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Undergraduate abstract algebra is usually focused on three topics: Group
Theory, Ring Theory, and Field Theory. Of the myriad of text books on the
subject, the following references will be used:

[D] John R. Durbin, Modern Algebra, Fourth Edition, Wiley & Sons, New
York, NY, 2000 (ISBN 0-471-32147-8).

[GG] J. Gilbert and L. Gilbert, Elements of Modern Algebra, Fifth Edi-
tion, Brooks/Cole, Pacific Grove, CA, 2000 (ISBN 0-534-37351-8).

[R] J. J. Rotman, A First Course in Abstract Algebra, Second Edition,
Prentice Hall, Upper Saddle River, NJ, 2000 (ISBN 0-13-011584-3).

These notes are intended for mathematics students as a compact summary
of undergraduate abstract algebra.

1. Fundamentals

The symbols N, Z, Q, R, C denote the set of all positive integers, all in-
tegers, all rational numbers, all real numbers, and all complex numbers,
respectively. You are familiar with mathematical induction, with the fact
that N is a well–ordered set, and concepts from elementary number theory
like primes, greatest common divisors and the division algorithm.
Exercise 1. Prove: If a, b and c are integers such that (i) a divides bc and
(ii) a and b are relatively prime, then a divides c. (Hint: Try to mimic the
proof of Euclid’s Lemma [R, page 43]).

You are also familiar with elementary set theory: intersection and union
of sets, subsets, and set builder notation like {n : n is a positive integer}
which of course equals N. The cardinality (number of elements) of a set
X is denoted by |X|. You are able to prove equalities like A ∩ (B ∪ C) =
(A ∩B) ∪ (A ∩ C) for all sets A,B, C. [GG, page 8, Example 13].
Exercise 2. Prove: A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C) for all sets A,B, C.

You also are familiar with functions (also called mappings or maps) and
the concepts of a function f : A → B being one–to–one (injective), or onto
(surjective), or a one–to–one correspondence (a bijection) [D, page 11–13].
Given functions f : A → B and g : B → C, the composition g ◦f : A → C is
defined by (g ◦ f)(a) = g(f(a)) for all a ∈ A. The composition of two onto
functions (when defined) is another onto function [D, page 16, 2.1].
Exercise 3. Prove: If f : A → B and g : B → C are two functions which
are both one–to–one, then the composition g ◦ f : A → C is one–to–one.

A function f : A → B is invertible if and only if it is both one–to–one
and onto. If f is invertible, there exists a unique function f−1 : B → A such
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that f ◦ f−1 = 1B and f−1 ◦ f = 1A (1X denotes the identity function on
the set X.)
Exercise 4. Prove: If f : A → B is a function, and if there exists a function
g : B → A such that f ◦ g = 1B and g ◦ f = 1A, then f is invertible and
g = f−1.

An important relation on the set Z of all integers is congruence modulo m,
where m ≥ 0 denotes some fixed integer that is called the modulus. Define
two integers a and b to be congruent modulo m, if m divides a − b. Write
a ≡ b (modm) if a and b are congruent modulo m. Notice that a ≡ b (mod 0)
if and only if a = b, while a ≡ b (mod 1) for any two integers a and b. Thus,
in most cases, the modulus m is assumed to be ≥ 2. Congruence modulo
m is an equivalence relation on Z, i.e. the relation ≡ (modm) is reflexive,
symmetric and transitive [R, page 63, 1.45]. The equivalence class containing
a is denoted by [a] and called the congruence class of a modulo m. Suppose
m ≥ 2 and let a ∈ Z. By the division algorithm there exist unique integers
q and r such that a = qm+r and 0 ≤ r < m. This unique r is said to be the
remainder after dividing a by m [R, p. 37, Definition]. Two integers a and
b are congruent modulo m if and only if they have the same remainder after
division by m [R, page 63, 1.46(iii)]. Each integer a is congruent modulo
m to exactly one element in the set {0, 1, . . . ,m − 1} [R, page 64, 1.47]. It
follows that the set Zm = {[a] : a ∈ Z} of all congruence classes modulo m
is a finite set of cardinality m; in fact [GG, page 83]

Zm = {[0], [1], . . . , [m− 1]} .

Congruence modulo m is compatible with the operations of addition and
multiplication of integers in the sense that a ≡ b (modm) and a′ ≡ b′ (modm)
imply that a + a′ ≡ b + b′ (modm) and that aa′ ≡ bb′ (modm) [R, page 64,
1.48].

2. Groups

A group is a pair (G, ∗) where G is a set and ∗ a binary operation on G
which associates with every ordered pair (a, b) ∈ G × G a unique element
a ∗ b ∈ G such that the following conditions hold:

a) For all a, b, c ∈ G, (a ∗ b) ∗ c = a ∗ (b ∗ c).
b) There exists e ∈ G such that e ∗ a = a ∗ e = a for all a ∈ G.
c) For every a ∈ G there exists a′ ∈ G such that a ∗ a′ = a′ ∗ a = e.

