MATH 4377 - MATH 6308

Demetrio Labate

dlabate@uh.edu

- Section 1.1-1.2 Vector Spaces
- Section 1.3 Subspaces

Definition

In \mathbb{R}^2 , a vector is an ORDERED pair of real numbers where addition and multiplication by scalars hold:

$$(a_1, a_2) + (b_1, b_2) = (a_1 + b_1, a_2 + b_2)$$

 $\alpha(a_1, a_2) = (\alpha a_1, \alpha a_2).$

In \mathbb{R}^3 , a vector is an ORDERED triple of real numbers where addition and multiplication by scalars hold:

$$(a_1, a_2, a_3) + (b_1, b_2, b_3) = (a_1 + b_1 +, a_2 + b_2, a_3 + b_3)$$

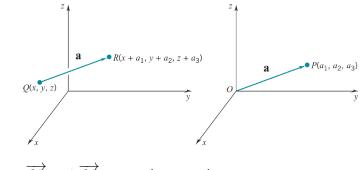
 $\alpha(a_1, a_2, a_3) = (\alpha a_1, \alpha a_2, \alpha s_3).$

Vectors have many physical applications, e.g., velocity, force, etc

D. Labate (UH)

3/31

We depict vectors with arrows. To depict the vector (a_1, a_2, a_3) , you can choose any initial point and use the arrow



Notation: \overrightarrow{QR} and \overrightarrow{OP} or $\mathbf{a} = (a_1, a_2, a_3)$.

• Commutative:

$$\mathbf{a} + \mathbf{b} = \mathbf{b} + \mathbf{a}.$$

Associative:

$$(\mathbf{a} + \mathbf{b}) + \mathbf{c} = \mathbf{a} + (\mathbf{b} + \mathbf{c}).$$

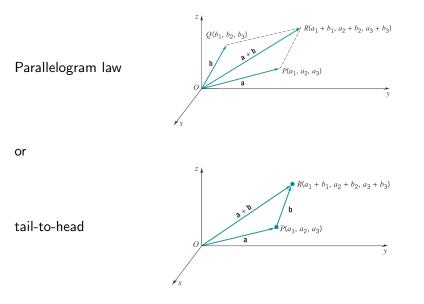
• Zero vector:

 $\mathbf{0} = (0, 0, 0).$

Note: $\alpha \cdot \mathbf{0} = \mathbf{0}$, α being any real number.

We will see an abstract definition of these obvious properties belwo.

Graphical representation of $\mathbf{a} + \mathbf{b}$



Definition

Two vectors **a** and **b** are *parallel* if

 $\mathbf{b} = \alpha \mathbf{a}$

for some real number α .

- if $\alpha > 0$, **a** and **b** have the same direction
- if $\alpha <$ 0, ${\bf a}$ and ${\bf b}$ have opposite directions

In 2D, the *line* through the points $A = (x_1, x_2)$ and $B = (y_1, y_2)$ is

$$\{(x_1, x_2) + t(y_1 - x_1, y_2 - x_2) : t \in \mathbb{R}\}.$$

In 3D, the line through the points $A = (x_1, x_2, x_3)$ and $B = (y_1, y_2, y_3)$ is

$$\{(x_1, x_2, x_3) + t(y_1 - x_1, y_2 - x_2, y_3 - x_3) : t \in \mathbb{R}\}.$$

Find the line through (1, 1, 2) and (0, 3, -1).

Find the line through (1, 1, 2) and (0, 3, -1). Solution:

$$egin{aligned} &(1,1,2)+t\,((0,3,-1)-(1,1,2))\,,\quad t\in\mathbb{R}\ &&(1,1,2)+t\,(-1,2,-3)\,,\quad t\in\mathbb{R} \end{aligned}$$

The *plane* through the points $A = (x_1, x_2, x_3)$, $B = (y_1, y_2, y_3)$ and $C = (z_1, z_2, z_3)$ (not all three on a line) is

 $\{(x_1, x_2, x_3) + s(y_1 - x_1, y_2 - x_2, y_3 - x_3) + t(z_1 - x_1, z_2 - x_2, z_3 - x_3) : s, t \in \mathbb{R}\}.$

Find the plane through the points A = (1, 0, -1), B = (0, 1, 2) and C = (1, 1, 0)

Find the plane through the points A = (1, 0, -1), B = (0, 1, 2) and C = (1, 1, 0)

Solution:

 $egin{aligned} &\{(1,0,-1)+s\,((0,1,2)-(1,0,-1))+t\,((1,1,0)-(1,0,-1)):s,t\in\mathbb{R}\}\ &\\ &\{(1,0,-1)+s\,(-1,1,3)+t\,(0,1,1):s,t\in\mathbb{R}\} \end{aligned}$

Definition

A vector space (or linear space) V over a field F (e.g, \mathbb{R} or \mathbb{C}) is a set together with two binary operations defined on it, namely, vector addition mapping $V \times V \to V$ and scalar multiplication mapping $F \times V \to V$.

