

∂h
|Yi+1 − Yi| ≤ YiC |zg| − |Yi+1 − Yi|φ(Ti+1).

Thus, the reaction step produces possible increases in total variation, which are

bounded by

CYi ‖zgi‖1 qh +
∥∥ ∂Bg

∂ (r, s, S)R

cg(i+1)

∥∥
1
|Yi+1 − Yi|φ(Ti+1)qh.

The reaction step also produces a decrease in total variation for the Y component — the

fourth component of ∂Γ
∂h

(Ui, zi, 0) — in the amount |Yi+1 − Yi|φ(Ti+1)h. We now use the

decrease in the Y component to offset the “bad” increase in other components propor-

tional to |Yi+1 − Yi|. Since
∂Bg

∂ (r, s, S)R

is Lipschitz continuous and D is bounded, there

exists a finite upper bound M4 for
∥∥ ∂Bg

∂ (r, s, S)R

cg(i+1)

∥∥
1
q on D. Thus the the effect of the

term (3.38) on the (r, s, S) components of ∂Γ
∂h

(Ui, zi, 0) is bounded by M4 |ζ|φ(Ti+1)h,

and this increase is offset by a decrease in the term M4 |ζ|.
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Thus, the change in L is estimated as follows:

L(Jk) ≤ L
(
J̃k

)
+ Cq ‖Y ‖∞ L1

(
J̃k

)
h

+
∑

−∞<i≤∞

{(
α̃i + β̃i +

∣∣δ̃i

∣∣+ µ̃i + η̃i

)
CqYi + M4

∣∣ζ̃i

∣∣φ(Ti+)−M4

∣∣ζ̃i

∣∣φ(Ti+)
}

h

≤ L(J̃k) + 2C
∥∥Ỹ ∥∥∞L1

(
J̃k

)
qh.

(3.39)

Then, using the equivalence of L1(J), L(J), and VarrsSY (J), and redefining the constant

C, we obtain

L(Jk) ≤ L(J̃k)
(
1 + C

∥∥Ỹ ∥∥∞qh
)

. (3.40)

Similarly,

L0(Jk) ≤ L0(J̃k) + C
∥∥Ỹ ∥∥∞L(Jk)qh,

L1(Jk) ≤ L1(J̃k) + C
∥∥Ỹ ∥∥∞L(Jk)qh.

(3.41)

Furthermore, on the mesh curve J(k), by Lemma 3.4, we have

L (Jk) ≤ L
(
J̃k

)
+ Cqh ‖Y0‖∞ e−ΦkhL

(
J̃k

)
,

L0 (Jk) ≤ L0

(
J̃k

)
+ Cqh ‖Y0‖∞ e−ΦkhL

(
J̃k

)
. �

Since L0 ≤ L ≤ F, F0 ≤ F , and L is equivalent to L1, it is clear that L1, L0, and F0

remain bounded as long as F remains bounded.

Henceforth, we will denote q ‖Y0‖∞ by q̃. Now we estimate the functional F (Jk).

Recall that

F (Jk) = L(Jk) + εQ(Jk).

We have that, to first order in h,

Q(Jk) ≤ Q
(
J̃k

)
+ M1

∑
App

{
(pi − p̃i)

∣∣∣δ̃j

∣∣∣+ p̃i

(
|δj| −

∣∣δ̃j

∣∣)}
+ M2

∑
App

{
(qi − q̃i) R̃j + q̃i

(
Rj − R̃j

)}
+ M3

∑
i<j

{(
αi − α̃i + βi − β̃i

) (
α̃j + β̃j

)
+
(
α̃i + β̃j

) (
αj − α̃j + βj − β̃j

)}
≤ Q

(
J̃k

)
+ M3

(
L1

(
Jk

)
− L1

(
J̃k

))
L1(J̃k),
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where we have used M1 < M2 < M3 as defined in [29]. Next, using (3.41) and the

equivalence of L(Jk), L1(Jk), and VarrsSY (Jk), we have

Q(Jk) ≤ Q
(
J̃k

)
+ M3C

∥∥Ỹk

∥∥
∞L1

(
J̃k

)2
qh

≤ Q
(
J̃k

)
+ C

∥∥Ỹk

∥∥
∞F
(
J̃k

)2
qh.

Lemma 3.19. Let Jk be a mesh curve between t = kh and t = (k + 1)h. Then

F (Jk) ≤ F (J̃k)
(
1 + K3q̃e

−Φkh
(
1 + εF

(
J̃k

))
h
)

, (3.42)

where K3 is a constant depending only on D and φ, independent of ε ∈ [0, 1] and the

mesh lengths l and h.