If a ∗ b = b ∗ a for all elements a, b in a group G, then G is said to be a
commutative or an abelian group. The order of G is the cardinality of the
set G.

Suppose (G, ∗) is a group. One can show that there exists one and only one
element e ∈ G that has property b), and this is called the identity element
of G; also, given a ∈ G, there exists one and only one a′ ∈ G satisfying c),
and this a′ is called the inverse of a; if the operation ∗ is considered to be
a multiplication, a′ is denoted by a−1; if ∗ is considered to be an addition,
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one writes a′ = −a and calls a′ the additive inverse of a or the negative of
a.

Examples of Groups.
1. (Z,+), e = 0, inverse = negative.
2. (Q,+), e = 0, inverse = negative.
3. (R,+), e = 0, inverse = negative.
4. (C,+), e = 0, inverse = negative.
5. (Zm,+) where 1 ≤ m ∈ Z, and for [a], [b] ∈ Zm, [a] + [b] = [a + b];

e = [0], and −[a] = [m− a] = [−a] for all [a] ∈ Zm.
6. Define Q∗, R∗ and C∗ to be the set of all nonzero rationals, all nonzero

reals, and all nonzero complex numbers, respectively. Then (Q∗, · ), (R∗, · )
and (C∗, · ) are groups with e = 1; the inverse of a is 1

a = a−1.
7. Define Q+ and R+ to be the set of all positive rationals and all positive

reals, respectively. Then (Q+, · ) and (R+, · ) are groups with e = 1; the
inverse of a is 1

a = a−1.
8. ({1}, · ) and ({1,−1}, · ) with {1,−1} ∈ Z.
9. (Mm,n(F )),+) where Mm,n(F ) denotes the set of all m × n matrices

over a field F and the operation is matrix addition; e is the zero matrix of
size m× n; inverse of A ∈ Mm,n(F ) is −A.

10. (GL(n, F ), · ) where GL(n, F ) denotes the set of all invertible matrices
of size n×n over the field F and the operation is matrix multiplication; e = I,
the n× n identity matrix.

11. (SL(n, F ), · ) where SL(n, F ) denotes the set of all n × n–matrices
over the field F which have determinant 1 and the operation is matrix mul-
tiplication; e = I, the n× n identity matrix.

12. (SX , ◦) where X is a nonempty set and SX is the set of all bijections
β : X → X with operation composition of functions; e = 1X , the identity
function on X.

13. (Sn, ◦) where Sn = SX with X = {1, 2, . . . , n}, the group of all
permutations of {1, 2, . . . , n} with operation composition of functions. If
β ∈ Sn, use matrix notation for β. Write

β =
(

1 2 . . . n
β(1) β(2) . . . β(n)

)
.

Note that Sn has order n!. In general, for α, β ∈ Sn, α ◦ β 6= β ◦ α. The
identity function is a bijection, thus

e = 1{1,...,n} =
(

1 2 . . . n
1 2 . . . n

)
.

The inverse of β ∈ Sn can be found by interchanging the rows of the matrix
representing β. For example, the inverse of

β =
(

1 2 3 4
2 4 1 3

)
∈ S4
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is

β−1 =
(

2 4 1 3
1 2 3 4

)
which equals

β−1 =
(

1 2 3 4
3 1 4 2

)
.

Let (G, ∗) be a group. A subgroup of G is a subset H of G such that (H, ∗)
is a group on its own right. If H is a subgroup of G, this is indicated by
writing H ≤ G. For example, Z ≤ Q ≤ R ≤ C; similarly, {1} ≤ {1,−1} ≤
Q∗ ≤ R∗ ≤ C∗, and SL(n, F ) ≤ GL(n, F ) when F is a field.
Exercise 5. Prove: For every group G, {e} ≤ G and G ≤ G.

Exercise 6. Is Q+ ≤ Q? Is R+ ≤ R∗? Is Z3 ≤ Z4? Is S3 ≤ S4?
Two Subgroup Criteria. For a subset H ⊆ G of a multiplicative group
G, the following conditions are equivalent:

1) H is a subgroup of G.
2) H is nonempty, and a, b ∈ H implies ab ∈ H and a−1 ∈ H.
3) H is nonempty, and a, b ∈ H implies ab−1 ∈ H. [GG, page 123f, 3.9

and 3.10].
If (G, +) is an additive group and H ⊆ G, then H ≤ G is equivalent to

the additive versions versions of 2) and 3), i.e.
2+) H is nonempty, and a, b ∈ H implies that a + b ∈ H and −a ∈ H.
3+) H is nonempty, and a, b ∈ H implies a− b ∈ H.
Integral powers and multiples. Let a ∈ G where (G, · ) is a multi-

plicative group. Define a0 = e, a1 = a, a2 = a · a etc., i.e. for n ∈ N, an

is the product of n factors each of which equals a; define a−n = (a−1)n.
The Laws of Exponents hold: For all integers m and n, am+n = aman and
amn = (am)n. If a ∈ G where (G, +) is an additive group, one writes in-
tegral multiples instead of powers. Thus, 0a = e, 1a = a, 2a = a + a etc.,
i.e. for n ∈ N, na is the sum of n terms each of which equals a; define
(−n)a = n(−a). The Laws of Multiples are: For all integers m and n,
(m + n)a = ma + na and (mn)a = m(na).

