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a b s t r a c t

We present a new time-splitting scheme for the numerical simulation of fluid–structure
interaction between blood flow and vascular walls. This scheme deals in a successful way
with the problem of the added mass effect. The scheme is modular and it embodies the
stability properties of implicit schemes at the low computational cost of loosely coupled
ones.

© 2008 Published by Elsevier Ltd

1. Introduction 1

We study the fluid–structure interaction between blood flow and arterial walls in the flow regime corresponding to

Q1

2

blood flow in medium-to-large arteries. Due to the fact that vascular tissue (structure) is ‘‘light’’ relative to blood (fluid),

Q2

3

the coupling between fluid and structure at the interface is highly nonlinear. This causes instability and consequent failure 4

of the traditional loosely coupled schemes successfully used in aeroelasticity [1–6]. This is due to the added mass effect [1] 5

which is most pronounced in problems where fluid and structure have comparable densities. 6

To get around this difficulty several approaches have been developed. One is based on the implicit or
∧
fully coupled 7

algorithms, see e.g. [7,1,5,8,6,9], that are quite robust and stable but unfortunately they are quite demanding in terms of 8

computational time. Other, more recent approaches, are based on semi-implicit schemes where fluid velocity is decoupled 9

from the strongly coupled
∧
pressure–structure system [10,11], and monolithic-like schemes where a thin structure is 10

incorporated into the fluid equations via a Robin-like boundary condition [12]. Finally, the work in [13] presents a stabilized 11

explicit coupling scheme using a penalty term on the fluid force fluctuations acting on the interface. 12

In this
∧
work, we present a kinematically coupled time-splitting schemewhich is truly modular and embodies the stability 13

properties of implicit schemes at the computational cost of explicit schemes. The time-splitting is performed on the full 14

problem, written as a first-order system via the kinematic coupling condition, at the differential level. In contrast with 15

classical partitioned schemes, which rely on splitting the fluid from the structure, our strategy is based on splitting the 16

structure
∧
into its hydrodynamic and elastic parts. The hydrodynamic part, consisting of the fluid stress acting on the interface 17

and the viscoelastic terms, is treated together with the fluid. By adding the hydrodynamic part of the structure equation to 18

the fluid equation andbyutilizing the kinematic interface condition,wedealwith the inertia of both fluid and structure at the 19

same time, thereby getting around the difficulty associated with the addedmass effect. The elastic part is treated separately 20

∗ Corresponding author.
E-mail addresses: gio@math.uh.edu (G. Guidoboni), roland@math.uh.edu (R. Glowinski), nicolauh@math.uh.edu (N. Cavallini), canic@math.uh.edu

(S. Canic), slapin@math.wsu.edu (S. Lapin).

0893-9659/$ – see front matter© 2008 Published by Elsevier Ltd
doi:10.1016/j.aml.2008.05.006

Please cite this article in press as: G. Guidoboni, et al., A kinematically coupled time-splitting scheme for fluid–structure interaction in blood flow, Appl.
Math. Lett. (2008), doi:10.1016/j.aml.2008.05.006

http://www.elsevier.com/locate/aml
http://www.elsevier.com/locate/aml
mailto:gio@math.uh.edu
mailto:roland@math.uh.edu
mailto:nicolauh@math.uh.edu
mailto:canic@math.uh.edu
mailto:slapin@math.wsu.edu
http://dx.doi.org/10.1016/j.aml.2008.05.006


UN
CO

RR
EC

TE
D
PR

OO
F

AML: 2756

ARTICLE  IN  PRESS
2 G. Guidoboni et al. / Applied Mathematics Letters xx (xxxx) xxx–xxx

Fig. 1. Sketch of the domain.

and this enables the use of a wide range of structuremodels. Our strategy admits extreme flexibility in the choice of solution1

methods for each sub-problem resulting from the splitting,making this algorithm trulymodular. Since no iterations between2

the two main steps are necessary to achieve stability, the complexity of our method is that of loosely coupled schemes.3

Because of the crucial role played by the kinematic condition at the interface, we call our numerical scheme a
∧
kinematically4

coupled time-splitting scheme.5

2. Mathematical model6

Consider the flow of an incompressible, viscous fluid in a two-dimensional channel with thin, deformablewalls, andwith7

axial symmetry
∧
; see Fig. 1. As in [1] we assume that the structure deformation is small enough

∧
that the fluid domain can8

be considered fixed. This assumption is not essential for our kinematically coupled scheme since the motion of the fluid9

domain can be easily incorporated using, e.g., an ALE approach as in [14]. The problem studied here retains the essential10

difficulties of the full problem while allowing simpler presentation of the numerical scheme.11