We now derive the conditions which ensure that F (Jk) remains bounded independent

of k. The rate of increase in F (Jk) is nonlinear: in the limit as h → 0, F (Jk) approaches

a solution to a nonlinear differential inequality,

dF

dt
≤ K3q̃e

−Φt
(
F + εF 2

)
.

Without the coefficient e−Φt, there would be no means of obtaining a uniform bound

on F . However, it is easy to show that solutions of this differential inequality, with

sufficiently small initial values, have bounded solutions. We show that a similar estimate

holds for F independent of h.

We suppose, first of all, that a bound exists, namely, F (Jk) ≤ Z. Then, by (3.42), we

have

F (Jk) ≤ F (J̃k)
(
1 + K3q̃e

−Φkh (1 + εZ) h
)
.

Let us abbreviate e−Φkh by dk. Then we have

F (Jk) ≤ F (J0)
k∏

j=0

(
1 + K3hq̃dj (1 + εZ)

)
.
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Taking logarithms,

ln (F (Jk)/F (J0)) ≤
k∑

j=0

ln
(
1 + K3hq̃dj (1 + εZ)

)
≤

k∑
j=0

K3hq̃dj (1 + εZ)

≤ K3hq̃ (1 + εZ)
1

(1− d)
.

Thus we conclude

F (Jk) ≤ F (J0) exp

(
K3hq̃ (1 + εZ)

1− e−Φh

)
. (3.43)

The function f(h) = h/
(
1− e−Φh

)
is increasing for h > 0 and tends to 1/Φ as h → 0.

Thus, for h sufficiently small, we obtain

F (Jk) ≤ F (J0) exp

(
2K3q̃ (1 + εZ)

Φ

)
. (3.44)

Let K4 = 2K3. The estimate (3.44) is valid as long as F (Jk) ≤ Z. The condition

required for this result is that

F (J0) ≤ exp

(
−K4q̃ (1 + εZ)

Φ

)
Z = g(Z). (3.45)

The value of Z which maximizes g(Z) is Z = Φ
K4q̃ε

. Thus, our least restrictive condition

on F (J0) is

F (J0) ≤ exp

(
−1− K4q̃

Φ

)
Φ

K4εq̃
= exp

(
−1− K4q ‖Y0‖∞

Φ

)
Φ

K4εq ‖Y0‖∞
. (3.46)

We summarize these estimates with the following lemma.

Lemma 3.20. If F (J0) satisfies (3.45), then, for all k ≥ 1, F (Jk) ≤ Z. In particular,

if F (J0) satisfies (3.46), then, for all k ≥ 1,

F (Jk) ≤ Z =
Φ

K4εq ‖Y0‖∞
. (3.47)

Furthermore, if F (J0) satisfies (3.46), then by (3.43),

F (Jk) ≤ F (J0) exp

(
K4q ‖Y0‖∞

Φ
+ 1

)
. (3.48)
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Next, we estimate the amount that the solution “drifts” from its original base point.

We use w̃ = limx→−∞w0(x) as our base point. Let Dε = D for 0 ≤ ε ≤ ε0, and

Dε = BC1(w̃) for ε0 < ε ≤ 1.

Lemma 3.21. Let Uh(x, t) be an approximate solution to (2.2), constructed with the

fractional–step Glimm scheme, with initial data U0 ∈ BV (R). If Uh(J) ∈ BV for every

mesh curve J , then

U±∞ = lim
x→±∞

U(x, t)

exists for all t and satisfies

dU±∞
dt

= G
(
U±∞

)
.

For our application (1.5), by Lemma 3.17, G(U) = Y φ(T )
( −q
cvT

,
q

cvT
,
q
T ,−1

)T
. Let

φ̄ = supDε
φ(T ).

Lemma 3.22. In the (r, s, S)-coordinates,

|r−∞(t)− r−∞(0)|+ |s−∞(t)− s−∞(0)| ≤
∫ Y−∞(0)

0

2q

cvT
dY,

|S−∞(t)− S−∞(0)| ≤
∫ Y−∞(0)

0

q

T
dY.

As ε → 0, cv → ∞. Recall that, by Lemma 3.14, T ≥ T ′(ε). Let C4 be an upper bound

for 1/cv on Dε. Denote Y−∞(0) by y0. Then

|r−∞(t)− r−∞(0)|+ |s−∞(t)− s−∞(0)| ≤ C4
2y0q

T ′
,

|S−∞(t)− S−∞(0)| ≤ y0q

T ′
.

Applying Lemma 3.22, we have

Lemma 3.23. Let Uh(x, t) be an approximate solution to (1.5) constructed with the

fractional–step Glimm scheme, with initial data U0 ∈ BV (R) and w(U0)(−∞) = w̃.