Cyclic Subgroups. Let (G, ·) be a multiplicative group and a ∈ G. If
H is a subgroup of G containing a, then, by the subgroup criteria, H also
contains a−1, and closure of the operation in H implies a·a−1 = e = a0 ∈ H;
closure also implies that, for every positive integer n, an and (a−1)n = a−n

must belong to H. Thus,

{ak : k ∈ Z} ⊆ H .

It turns out that the set of all integral powers of a forms a subgroup of G
called the cyclic subgroup generated by a and denoted by 〈a〉. This is the
smallest subgroup of G containing the element a. If (G, +) is an additive
group, we write integral multiples instead of powers. In this case, the cyclic
group generated by a is 〈a〉 = {na : n ∈ Z}. For example, for 2 ∈ Q+,
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〈2〉 = {2n : n ∈ Z}, while for 2 ∈ Q, 〈2〉 = {n2 : n ∈ Z} which is usually
denoted by 2Z. (Is (Q, · ) a group?)

Homomorphisms. Throughout, (G, ◦) and (H, ∗) are groups with iden-
tity elements eG and eH , respectively. Notation will mostly be multiplica-
tive, e.g. write a−1 for the inverse of a group element a. A homomorphism
from G to H is a mapping α : G → H such that α(a ◦ b) = α(a) ∗ α(b) for
all a, b ∈ G.

Examples. Each of the following maps is a homomorphism.
1. (G, ◦) = (Z,+) and (H, ∗) = (R+, · ), define α : Z → R+ by α(n) = 2n

for all n ∈ Z.
2. (G, ◦) = (GL(2, R), · ) and (H, ∗) = (R∗, · ), define β : GL(2, R) → R∗

by β(A) = det(A) for each A ∈ GL(2, R).
3. (G, ◦) = (Z,+) and (H, ∗) = (Zm,+), where m ≥ 1 is some fixed

integer. Then define γ : Z → Zm by γ(k) = [k] for all k ∈ Z.
4. (G, ◦) = (Z4,+) and (H, ∗) = (C∗, · ), define δ : Z4 → C∗ by δ([k]) = ik

for all [k] ∈ Z4 where i =
√
−1.

5. (G, ◦) = (R+, · ) and (H, ∗) = (R,+), define ϕ : R+ → R by ϕ(x) = lnx
for each x ∈ R+.

Exercise 7. Prove that each of the five maps is a (well–defined) homomor-
phism.

Notice that the first and the fourth maps are one–to–one but not onto;
the second and third maps are onto but not one–to–one; and the last map
is a homomorphism which is both one–to–one and onto. This prompts:

Definition. An isomorphism from G to H is a homomorphism from G to
H which is both one–to–one and onto. Two groups G and H are isomorphic
if there exists an isomorphism from G onto H. If G and H are isomorphic,
this is symbolized by writing G ∼= H.

Thus, from Example 5, the groups (R+, · ) and (R,+) are isomorphic,
and so are the groups (Z4,+) and the cyclic subgroup 〈i〉 of C∗ generated
by i =

√
−1.

Exercise 8. Suppose that α : G → H is an isomorphism. Prove that
α−1 : H → G is an isomorphism.

Definition. Let α : G → H be a homomorphism. Then:
(a) The image of α is Im (α) = {h ∈ H : h = α(g) for some g ∈ G}.
(b) The kernel of α is the set Ker (α) = {g ∈ G : α(g) = eH}.

Exercise 9. Find the image and the kernel of each of the five homomor-
phisms in the Examples above.

Proposition. Let α : G → H be a homomorphism. Then
1) α(eG) = eH ;
2) For all g ∈ G, α(g−1) = α(g)−1;
3) Im (α) is a subgroup of H;
4) Ker (α) is a subgroup of G;
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5) α is one–to–one if and only if Ker (α) = {eG};
6) For all k ∈ Ker (α) and for all x ∈ G, x ◦ k ◦ x−1 ∈ Ker (α).

Exercise 10. Prove this proposition.
Definition. A normal subgroup of a group (G, ◦) is a subgroup N of G such
that x ◦ n ◦ x−1 ∈ N for all x ∈ G and for all n ∈ N .

Thus, the last part of the Proposition above may be restated by saying
that the kernel of a group homomorphism is always a normal subgroup of
the domain group. Note that every subgroup of an abelian group is normal.
Also, for any group G, the trivial subgroup {eG} and the group G itself are
normal subgroups of G.

Cosets. Let K be a subgroup of a group (G, ◦) and let x ∈ G. The left
coset of K in G containing x is the set

x ◦K = {x ◦ k : k ∈ K} .

Notice that eG ◦K = K so that the subgroup K itself is a left coset of K in
G.

Examples. 1. Let m = 5 and K = 5Z ≤ Z. For any z ∈ Z, the
congruence class of z modulo 5 is [z] = z + K, the left coset of K in Z
containing z.