The fluid motion is governed by the Navier–Stokes equations:12

%f (∂tu+ u · ∇u) = −∇p+ µ1u, ∇ · u = 0, inΩ × (0, T ), (1)13

where u = (u1(x, y; t), u2(x, y; t)) is the fluid velocity, p(x, y; t) is the pressure, %f is the fluid density and µ is the fluid14

viscosity. The fluid domain Ω is the rectangle (0, L) × (0,H). At the lower boundary we impose the symmetry condition,15

while at the inlet and outlet sectionswe prescribe the generalized Neumann boundary conditions related to a pressure drop,16

namely
∧
,17

∂yu1|y=0 = 0, u2|y=0 = 0, (pn− µ(n · ∇)u) |x=0 = p̄(t)n, (pn− µ(n · ∇)u) |x=L = 0. (2)18

The deformable structure constitutes the upper portion of the domain boundary. In the present article, we will use the19

generalized viscoelastic string model [15] to describe the structure dynamics. This choice was motivated by the fact that20

several numerical results are available in the literature for this type of structuremodel, and therefore this constitutes a useful21

benchmark problem for our algorithm. We remark, though, that more complicated shell models, such as [16–18], could22

be easily considered. In the generalized viscoelastic string model, the structure undergoes only transverse displacement23

η = η(x, t):24

%shs∂2t η + aη − b∂
2
x η − γ ∂t∂

2
x η = p|y=H on (0, L)× (0, T ), (3)25

where %s is the structure density, hs is the structure thickness, and a, b, and γ are elastic constants. More precisely,26

a = Ehs/H2(1−σ 2), where E is the Young’s modulus and σ is the Poisson ratio, b = Ghs, where G is the shear modulus, and27

γ is the viscoelastic constant.We remark that, for the sake of simplicity, the fluid action on the structure enters only through28

the pressure, but the influence of the viscous part of the fluid stress could be considered as well. The coupling between the29

fluid and the structure is both dynamic, through Eq. (3), and kinematic, through the following kinematic condition:30

u1|y=H = 0, ∂tη = u2|y=H . (4)31

The following initial and boundary conditions for η and u are prescribed:32

u|t=0 = 0, η|t=0 = 0, ∂tη|t=0 = 0, η|x=0 = 0, η|x=L = 0. (5)33

3. The kinematically coupled scheme: Main ideas34

To illustrate the main ideas of the
∧
kinematically coupled scheme, we rewrite Eqs. (1), (3) and (4) as follows:35 %f ∂tu = Φ(u, p), ∇ · u = 0, inΩ × (0, T ),

%shs∂2t η = Ψ (η)+Π(∂tη)+ Υ (u, p) on (0, L)× (0, T ),
∂tη = u2|y=H on (0, L)× (0, T ),

(6)36

where Ψ (η) and Π(∂tη) embody the constitutive equation of the structure, while Υ (u, p) represents the hydrodynamic37

load on the structure which is due to the fluid stress on the interface. For the particular mathematical model presented in38

Section 2,Φ(u, p) = −%f u · ∇u−∇p+ µ1u, Ψ (η) = −aη + b∂2x η,Π(∂t) = γ ∂
2
x ∂tη, and Υ (u, p) = p|y=H .39
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Math. Lett. (2008), doi:10.1016/j.aml.2008.05.006



UN
CO

RR
EC

TE
D
PR

OO
F

AML: 2756

ARTICLE  IN  PRESS
G. Guidoboni et al. / Applied Mathematics Letters xx (xxxx) xxx–xxx 3

3.1. Traditional loosely coupled schemes 1

Traditional loosely coupled schemes are based on the simple idea of decoupling the fluid from the structure. This can be 2

achieved by using the structure velocity from the previous time step as Dirichlet data for the fluid velocity on the interface, 3

and then
∧
using the computed fluid stress at the interface to force the structure and obtain the newdisplacement

∧
; see, e.g., [1]. 4

Step 1. (Fluid) Given u(tn) = un, η(tn) = ηn, and ∂tη(tn) = gn, solve
∧

5{
%f ∂tu = Φ(u, p), ∇ · u = 0 inΩ × (tn, tn+1),
u|y=H = gnn, on (0, L)× (tn, tn+1),

(7) 6

and then set u(tn+1) = un+1 and p(tn+1) = pn+1. 7

Step 2. (Structure) Given η(tn) = ηn, and ∂tη(tn) = gn, solve
∧

8

%shs∂2t η = Ψ (η)+Π(∂tη)+ Υ (u
n+1, pn+1) on (0, L)× (tn, tn+1), (8) 9

and then set η(tn+1) = ηn+1, and ∂tη(tn+1) = gn+1. 10

3.2. The kinematically coupled scheme: a new splitting strategy 11

As a first fundamental step, we use the kinematic coupling condition to rewrite the structure acceleration in terms of the 12

fluid acceleration at the interface. This allows us to obtain a new formulation of problem Eq. (6), involving only first-order 13

differential operators in time: 14{
%f ∂tu = Φ(u, p), ∇ · u = 0, inΩ × (0, T ),
%shs∂tu2|y=H = Ψ (η)+Π(u2|y=H)+ Υ (u, p) on (0, L)× (0, T )
∂tη = u2|y=H on (0, L)× (0, T ).