Then, for all (x, t) ∈ J ,∥∥(r, s)h(x, t)− (r, s)(w̃)
∥∥

1
≤ 2C4

y0q

T ′
+ Varrs

(
Uh(Jk)

)
,∥∥(r, s, S)h(x, t)− (r, s, S)(w̃)

∥∥
1
≤ (2C4 + 1)

y0q

T ′
+ VarrsS

(
Uh(Jk)

)
.
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Theorem 3.2. Let E be any compact set in rsS-space, let ε ∈ [0, 1], and let N > 1

be any positive constant. Let D, C1, and K0 be as determined in Lemma 3.12. Let

C0(E, N) and C(E, N) be given by (3.19) and (3.22). Let K = 20/M2
0 . Let K1 and ε0

be as determined in Lemma 3.13. Let w0(x) be given initial data for (1.5), expressed in

(r, s, S, Y )-coordinates, and with (r, s, S, Y ) values in E × [0, 1]. Let V0 = VarrsSY (w0).

If 0 ≤ ε < ε0, and

V0 ≤ exp

(
−K4q ‖Y0‖∞

Φ
− 1

)
min

(
C0(E, N)

ε
,

Φ

5εK0K4q ‖Y0‖∞

)
, (3.49)

V0 ≤ exp

(
−K4q ‖Y0‖∞

Φ
− 1

)(
N − (2C4 + 1)

y0q

5KK0T
′

)
, (3.50)

V0 ≤ exp

(
−K4q ‖Y0‖∞

Φ
− 1

)(
N − C4

y0q

50K0T
′

)
, (3.51)

then the fractional–step Glimm scheme constructs approximate solutions Uh(x, t) for

which w(Uh)(x, t) ∈ D and with uniformly bounded spatial total variation.

If ε0 ≤ ε ≤ 1, and

V0 ≤ exp

(
−K4q ‖Y0‖∞

Φ
− 1

)
min

(
6K0N

K1

,
C3

ε
,

Φ

εK1K4q ‖Y0‖∞

)
, (3.52)

V0 ≤ exp

(
−K4q ‖Y0‖∞

Φ
− 1

)
1

KK1

(
C1 − (2C4 + 1)

y0q

T ′

)
, (3.53)

then the fractional–step Glimm scheme constructs approximate solutions Uh(x, t) for

which w(Uh)(x, t) ∈ BC1(w̃) and with uniformly bounded spatial total variation.

Proof. Our functionals F and F0 are nearly the same as Temple’s. Our modifications

consist of adding the terms M4 |ζ| and α∞ + β∞ + µ∞ + η∞ + |δ∞| + M4 |ζ∞| − V to

L. We note that none of these terms change during the non-reacting step. Therefore,

estimates on F (J2)− F (J1) in the proof of Lemma 3.12 apply to our non-reacting step,

as long as the conditions for that proof remain valid. Those conditions are:

VarrsS(J) ≤ 6KK0N, Varrs(J) ≤ 120K0N, (3.54)

for 0 < ε ≤ ε0, to ensure (r, s, S)(x, t) ∈ D, and

VarrsS(J) ≤ C1, (3.55)

for ε0 < ε ≤ 1, to ensure (r, s, S)(x, t) ∈ BC1(w), and finally

εF (J0) <
1

4M3K
min

(
1

3G− 1
, 1− C0

)
, F (J) ≤ 6K0N, (3.56)
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for 0 < ε ≤ 1 to ensure that F (J) does not increase in a non-reacting step.

By Lemmas 3.10 and 3.11 (and their generalizations to our problem), we have

VarrsSY (J) ≤ KL(J) ≤ KF (J), 0 ≤ ε ≤ 1,

Varrs(J) ≤ 20L0(J) ≤ 20F0(J), 0 ≤ ε ≤ ε0.

As we have noted, the drift due to chemical reactions requires additional conditions in

order to ensure that the solution stays in D. Thus, using Lemmas 3.13, 3.20, and 3.23,

(3.54) becomes (3.50) and (3.51), and (3.55) becomes (3.53). For J0, the bounds (3.56)

are implied by Lemma 3.13 if V0 ≤ N and either εV0 ≤ C0(E, N) for 0 < ε ≤ ε0, or

εV0 ≤ C(E, N) for ε0 < ε ≤ 1. For Jk, the bounds (3.56) are implied for 0 < ε ≤ ε0 by

(3.49). For ε0 < ε ≤ 1, (3.52) implies εV0 ≤ C3 and K1V0 ≤ 6K0N , or

V0 ≤
6K0N

8K2
0M3N

≤ N.