2. Let K = S(2, R) ≤ G(2, R). For a matrix A ∈ S(2, R), the left
coset A · S(2, R) consists of all matrices in G(2, R) which have the same
determinant as A.

A partition of a nonempty set X is a collection P of subsets of X such
that (i) no member of P is empty, (ii) any two distinct members of P are
disjoint, and (iii) the union of all subsets in P equals X. Let (G, ◦) be a
group with subgroup K and x ∈ G, then x = x◦ eG ∈ x◦K proving x◦K is
a nonempty subset of G. In fact, one has the following result [R, page 140,
Lemma 2.31]:
Proposition. Let K be a subgroup of the group (G, ◦). Then the set

P = {x ◦K : x ∈ G}
of all left cosets of K in G forms a partition of G.
Exercise 11. Suppose that (G, ◦) is a finite group, K is a subgroup of G,
and x ∈ G. Prove that |x ◦K| = |K|.
Lagrange’s Theorem. Let K be a subgroup of the finite group (G, ◦) and
let P denote the set of all left cosets of K in G. Then |G| = |K| · |P|.
Exercise 12. Prove Lagrange’s Theorem.
Exercise 13. Suppose G is a group of finite order 12 and K is a subgroup
of G. Find all integers m which might be equal the order of K.

Quotient Groups. Let (G, ◦) be a group and let N be a normal subgroup
of G. Consider the set of all left cosets of N in G and denote it by G/N :

G/N = {x ◦N |x ∈ G} .

Exercise 14. Find G/N in each of the following cases:
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a) (G, ◦) = (S3, ◦) and N = 〈β〉 with β(1) = 2, β(2) = 3, β(3) = 1 .
b) (G, ◦) = (Z,+) and N = mZ where m ≥ 2 is some fixed integer.

Theorem. Let (G, ◦) be a group and let N be a normal subgroup of G.
Define an operation, also denoted by ◦, on the set G/N by (x◦N)◦(y◦N) =
(x ◦ y) ◦N for all x, y ∈ G. Then:

a) This product of cosets is well defined.
b) (G/N, ◦) is a group with identity eG/N = eG ◦N = N ; for each x ∈ G,

(x ◦N)−1 = x−1 ◦N .
c) The mapping ν : G → G/N defined by ν(x) = x ◦N for all x ∈ G is a

surjective homomorphism from G to G/N , and Ker(ν) = N .
Exercise 15. Prove this theorem.
Definition. The group (G/N, ◦) of the Theorem above is called the quotient
group (or factor group) of G modulo N , and the surjective homomorphism
ν : G → G/N is said to be the natural homomorphism from G to its quotient
group G/N .

The Isomorphism Theorem for Groups. A homomorphic image of
the group (G, ◦) is any group (G′, ∗) with the property that there exists
a homomorphism η : G → G′ from G onto G′, i.e. G′ = Im η. Thus, if
α : G → H is a homomorphism of groups, then Im α is a homomorphic
image of G.

Examples. From the five examples of homomorphisms on page 5 of these
notes, one observes:

1. 〈2〉 ≤ R+ is a homomorphic image of (Z,+).
2. R∗ is a homomorphic image of GL(2, R).
3. For each integer m ≥ 1, (Zm,+) is a homomorphic image of (Z,+).
4. The cyclic subgroup 〈i〉 ≤ C∗ is a homomorphic image of (Z4,+).
5. (R,+) is a homomorphic image of (R+, ·).
The following fact is of fundamental importance in group theory. For a

proof, see [R, page 166, Theorem 2.53] or [D, page 109, Theorem 23.1].
The (First) Isomorphism Theorem. Let (G, ◦) and (H, ∗) be groups
and let α : G → H be a homomorphism. Then Kerα is a normal subgroup
of G, and Imα is a subgroup of H which is isomorphic to the quotient group
G/Kerα.
Exercise 16. Consider the five examples of homomorphisms on page 5
of these notes. For each of these, (i) find a quotient group of G which is
isomorphic to the image; and (ii) specify a mapping from this quotient group
of G to the image which is an isomorphism.
Exercise 17. Let (G, · ) be a multiplicative group with identity element
e ∈ G.

a) Is G ∼= G/{e}? Justify your answer.
b) Describe the quotient group G/G. What is its order?

Exercise 18. Let (G, · ) be a multiplicative group with identity element e,
and let a ∈ G. Prove:
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a) If 〈a〉 is an infinite set, then 〈a〉 is isomorphic to the additive group Z
of all integers.

b) If 〈a〉 has finite order m, then 〈a〉 is isomorphic to the additive group
Zm. (Hint: Argue that φ : k 7→ ak, k ∈ Z, is a surjective homomorphism
from (Z,+) to 〈a〉, and that Kerφ = mZ.)

Exercise 19. Prove: Being isomorphic is an equivalence relation on the
collection of all groups.

Exercise 20. Prove: If 〈a〉 and 〈b〉 are two cyclic groups of equal order,
then 〈a〉 and 〈b〉 are isomorphic. (Hint: Exercise 18 above.)

