Section 1.2
Functions and Graphs

Vertical Line Test

A curve is the graph of a function if and only if each vertical line intersects it in at most one point.

Example 1: Determine whether the given graph is the graph of a function.
A. B.

Even and Odd Functions

A function \(f \) is even if \(f(-x) = f(x) \) for all \(x \) in the domain of \(f \). Since an even function is symmetric with respect to the y-axis, the points \((-x, y)\) and \((x, y)\) are on the same graph. *An even function looks the same when reflected about the y-axis.*

This is the graph of the even function \(f(x) = x^2 \). Notice that (-1, 1) and (1, 1) are on the graph.
A function \(f \) is **odd** if \(f(-x) = -f(x) \) for all \(x \) in the domain of \(f \). Since an odd function is symmetric with respect to the origin, the points \((-x,-y)\) and \((x,y)\) are on the same graph. An odd function looks the same when reflected about the x-axis and y-axis or when rotated 180 degrees about the origin.

This is the graph of the odd function \(f(x) = x^3 \). Notice that \((-1, -1)\) and \((1, 1)\) are on the graph.

Example 2: Let \((-3, -7)\) be a point on the graph of \(g \).

a. If \(g \) is an even function, which of the following points is also on the graph of \(g \)?

A. \((3, 7)\) B. \((-7, -3)\) C. \((-3, 7)\) D. \((7, 3)\) E. \((3, -7)\)

b. If \(g \) is an odd function, which of the following points is also on the graph of \(g \)?

A. \((3, 7)\) B. \((-7, -3)\) C. \((-3, 7)\) D. \((7, 3)\) E. \((3, -7)\)

Example 3: Determine if the following function is even, odd or neither.

\[f(x) = 5x^4 - 3x^2 \]

Recall: Even: \(f(-x) = f(x) \)
Odd: \(f(-x) = -f(x) \)

Try this one: Is \(f(x) = x^3 + 2x + 1 \) even, odd or neither?

Recall: Even: \(f(-x) = f(x) \)
Odd: \(f(-x) = -f(x) \)

Section 1.2 – Functions and Graphs
A function is **increasing on an interval** whenever \(a > b \) then \(f(a) > f(b) \) (going uphill from left to right).

A function is **decreasing on an interval** whenever \(a > b \) then \(f(a) < f(b) \) (going downhill from left to right).

The **maximum** is the largest \(y \) value for a function.

The **minimum** is the smallest \(y \) value for a function.

Example 4: Given the following graph of a function \(g \):

For parts a – g, state whether the statement is true or false.

a. The domain is \([-3, 6)\).
b. The range is \((-2, 7)\).
c. The y-intercept is 4.
d. The function is decreasing \((0, 1) \cup (3, 5)\).
e. \(g(x) = 0 \) when \(x = -2 \)
f. The maximum of the function is 7.
g. The minimum of the function is -3.