For J > J0, using Lemma 3.20, we find that, if

Z0 = min

(
6K0N, K1

C3

ε

)
, (3.57)

and

F
(
J0

)
≤ exp

(
−K4q ‖Y0‖∞

Φ
− 1

)
Z0, (3.58)

then, for all k, F
(
Jk

)
≤ Z0 so that the bounds (3.56) are satisfied. When we express

(3.57 and 3.58) in terms of V0, using Lemma 3.13, we obtain (3.49) and (3.52). �

4. Convergence to the Entropy Solution

A scheme for constructing approximate solutions to a differential equation is called

consistent if the convergence of the scheme (in a suitable sense) implies that the limit of

the approximation is actually a solution of the differential equation. In [21] it is shown

that the fractional–step scheme as constructed in Section 2.2, by using Euler’s method

to approximate solutions to (2.8), is consistent with the notion of weak solutions for the

nonlinear water-hammer problem. It is also shown in [9] that fractional–step schemes

based on Glimm’s method and the first order approximation to (2.8) are consistent with

the notion of entropy solutions. In this section we will show that a fractional–step Glimm

scheme, for general hyperbolic systems of balance laws (1.4), as constructed in Section

2.2, using any consistent approximation to (2.8), is consistent with the notion of entropy

solutions. That is, if a sequence Uhn(x, t) of approximate solutions is bounded in L∞ and

converges pointwise a.e. to a function U(x, t), then U(x, t) is an entropy solution of the
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system of balance laws, which satisfies the entropy inequality. As a corollary, we obtain

the existence of a global entropy solution to the exothermically reacting, compressible

Euler equations (1.2) and (1.5).

Let dχk denote the uniform probability measure on [−1, 1], and let dχ denote the

induced product probability measure for the random sample {χk}∞k=1 in the Cartesian

product space A = Π∞
k=1 [−1, 1].

Theorem 4.1. Suppose that

(1) The sequence Uh`(x, t) is constructed by using the Glimm fractional–step scheme,

as described in Section 2.2, with a fractional–step operator which is consistent in

the sense of Definition 2.1, and with the random sample {χk}∞k=1 chosen from A.

(2) The sequence Uh`(x, t) is uniformly bounded in L∞ and converges pointwise a.e.

to the function U(x, t).

Then there exists a null set N ⊂ A such that, for {χk} ∈ A − N , the function U(x, t)

is an entropy solution of the Cauchy problem (1.4) and (2.1). That is, for any convex

entropy pair (η, q) with respect to U , the following inequality

η(U)t + q(U)x ≤ ∇η(U)G(U) (4.1)

holds in the sense of distributions, that is,∫ ∞

0

∫ ∞

−∞
(η(U)φt + q(U)φx +∇η(U)G(U)φ ) dxdt+

∫ ∞

−∞
η
(
U0(x)

)
φ(x, 0) dx ≥ 0, (4.2)

where φ ∈ C∞
0 ((−∞,∞)× [0,∞)) and φ(x, t) ≥ 0.

Proof. For any convex entropy pair (η, q) with respect to U , we define

J (χ, h, φ) = −
∫ ∞

0

∫ ∞

−∞

(
η
(
Uh
)
φt + q

(
Uh
)
φx +∇η

(
Uh
)
G
(
Uh
)
φ
)
dxdt,

−
∫ ∞

−∞
η
(
U0(x)

)
φ(x, 0) dx,

(4.3)

where φ ∈ C∞
0 ((−∞,∞)× [0,∞)) and φ(x, t) ≥ 0.

Note that for k ≥ 0,

−
∫ (k+1)h

kh

∫ ∞

−∞
η
(
Uh
)
φt dxdt

=−
∫ (k+1)h

kh

∫ ∞

−∞
η
(
Uh

0

)
φt dxdt−

∫ (k+1)h

kh

∫ ∞

−∞

(
η
(
Uh
)
− η
(
Uh

0

))
φt dxdt.

(4.4)
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Since Uh
0 is an entropy solution of the conservation laws (2.7),

−
∫ (k+1)h

kh

∫ ∞

−∞
η
(
Uh

0

)
φt dxdt

≤
∫ (k+1)h

kh

∫ ∞

−∞
q
(
Uh

0

)
φx dxdt

+

∫ ∞

−∞

(
η
(
Uh

0 (x, kh + 0)
)
φ(x, kh)− η

(
Uh

0 (x, (k + 1)h−)
)
φ(x, (k + 1)h)

)
dx.