Exercise 21. Prove: The multiplicative group of all nonzero real numbers
is isomorphic to the quotient group GL(2, R)/SL(2, R).

3. Rings

A ring is a triple (R,+, · ) where R is a set and + and · are two binary
operations on R satisfying the following conditions:

a) (R,+) is an abelian group with identity element 0 = 0R.
b) For all a, b, c ∈ R, (ab)c = a(bc).
c) For all a, b, c ∈ R, a(b + c) = ab + ac and (a + b)c = ac + bc.

If there exists an element 1 = 1R ∈ R such that 1a = a1 = a for all a ∈ R,
then R is said to be a ring with identity ; if ab = ba for all a, b ∈ R, then R
is said to be a commutative ring .

Examples. Z, Q, R, C are all commutative rings with identity; the ring
E of even integers is commutative but does not have an identity. Given
a ring R, the set Mn(R) of all n × n–matrices with entries in R is a ring
under the usual addition and multiplication of matrices. If n ≥ 2 and R is
a ring with identity 1 6= 0, then Mn(R) is a ring with identity, namely the
n × n identity matrix, but Mn(R) is not commutative. The set R[x] of all
polynomial functions in the indeterminate x with real coefficients is a ring
under the usual addition and multiplication of polynomials. For any integer
m ≥ 1, (Zm,+, · ) is a commutative ring with identity when multiplication
is defined by [k] · [`] = [k · `] for all k, ` ∈ Z.

Excercise 22. Prove that multiplication in Zm is well defined.

If R is a ring with identity 1, one can show that 1 is unique. A unit of
a ring R with identity is any element u ∈ R for which there exists v ∈ R
satisfying uv = vu = 1. Again, one can show that, given a unit u, the
element v with the property uv = vu = 1 is unique; thus, v is called the
inverse of u and denoted by v = u−1.

Exercise 23. Let R be a ring with identity 1. Prove:
a) 1R = 0R if and only if R = {0R}.
b) The set U(R) of all units in R is a group under the operation of mul-

tiplication defined in R.
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A field is a commutative ring F with identity 1F 6= 0F such that every
nonzero element of F is a unit, i.e. U(F ) = F −{0}. Examples of fields are
Q, R, C, and Zp when p is a prime.

Ring Homomorphisms. Let (R,+, · ) and (S, +, · ) be rings. A ring
homomorphism from R to S is a mapping α : R → S such that α(a + b) =
α(a) + α(b) and α(ab) = α(a)α(b) for all a, b ∈ R.

Examples. Each of the following maps is ring a homomorphism.
1. Let R be the ring of integers and let S = Zm be the ring of integers

modulo m for some m ≥ 1. Define α : Z → Zm by α(k) = [k] for all k ∈ Z.
2. Let R = R and let S = M2(R) be the ring of all real 2 × 2–matrices.

Define α : R → M2(R) by by α(x) = ( x 0
0 0 ) for all x ∈ R.

3. Let R = Z and S = Mn(C), and define α : Z → Mn(C) by α(k) = kI,
k ∈ Z, where I denotes the n× n identity matrix.

4. Let R = S = C and define α : C → C by α(a + bi) = a − bi where
a, b ∈ R.
Exercise 24. Prove that each of the four maps is a ring homomorphism.
Definition. A ring isomorphism from a ring R to a ring S is a ring homo-
morphism α : R → S which is both one–to–one and onto. Two rings R and
S are isomorphic if there exists a ring isomorphism from R onto S. If R
and S are isomorphic, this is symbolized by writing R ∼= S.

Examples. These rings are isomorphic.
1. Given an n–dimensional vector space V over a field F , the set L(V, V ))

of all linear transformations T : V → V (with pointwise addition and com-
position of mappings as multiplication) is a ring which is isomorphic to the
ring Mn(F ) of all n× n–matrices over F .

2. Example 4 above is an isomorphism from the field of complex numbers
to itself, also called an automorphism.
Exercise 25. Prove: If α : R → S is an isomorphism of rings, then
α−1 : S → R is an isomorphism of rings.
Definition. Let α : R → S be a ring homomorphism. Define:

(a) The image of α is the set Im (α) = {y ∈ S : y = α(x) for some x ∈ R}.
(b) The kernel of α is the set Ker (α) = {x ∈ R : α(x) = 0S}.
Notice that, if α : R → S is a ring homomorphism, then α is also homo-

morphism from (R,+) to (S, +). Thus, kernels and images of ring homo-
morphisms give nothing new.

A subring of a ring R is a subset S of R which is a ring under the same
operations as those in R.
Exercise 26. Let R be a ring and let S ⊆ R. Prove: S is a subring of R if
and only if: (i) (S, +) is a subgroup of (R,+), and (ii) (S, · ) is closed, i.e.
x, y ∈ S implies xy ∈ S.

Examples. Each of these are subrings.
1. The set 5Z is a subring of the ring of integers.
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2. The set of all upper triangular matrices in Mn(R) is a subring of the
ring of all real n × n–matrices. (Ditto for the set of all lower triangular
matrices and the set of all diagonal matrices in Mn(R).)