(9) 15

We now perform the time discretization by operator splitting. Instead of splitting the fluid from the structure, as in the 16

traditional splitting schemes, we split the structure equation in its hydrodynamic and elastic parts. The hydrodynamic part 17

Π(u2|y=H)+Υ (u, p) (viscoelasticity and fluid stress on the interface) will be treated together with the fluid equations. The 18

elastic part, Ψ (η), will be treated separately. 19

Step 1. Given u(tn) = un, η(tn) = ηn, and ∂tη(tn) = gn, solve
∧

20{
%f ∂tu = Φ(u, p), ∇ · u = 0, inΩ × (tn, tn+1),
%shs∂tu2|y=H = Π(u2|y=H)+ Υ (u, p), on (0, L)× (tn, tn+1),

(10) 21

and then set u(tn+1) = un+1/2 and p(tn+1) = pn+1. 22

Step 2. Given η(tn) = ηn, and ∂tη(tn) = u2 |
n+1/2
y=H , solve

∧
23{

∂tη = u2|y=H
%shs∂tu2|y=H = Ψ (η)

(11) 24

on (0, L)× (tn, tn+1), and then set η(tn+1) = ηn+1 and ∂tη(tn+1) = u2 |n+1y=H . 25

This scheme has the following three appealing features: 26

(i) Stability properties of implicit schemes with the complexity of traditional loosely coupled schemes. 27

(ii) The non-dissipative sub-problems can be treated with non-dissipative solvers. 28

(iii) Modularity: existing fluid and structure solvers can be used as ‘‘black boxes’’. 29

4. Numerical experiments 30

The kinematically coupled scheme was applied to the model described in Section 2, and compared with the analogous 31

problem solved by Formaggia et al. in [15] using an implicit scheme.
∧
The geometry, fluid and structure parameters are 32

L = 6 cm, H = 1 cm, µ = 0.035 poise, ρf = 1 g/cm3, E = 0.75 × 106 dyn/cm3, σ = 0.5, ρs = 1.1 g/cm2, hs = 0.1 cm, 33

G = E/2(1 + σ), γ = 0.01 poise cm. The inlet pressure is the pulse given by p̄(t) = pmax for t ≤ tmax, and p̄(t) = 0 for 34

t > tmax, where pmax = 2× 104 dyn/cm2 and tmax = 0.005 s. Problem (10) is solved in three substeps: (1) the generalized 35

Stokes problem is solved with half the viscosity, then (2) the fluid advection, and (3) the generalized Stokes problem with 36

the remaining half of the viscosity. This approach enforces the divergence free condition and smooths out the solution. 37

The two generalized Stokes problems are solved using a conjugate gradient method in combination with a
∧
backward Euler 38

scheme [19]. The fluid advection and problem (11) are solved using a wave-like method [19,20,14]. The time step is mainly 39

dictated by a CFL condition for the proper resolution of the
∧
wave propagation in the structure. Numerical experiments 40

showed that our algorithm is stable for a wide range of 1t . We tested values of 1t between 10−6 and 10−3, which is the 41
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Fig. 2. Pressure maps, membrane displacements, black lines, and stream lines at different simulations times.

same range as for implicit schemes [1,15]; our method was stable for all the values. Results shown in Fig. 2 have been1

obtained with1t = 5×10−5. A smaller time substep of1t/5 is used in non-dissipative sub-problems. Space discretization2

is obtained using a
∧
P1–iso–P2 and P1 finite element approximation, where the pressure is approximated on a mesh which3

is twice coarser than that used for the velocity field. Results shown in Fig. 2 have been obtained using a uniform mesh,4

where the size of the related pressure mesh was hp = H/8. The numerical solution obtained with the
∧
kinematically coupled5

scheme (10) and (11) is shown in Fig. 2
∧
in six different snapshots. Each plot contains the information on pressure (colormap),6

velocity field (streamlines), and structure displacement. Fig. 2 shows a pressure wave moving forward and reflecting once7

it reaches the end of the domain. The reflected wave is characterized by the negative values of pressure and positive flow8

rates [15,21]. The results obtained with our method are in excellent agreement with those obtained in [15] using an implicit9

scheme.10
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