(4.5)

Since F is consistent in the sense of Definition 2.1, there exists a function ν(s) such

that ν(s) → 0 as s → 0, and

∥∥F(s, Uh
0 (x, t)

)
− Uh

0 (x, t)−G
(
Uh

0 (x, t)
)
s
∥∥ ≤ ν(s)

∥∥G(U0(x, t)
)∥∥ |s| . (4.6)

Equation (4.6) states that, as a function of s, F
(
s, Uh

0 (x, t)
)

is differentiable at s = 0,

and has the partial derivative G
(
Uh

0 (x, t)
)
. Since η is a differentiable function of U , the

chain rule states that, as a function of s, η
(
F
(
s, Uh

0 (x, t)
))

is differentiable at s = 0, and

has partial derivative ∇η
(
Uh

0 (x, t)
)
G
(
Uh

0 (x, t)
)
. Therefore, there is a function e(s; x, t),

which converges uniformly to 0 as s → 0, such that

η
(
F
(
s, Uh

0 (x, t)
))
− η
(
Uh

0 (x, t)
)
−∇η

(
Uh

0 (x, t)
)
G
(
Uh

0 (x, t)
)
s = ε(s; x, t)s. (4.7)

Thus, for kh ≤ t ≤ (k + 1)h,

η
(
Uh(x, t)

)
=η
(
Uh

0 (x, t)
)

+∇η
(
Uh

0 (x, t)
)
G
(
Uh

0 (x, t)
)
(t− kh) + ε(t− kh; x, t)(t− kh).

(4.8)

We can now compute

−
∫ (k+1)h

kh

∫ ∞

−∞

(
η
(
Uh
)
− η
(
Uh

0

))
φt dxdt = −

∫ (k+1)h

kh

∫ ∞

−∞
ε(t− kh; x, t)(t− kh)φt dxdt

+

∫ ∞

−∞

∫ (k+1)h

kh

∂

∂t

(
∇η
(
Uh

0 (x, t)
)
G
(
Uh

0 (x, t)
)
(t− kh)

)
φ dxdt.

(4.9)
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Thus,

−
∫ (k+1)h

kh

∫ ∞

−∞

(
η
(
Uh
)
− η
(
Uh

0

))
φt dxdt

=−
∫ (k+1)h

kh

∫ ∞

−∞
ε(t− kh; x, t)(t− kh)φt dxdt

+

∫ ∞

−∞

∫ (k+1)h

kh

[
∇η
(
Uh

0 (x, t)
)
G
(
Uh

0 (x, t)
)

+
∂

∂t

(
∇η
(
Uh

0 (x, t)
)
G
(
Uh

0 (x, t)
))

(t− kh)

]
φ dxdt.

(4.10)

Plugging (4.5) and (4.10) into (4.4), we obtain

−
∫ (k+1)h

kh

∫ ∞

−∞
η
(
Uh
)
φt dxdt

≤
∫ (k+1)h

kh

∫ ∞

−∞

[
q
(
Uh

0

)
φx +∇η

(
Uh

0

)
G
(
Uh

0

)
φ
]

dxdt

+

∫ ∞

−∞

[
η
(
Uh

0 (x, kh + 0)
)
φ(x, kh)− η

(
Uh

0 (x, (k + 1)h−)
)
φ(x, (k + 1)h)

]
dx

+

∫ ∞

−∞

∫ (k+1)h

kh

∂

∂t

[
∇η
(
Uh

0 (x, t)
)
G
(
Uh

0 (x, t)
)]

(t− kh)φ(x, t) dxdt

−
∫ (k+1)h

kh

∫ ∞

−∞
ε(t− kh; x, t)(t− kh)φt dxdt.

Summing over k, we have

J (χ, h, φ) ≤ I(χ, h, φ) +
∞∑

k=0

Rj(χ, h, φ) +
∞∑

k=0

Dj(χ, h, φ),

where

I(χ, h, φ) =
∞∑

k=0

Ik(χ, h, φ),

I0(χ, h, φ) =

∫ ∞

−∞

(
η
(
Uh(x, 0)

)
− η
(
U0(x)

))
φ(x, kh) dx,

Ik(χ, h, φ) =

∫ ∞

−∞

(
η
(
Uh

0 (x, kh + 0)
)
− η
(
Uh

0 (x, kh−)
))

φ(x, kh) dx, k = 1, · · · ,
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Rk(χ, h, φ) =

∫ (k+1)h

kh

∫ ∞

−∞

(
q
(
Uh

0

)
− q
(
Uh
))

φx dxdt

+

∫ (k+1)h

kh

∫ ∞

−∞

(
∇η
(
Uh

0

)
G
(
Uh

0

)
−∇η

(
Uh
)
G
(
Uh
))

φ dxdt

−
∫ (k+1)h

kh

∫ ∞

−∞
ε(t− kh; x, t)(t− kh)φt dxdt,

and

Dk(χ, h, φ) =

∫ (k+1)h

kh

∫ ∞

−∞

∂

∂t

(
∇η
(
Uh

0 (x, t)
)
G
(
Uh

0 (x, t)
))

(t− kh)φ(x, t) dxdt.