Proposition. Let R and S be rings and let α : R → S be a ring homomor-
phism. Then

1) α(0R) = 0S.
2) For all a ∈ R, α(−a) = −α(a).
3) Im (α) is a subring of S.
4) Ker (α) is a subring of R.
5) α is one–to–one if and only if Ker (α) = {0R}
6) For all k ∈ Ker (α) and for all x ∈ R, xk ∈ Ker (α) and kx ∈ Ker (α).

Exercise 27. Let R be a ring.
a) Prove: a · 0R = 0R = 0R · a for all a ∈ R.
b) Prove the Proposition on ring homomorphisms stated above.

Ideals. An ideal of a ring R is a subring I of R which is “closed under
external–internal multiplication” in the sense that i ∈ I implies that xi ∈ I
and ix ∈ I for all x ∈ R. Thus, part 6) of the the proposition above implies
that the kernel of a ring homomorphism is always an ideal of the domain
ring. Given any ring R, both {0R} and R are ideals of R. For any fixed
integer n, the set nZ of all integral multiples of n is an ideal of the ring of
integers. For example, the ring E = 2Z of even integers is an ideal of Z.

In ring theory, ideals take on the role that normal subgroups play in group
theory, namely they allow you to define quotient structures.

Quotient Rings. Let R be a ring and let I be an ideal of R. Then (I, +)
is a subgroup of (R,+) which must be normal since (R,+) is a commutative
group. Thus, the set

R/I = {a + I | a ∈ R}
of all left cosets of I in the group (R,+) is a group under the operation
(a+ I)+ (b+ I) = (a+ b)+ I; and (R/I, +) is an abelian group since (R,+)
is abelian. Also from group theory, the mapping ν : R → R/I defined by
ν(a) = a + I for all a ∈ R is a surjective group homomorphism from (R,+)
to (R/I, +).

Exercise 28. Let I be an ideal of the ring R and let a, a′, b, b′ ∈ R such
that a + I = a′ + I and b + I = b′ + I. Prove that (ab) + I = (a′b′) + I.

Theorem. Let R be a ring and let I be an ideal of R. Define a multiplication
on the quotient group R/I by (a+I)(b+I) = (ab)+I for all a, b ∈ R. Then:

a) This multiplication is well defined.
b) R/I is a ring with 0R/I = 0R + I = I; if R is a ring with identity 1R,

then so is R/I and 1R/I = 1R + I.
c) The mapping ν : R → R/I defined by ν(a) = a + I for all a ∈ R is a

surjective ring homomorphism from R to R/I, and Ker(ν) = I.

Exercise 29. Prove this theorem.
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Definition. The ring R/I of the Theorem is called the quotient ring of R
modulo I.

The Isomorphism Theorem for Rings. Let R and S be rings. A
homomorphic image of R is any ring R′ with the property that there exists
a ring homomorphism η : R → R′ from R onto R′.

Examples. From the first three examples of ring homomorphisms above,
one observes:

1. For every integer m ≥ 1, the ring Zm is a homomorphic image of Z.
2. The subring of M2(R) consisting of all real diagonal 2 × 2–matrices

with (2, 2)–entry zero is a homomorphic image of the field R.
3. The set of all matrices of the form kI ∈ Mn(C) with k an integer and

I the identity matrix is a subring of Mn(C) and a homomorphic image of Z.
A proof of the following theoreom can be found in [R, page 280, Theorem

3.71] or [GG, page 251, Theorem 6.13].
The (First) Isomorphism Theorem for Rings. Let R and S be rings
and let α : R → S be a ring homomorphism from R to S. Then Kerα is an
ideal of R, and Imα is a subring of S which is isomorphic to the quotient
ring R/Kerα.
Exercise 30. Let R be a commutative ring with identity 1 6= 0, and let I
be an ideal of R. Prove: If I 6= R, then R/I is a commutative ring with
identity 1 6= 0.
Exercise 31. Let R be a commutative ring with identity 1 6= 0, and let
a ∈ R. Prove:

a) The set Ra = {ra : r ∈ R} is an ideal of R containing a. (Ra is called
the principal ideal generated by a and is also denoted by (a)).

b) If R has no ideals other than R and {0}, then R is a field.
Exercise 32. Let R be a ring and let I be an ideal of R.

a) Prove: If J is an ideal of R such that I ⊆ J , then the set J/I = {j+I :
j ∈ J} is an ideal of R/I.

b) Suppose J ⊆ R/I is an ideal of R/I. Define J = {x ∈ R : x + I ∈ J}.
Prove: I ⊆ J and J is an ideal of R.

4. Fields

One of the most useful applications of the Isomorphism Theorem for Rings
occurs in the study of fields. One reason is that the set F [x] of all polynomi-
als in an indeterminate x over a field F is a commutative ring with identity
1 6= 0 which has the property that (i) the product of any two nonzero el-
ements is nonzero, and (ii) every ideal of F [x] is principal (see Exercise 31
of these notes). A commutative ring with identity 1 6= 0 which satisfies
conditions (i) and (ii) is called a principal ideal domain, or a PID for short.

Throughout, F will denote a field. For p prime, Zp is a field. Many texts
replace congruence classes modulo p by their unique representatives in the
set {0, . . . , p− 1} so that Zp = {0, . . . , p− 1}.
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Polynomials over F . A polynomial over F in the indeterminate x is an
expression of the form

f = a0 + a1x + · · ·+ anxn =
n∑

i=0

aix
i (1)

where n ≥ 0 is an integer and ai ∈ F , i = 0, . . . , n. If

g = b0 + b1x + · · ·+ bmxm =
m∑

i=0

bix
i (2)

is another polynomial over F , then we agree that f = g if and only if there
exists an integer k such that ai = bi for all i = 0, . . . , k and aj = 0 and
bj = 0 for all j > k. The zero polynonial is 0 = 0 + 0x = 0 + 0x + · · ·+ 0xn.
If f is a nonzero polynimial, then one can write

f = a0 + a1x + . . . anxn, an 6= 0 (3)

and n is called the degree of f , in symbols n = deg(f). A constant polynomial
is one of the form h = c with c ∈ F . Nonzero constant polynimials have
degree one, and the degree of the zero polynomial is undefined.

If f =
∑n

i=0 aix
i and g =

∑m
i=0 bix

i are polynomials over F , one defines
f+g =

∑max{n,m}
i=0 (ai+bi)xi, and fg =

∑n+m
i=0 cix

i where, for i = 0, . . . , n+m,
ci = a0bi + a1bi−1 + · · · + aib0. This definition, of course, requires at = 0
when t > n and bt = 0 when t > m.

For the proof of the following proposition, see [GG, page 294, 8.4, page
296, 8.5, and page 298, 8.7] noting that fields are integral domains.
Proposition. The polynomial ring F [x] over a field F is a commutative
ring with identity 1 = 1F and 0 = 0F . The set of constant polynomials is a
subring of F [x] which is isomorphic to F . In fact, for a ∈ F , the constant
polynomial h = a will identified with a ∈ F . If f, g ∈ F [x] are nonzero, their
product fg is nonzero, and deg(fg) = deg(f) + deg(g).

Every polynomial f over F gives rise to a polynomial function from F to
F , namely define f(z) =

∑n
i=0 aiz

i for z ∈ F if f =
∑n

i=0 aix
i. If F = R,

it is true that two polynomials are equal if and only if they yield the same
function from R to R. Thus, a polynomial over R is identified with its
polynomial function and written not just as f but as f(x). This is done in
calculus. However, if F = Z2 = {0, 1}, the polynomials 1+x, 1+x2, 1+x3, . . .
all define the same polynomial function when evaluated on Z2. But by our
definition of polynomials over a field, these are distinct.
The Division Algorithm. Let F be a field and let f ∈ F [x] be a nonzero
polynomial. Then, given any g ∈ F [x], there exist unique q, r ∈ F [x] such
that g = f · q + r, and either (i) r = 0, or (ii) r 6= 0 and deg r < deg f .

For a proof, see [GG, page 301]. Also note Example 1 [GG, page 303]
which may serve as a model for your solution of Exercise 33.
Exercise 33. Let f = 2x + 2 and g = x3 + 2x + 2.

a) Find q, r ∈ R such that g = fq + r.
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b) Find q, r ∈ Z3 such that g = fq + r.
A consequence of the Division Algorithm is the following fact. See [R,

page 245, 3.39] for a proof.
Corollary. If F is a field then F [x] is a Principal Ideal Domain (PID).
Exercise 34. Prove that f ∈ F [x] is a unit if and only f is a nonzero
constant polynomial.

Irreducible Polynomials. A polynomial p over a field F is said to be
irreducible if (i) p has positive degree (thus, p is not a constant polynomial,
hence not zero and not a unit in F [x]), and (ii) p = g · h with g, h ∈ F [x]
implies that either g is a constant or h is a constant. Given any nonzero
constant c, every p ∈ F [x] has the trivial factorization p = c(c−1p). The
point is that these are the only factorizations that p admits if p is irreducible.
Theorem. Every polynomial f of positive degree over F is either irreducible
or is a product of irreducible polynomials over F .

The proof is by induction on the degree of f . There is even a uniqueness
property which holds for this factorization but we shall not need this. See
[D, page page 166], [GG, page 312, 8.24], or [R, page 261, 3.52] for a proof.

Maximal Ideals. An ideal M in a ring R is said to be a maximal ideal
of R if (i) M 6= R, and (ii) M ⊆ I with I an ideal of R implies M = I or
I = R. For example, if p is a prime, then (p) = pZ is a maximal ideal of Z.
Exercise 35. Prove: If F is a field, then {0} is a maximal ideal of F .
Exercise 36. Let R be a commutative ring with identity 1 6= 0 and let M
be a maximal ideal of R. Prove: The quotient ring R/M is a field. (Hint:
Exercises 31 and 32 of these notes.)
Proposition. Let p ∈ F [x] be irreducible. Then the principal ideal (p) of
F [x] generated by p is maximal.