We now analyze each of these components for convergence to zero as h tends to zero.

Lemma 4.1. There is a null subset N ⊂ A and a positive sequence hm, which converges

to zero, such that, for χ ∈ A − N , the functionals I(χ, hm, φ) converge weakly to zero

as measures on compact subsets of R× R+.

Proof. Note that I0 → 0 since Uh(x, 0) was chosen to converge to U0(x) in L1(R). Since

Ik(χ, h, φ) =
N∑

j=−N

∫ (j+1)l

(j−1)l

(
η
(
Uh

0 ((j + χk)l, kh−)
)
− η
(
Uh

0 (x, kh−)
))

φ(x, kh))dx,

and

|Ik(χ, h, φ)| ≤ CTV
(
Uh

0 (x, kh−)
)
h ‖φ‖∞ , (4.11)

we have

|I(χ, h, φ)| ≤ CLd ‖φ‖∞ , (4.12)

where L is an upper bound for TV
(
Uh

0 (·, (k−1)h)
)
, and d is the diameter of supp φ(x, t).

Thus φ → I(χ, h, φ) is a distribution of order zero. By the Riesz representation theorem,

I(χ, h, φ) corresponds to a Radon measure [12].
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Let tk denote kh−. Notice that∣∣∣∣∫ 1

−1

Ik(χ, h, φ) dχk

∣∣∣∣
=

∣∣∣∣∣
N∑

j=−N

∫ 1

−1

∫ (j+1)l

(j−1)l

(
η
(
Uh

0 ((j + χk)l, tk)
)
− η
(
Uh

0 (x, tk)
))

φ(x, tk) dxdχk

∣∣∣∣∣
≤

∣∣∣∣∣
N∑

j=−N

φk
j

∫ 1

−1

∫ (j+1)l

(j−1)l

(
η
(
Uh

0 ((j + χk)l, tk)
)
− η
(
Uh

0 (x, tk)
))

dxdχk

∣∣∣∣∣
+ ‖∇η‖∞ ‖φx‖∞ l

N∑
j=−N

∫ 1

−1

∫ (j+1)l

(j−1)l

∣∣Uh
0 ((j + χk)l, tk)− Uh

0 (x, tk)
∣∣ dxdχk

≤ C ‖∇η‖∞ ‖φx‖∞ l

∫ 1

−1

∫ l

−l

N∑
j=−N

∣∣Uh
0 ((j + χk)l, tk)− Uh

0 (jl + x, tk)
∣∣ dxdχk

≤ C ‖∇η‖∞ ‖φx‖∞ TV
(
Uh

0 (·, tk)
)
h2,

(4.13)

where φk
j = φ(jl, tk). Therefore, for 0 < k1 < k2, we have∣∣∣∣∫ Ik1(χ, h, φ)Ik2(χ, h, φ)dχ

∣∣∣∣ =

∣∣∣∣∫ (∫ Ik2(χ, h, φ)dχk2

)
Ik1(χ, h, φ)dχ̄k2

∣∣∣∣
≤ Ch3 ‖φ‖∞ ‖φx‖∞ ,

(4.14)

where χ̄k2 denotes the sequence obtained from χ by deleting the k2-th element. Moreover,

we have from (4.11) that ∫
(Ik(χ, h, φ))2dχ ≤ Ch2 ‖φ‖2

∞ . (4.15)

Thus, ∫
(I(χ, h, φ))2dχ = 2

∑
k1<k2

∫
Ik1Ik2dχ +

∑
k

∫
I2

kdχ

≤ Ch ‖φ‖∞ ‖φx‖∞ + Ch ‖φ‖2
∞ ,

(4.16)

so that I(χ, h, φ) → 0 in L2(A, dχ). As a consequence, there exists a sequence hm → 0

such that I(χ, hm, φ) → 0 pointwise a.e. in (A, dχ). In other words, for any φ ∈
C∞

0 ((−∞,∞)× [0,∞)), there exists a sequence hm → 0 and a null subset N ⊂ A such

that, if χ ∈ A−N , then

I(χ, hm, φ) → 0, as hm → 0. (4.17)



REACTING COMPRESSIBLE EULER EQUATIONS 43

Let {φ`}`∈Λ be a countable dense set in C∞
0 ((−∞,∞) × [0,∞)) with respect to the

norm ‖ ‖∞. Then, after refining hm above by a diagonal argument and after taking the

appropriate countable union of null sets N`, we can conclude that there exists a sequence

hm → 0 and a null subset N ⊂ A such that, if χ ∈ A−N , ` ∈ Λ, then

I(χ, hm, φ`) → 0, as m →∞. (4.18)

Let K be a compact subset of R×R+. We see from (4.12) that I(χ, hm, φ) is a uniformly

bounded (i.e., Lipschitz continuous) sequence of linear functionals on C0 [K]. We have

seen that this sequence converges pointwise to zero on a dense subset of this space.