Proof . Suppose p ∈ F [x] is irreducible. Then (p) 6= F [x] for otherwise
1 ∈ (p) and p would be a unit contradicting deg(p) > 0 (see Exercise 34).
Let I be an ideal of F [x] containing (p). Since F [x] is a PID, there exists
f ∈ F [x] such that I = (f). Now, p ∈ (p) ⊆ I implies p = fg for some
g ∈ F [x]. Irreducibility implies that f is a unit or g is a unit. If f is a unit,
then I = (f) = F [x]; if g is a unit, then f = pg−1 ∈ (p) from which we
obtain that I = (f) ⊆ (p) ⊆ I and I = (p). This proves (p) is maximal.

Roots of Polynomials. If f =
∑n

i=0 aix
i ∈ F [x] and u ∈ F , define

f(u) =
∑n

i=0 aiu
i. Clearly, f(u) ∈ F . A root of f in F is any element

v ∈ F such that f(v) = 0. You all have heard of the question vexing
mathematicians before they invented irrational numbers: How could there
be a root of the polynomial f = x2−2 ∈ Q[x]? The same struggle took place
when mathematicians were disputing whether there could be a “number,”
called i for imaginary, that’s a root of x2 + 1 ∈ R[x]. The conclusion of this
refresher course on undergraduate algebra will consist of an argument that
for any nonconstant polynomial f over any field F , there exists an extension
field E of F in which f has a root.
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The amount of work needed to prove this will depend on the definition of
the word “extension field”.

Let K be a field. A subfield of K is a subset L of K with the property
that L is a field under the same operations of addition and multiplication
which are defined for K.
Exercise 37. A subset L of a field K is a subfield of K if and only if: (i)
1K ∈ L, (ii) a, b ∈ L implies a − b ∈ L; and (iii) if u and v are nonzero
elements in L, then uv−1 ∈ L.

Define E to be an extension field of F if there exists an injective ring
homomorphism φ : F → E.
Lemma. Let E be a field and let φ : F → E be an injective ring homomor-
phism. Then:

a) Imφ = F is a subfield of E which is isomorphic to F .
b) The map φ : F [x] → F [x] defined by φ(

∑n
i=0 aix

i) =
∑n

i=0 φ(ai)xi,
ai ∈ F , is a ring isomorphism.
Exercise 38. Prove this Lemma.
Proposition. If f =

∑n
i=0 aix

i ∈ F [x] is a polynomial of positive degree
over a field F , then there exists a field E and an injective ring homomor-
phism φ : F → E such that

∑n
i=0 φ(ai)vi = 0 for some v ∈ E.

Proof . Assume the hypothesis. By the theorem on page 13, f = p1 . . . pr

with r ≥ 1 and each pi ∈ F [x] irreducible. Let p = p1 and define E =
F [x]/(p). By Exercise 36 and the Proposition on page 13 of these notes, E is
a field, and the natural map ν : F [x] → E is a surjective ring homomorphism
with kernel (p). Let φ : F → E be the restriction of ν to F , i.e. φ(u) =
ν(u) = u + (p) for all u ∈ F . Then φ is an injective ring homomorphism.
Since f = p(p2 . . . pr) ∈ (p) = Ker ν, we have ν(f) = f + (p) = 0E . Hence

0 = f + (p) =
n∑

i=0

aix
i + (p) =

n∑
i=0

(ai + (p))(x + (p))i .

Define v = x + (p). Then v ∈ E, and substituting we obtain

0 = φ(a0) + φ(a1)v + · · ·+ φ(an)vm

as claimed.
Using some elementary set theory and logic, one can prove the following

result (see Hausen’s Class Diary for MATH 6303, Spring 2005–available upon
request by email to hausen@uh.edu).
Lemma. Let E and F be fields and suppose φ : F → E is an injective ring
homomorphism. Then there exists a field K with the following properties:
(i) F is a subfield of K; and (ii) there exists a ring isomorphism σ : K → E
such that σ(a) = φ(a) for all a ∈ F .

This Lemma allows one to construct a field K containing F as a subfield
in which the nonconstant polynomial f over F has a root:
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Theorem. Given a polynomial f =
∑n

i=0 aix
i of positive degree over the

field F , there exists a field K containing F as a subfield such that f(w) = 0
for some w ∈ K.

Proof. Assume the hypothesis of the theorem. Use the notation of the
Proposition on page 14 and its proof, and recall that the inverse of a ring
isomorphism is a ring isomorphism (Exercise 25, page 9). Then the Lemma
implies that

0K = σ−1(0E) = σ−1(
n∑

i=0

φ(ai)vi) =
n∑

i=0

σ−1φ(ai)(σ−1(v))i .

Since φ(a) = σ(a) for all a ∈ F ,

0K =
n∑

i=0

σ−1σ(ai)(σ−1(v))i =
n∑

i=0

ai(σ−1(v))i = f(σ−1(v)) .

Hence, w = σ−1(v) ∈ K is a root of f in K.

The End