Hence the sequence must converge pointwise to zero on all of C0 [K] ∩ C1 [K]. This

means that the functionals I(χ, hm, φ) converge weakly to zero as measures on K. �

Since, for (k − 1)h ≤ t < kh,
∣∣Uh(x, t)− Uh

0 (x, t)
∣∣ ≤ C(t− (k − 1)h) ≤ Ch, we have

∞∑
k=1

Rk(χ, h, φ) ≤ Ch (‖φx‖1 + ‖φ‖1 + ‖φt‖1) . (4.19)

We now estimate

Dk(χ, h, φ) =

∫ (k+1)h

kh

∫ ∞

−∞

∂

∂t

(
∇η
(
Uh

0 (x, t)
)
G
(
Uh

0 (x, t)
))

(t− kh)φ(x, t) dxdt.

Let H
(
Uh

0

)
denote the derivative of ∇η ·G, evaluated at Uh

0 .

Then

∂

∂t

(
∇η
(
Uh

0

)
G
(
Uh

0

))
(x, t) = Ĥ

(
Uh

0 (x, t)
)
· Uh

0 t(x, t) = −Ĥ
(
Uh

0 (x, t)
)
· F
(
Uh

0 (x, t)
)

x

= −Ĥ
(
Uh

0 (x, t)
)
· ∇̂F (Uh

0 )
(
Uh

0 (x, t)
)

x
,

by the chain rule of differentiation. Here Ĥ(Uh(x, t)) denotes Vol’pert’s “functional

superposition” [30], which is given by

Ĥ(Uh(x, t)) =

∫ 1

0

H
(
θUh(x, t−) + (1− θ)Uh(x, t + 0)

)
dθ, (4.20)

at all points (x, t) at which Uh is either approximately continuous or has a well-defined

jump discontinuity with a normal direction not parallel to the x-axis. For arbitrary

functions f ∈ BV [R× R+; Rn] and g ∈ C [Rn; R], Ĥ◦f is well-defined almost everywhere

with respect to one–dimensional Hausdorff measure.

Thus, if C1 is an L∞ matrix bound for Ĥ(U)∇̂F (U),

Dk(χ, h, φ) ≤ C1TV
(
Uh

0

)
‖φ‖∞ h2. (4.21)
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Let C2 be the diameter of {t | ∃x such that φ(x, t) 6= 0}. Then
∞∑

k=1

Dk(χ, h, φ) ≤ C1C2 ‖φ‖∞ h. (4.22)

Therefore, we can conclude from (4.19), (4.22), and Lemma 4.1 that, if χ ∈ A and

φ ∈ C0 [K] ∪ C1 [K], then

J (χ, hm, φ) → 0, as m →∞.

Furthermore, we conclude from Theorems 3.1 and 3.2 that the approximate solution

sequence {Uh(x, t)} converges strongly in L1 to a bounded variation function U(x, t) for

any rational number t ∈ (0,∞). Observing that Uh(x, t) has a finite speed of propagation

and using the uniform estimate on the total variation in x of Uh, we conclude that

{Uh(x, t)} is L1-Lipschitz continuous in t, from which follows the convergence of Uh to

the function U for all t.

Hence, for any convex entropy pair (η, q),∫ ∞

0

∫ ∞

−∞
(η(U)φt + q(U)φx +∇η(U)G(U)φ)dxdt +

∫ ∞

−∞
η
(
U(x, 0)

)
φ(x, 0)dx ≥ 0,

where φ ∈ C∞
0 ((−∞,∞)× [0,∞)) and φ(x, t) ≥ 0.

In particular, we choose (η(U), q(U)) = ±
(
Uj, Fj(U)

)
, 1 ≤ j ≤ n, in (4.1) and conclude

that U satisfies the equations (1.4) in the sense of distributions. �

As a direct corollary to Theorem 4.1, we obtain

Theorem 4.2. If U(x, t) = (v, u, e + u2/2, Y ) is an entropy solution of (1.5), then

St ≥
qφ(T )Y

T
, (4.23)(

Y 2

2

)
t

+ φ(T )Y 2 ≤ 0, (4.24)

in the sense of distributions.

In fact, one can check that both
(
−S(v, e), 0

)
and (Y 2/2, 0) are convex entropy pairs

by a careful calculation. Then (4.23) and (4.24) follow from (4.1).

Note that due to the lower-order term, which represents the reaction rate in our case,

the form of the entropy condition is somewhat different from that which is customary for

homogeneous hyperbolic systems of conservation laws. Let η(U) be a convex “entropy”

function (a.k.a. convex extension) for a hyperbolic system of balance laws

Ut + F (U)x = G(U).
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After multiplying by ∇η(U), one obtains the following extra balance law for classical

solutions:

η(U)t + q(U)x = ∇η(U) ·G(U). (4.25)

For discontinuous weak solutions, the corresponding entropy condition is (4.1). As long

as G(U) is a locally integrable function of (x, t), and not a singular measure, the right-

hand side of (4.1) has no bearing on the admissibility of shock waves. However, if one is

interested in the proper expression of the increase of physical entropy S (η(U) = −S),

then the inequality (4.1) takes on more significance.

5. Conclusions and Remarks

We conclude with several observations. First, we note that the lower-order term

representing the chemical reaction causes the solution to drift, and this drift, in turn,

imposes a new requirement, namely (3.51) for 0 < ε ≤ ε0, or (3.53) for ε0 < ε ≤ 1, in

order to keep the solution values inside a given range. However, these conditions become

redundant if the lower-order term tends to zero as x →∞ or as x → −∞–for example,

if Y0(x) has compact support or vanishes at either ∞ or −∞.

Secondly, we would like to be able to state a simple result in the same form as that

obtained in [24], namely that εVar
(
U0

)
≤ C guarantees the existence of solutions for the

Cauchy problem. Unfortunately, we are not yet able to do so. The basic reason for this

is that the results of [29] do not have this form. Those results required:

V0 = Var
(
U0

)
≤ min

(
N,

C(E, N)

ε

)
. (5.1)

We recall from [29] that

C(E, N) =
1

K1K
min

(
ε0C1,

1

4M3

min

(
1

3G
, 1− C0

))
,

M3 = G (8 + 64KK0GN) (1 + 16KK0GN) ,

K1 = 8K2
0M3N.

Thus C(E, N) ≈ 1
N(A + BN)4 . For ε small and V0 large, we can let N = V0 and (5.1)

becomes:

εV 2
0 (A + BV0)

4 ≤ 1.

However, our refinement of the bounds on F (J0) in terms of V0 in Lemma 3.13 improves

this requirement somewhat for small ε. This Lemma states that for ε ≤ ε0 F (J0) ≤
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5K0V0 ≤ 5K0N . This estimate and (3.20) are the estimates required in [29] to prove

that F (J) is non-increasing.

Thus, for ε small, we have C(E, N) ≈ 1
(A + BN)2 , so that uniform total variation

bounds apply to approximate solutions of the non-reacting equations when

εV0 (A + BV0)
2 ≤ 1,

or, ignoring lower-order terms,

εBV 3
0 ≤ 1,

Remark 5.1. One would like to think that a more detailed analysis would improve these

results to solutions such as steady strong detonation waves, steady weak deflagration

waves, and perturbations of such waves. Such steady waves can only exist when there is

some Ti > 0 such that φ(T ) = 0 for T < Ti, which means that the reacting rate function

is discontinuous. In this case, Ti is called an ignition temperature. The results we present

here do not establish a theory for this class of solutions. However, an existence theory

for such solutions with large initial data has been established for compressible Navier-

Stokes models of combustion in [3, 6]. The existence of traveling wave solutions, and

the “ZND”, or vanishing viscosity limit of such solutions, was discussed in [33, 32].

As an alternative to the ignition temperature assumption, one can study steady deto-

nation or deflagration wave solutions to an initial–boundary value problem, where fresh

reactant is supplied through a boundary value condition. However, the techniques de-

veloped in this paper are not directly applicable to this problem, because our method

depends on the uniform decay of the reactant. It may be possible, however, that this

difficulty can be overcome by analyzing the increase in total variation of the solution

due to finite quantities of reactant, and observing that a given finite mass of reactant

still decays to zero as it flows through the reaction zone—thus the damage done to a

variation estimate is limited. Yet there is still a continuing increase in total variation,

and the only apparent way to offset this increase is through decreases in total variation

resulting from shock-rarefaction interactions. It would be interesting to make such an

extension to the compressible Euler equations with such discontinuous rate function.

Remark 5.2. In this paper the large-time behavior of the solution is not explored. It

would be interesting to investigate the asymptotic behavior of the generalized solutions

to the Cauchy problem (1.5), or (1.2), and (2.1). In this context we refer the reader

to Liu [20] for linear and nonlinear large-time behavior of solutions of general systems

of conservation laws, and to Glimm-Lax [16], DiPerna [11], Dafermos [8] and references
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cited therein for decay results of solutions to systems with two conservation laws in

the context of the Glimm scheme. We also refer to Chen-Frid [5, 4] for new analytical

frameworks developed recently.
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