Vector addition and scalar multiplication satisfy the classical vector properties that we spell out in detail below.

Definition

A vector space (or linear space) V over a field F (e.g, \mathbb{R} or \mathbb{C}) is a set with a binary operation denoted "+" and a map $F \times V \to V$ such that

3
$$\forall x, y, z \in V : (x + y) + z = x + (y + z)$$

$$\exists \mathbf{0} \in V : \forall \mathbf{x} \in V, \ \mathbf{x} + \mathbf{0} = \mathbf{x}$$

5 $\forall \mathbf{x} \in V : 1\mathbf{x} = \mathbf{x}$, where 1 is the neutral element of multiplication in F

In the above definition, the elements of F are called **scalars** and the elements of V are called **vectors**.

```
The map F \times V \rightarrow V:
```

$$\forall a \in F, \ \forall x \in V : ax \in V$$

is called scalar multiplication.

Definition

An object in the form $(a_1, a_2, ..., a_n)$, with $a_1, a_2, ..., a_n$ elements of a field *F*, is called *n*-tuple. The elements $a_1, a_2, ..., a_n$ are called *entries* or *components*.

The set of all the *n*-tuples with entries from F is denoted by F^n . F^n is a vector space over F with componentwise addition and scalar multiplication.

Vectors in F^n may be written as column vectors

Special cases: \mathbb{R}^2 , \mathbb{R}^3

An $m \times n$ matrix with entries from field F is a rectangular array:

a ₁₁	a ₁₂	• • •	a _{1n}
a ₂₁	a ₂₂	•••	a _{2n}
1 :	÷		÷
a_{m1}	<i>a</i> _{m2}	• • •	a _{mn}

The set of all the $m \times n$ matrices with entries in F is denoted by $M_{m \times n}$ and it is a vector space over F with componentwise addition and scalar multiplication.

 Let *F* be the set of all real-valued functions on a nonempty set *S*. This is a vector space over ℝ under the operations of ordinary addition and scalar multiplication of functions:

$$(f+g)(x)=f(x)+g(x)$$

and

$$(af)(x) = af(x)$$

for any $x \in S$

Special cases: Continuous functions on [0, 1], differentiable functions on [0, 1]. • Let $n \ge 0$ be an integer and

 P_n = set of all polynomials of degree at most $n \ge 0$

The elements of P_n have the form

$$p(x) = a_0 + a_1 x + \dots + a_n x^n$$

where a_0, \ldots, a_n are real numbers. This is a vector space over \mathbb{R} under the operations of ordinary addition and scalar multiplication of functions.

Theorem (Cancellation law for vector spaces)

Let V be a vector space and $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V$. If $\mathbf{x} + \mathbf{z} = \mathbf{y} + \mathbf{z}$, then $\mathbf{x} = \mathbf{y}$.

Proof

Corollary 1

The vector **0** is unique.

Corollary 2

The additive inverse is unique.

Note: the additive inverse of \mathbf{x} is denoted by $-\mathbf{x}$.

Another theorem for vector spaces

Theorem

Let V be a vector space. Then the following statements are true.

$$\forall \mathbf{x} \in V : 0\mathbf{x} = \mathbf{0} \forall \mathbf{x} \in V, \forall a \in F : (-a)\mathbf{x} = -(a\mathbf{x}) = a(-\mathbf{x}) \forall a \in F : a\mathbf{0} = \mathbf{0}$$

Proof...

Definition

A subset W of a vector space V over the field F is called a *subspace of* V if W is a vector space with + and scalar multiplication from V.

To show that a subset is a subspace, the following theorem is useful:

Theorem

A nonempty subset W of the vector space V is a subspace of V if and only if

$$1 \quad \forall \mathbf{x}, \mathbf{y} \in W : \mathbf{x} + \mathbf{y} \in W$$

$$2 \forall c \in F, \ \forall \mathbf{x} \in W : c \cdot \mathbf{x} \in W$$

Is $W = \{(a, b) : a + b = 0\} \subset \mathbb{R}^2$ a subspace?

Is $W = \{(a, b) : a + b = 0\} \subset \mathbb{R}^2$ a subspace? Answer: Yes.

To prove it, we can use the Theorem above, which requires to verify that
∀x, y ∈ W : x + y ∈ W
∀c ∈ ℝ², ∀x ∈ W : c ⋅ x ∈ W

Is $W = \{(a, b, c) : 3a - b + 2c = 0\} \subset \mathbb{R}^3$ a subspace?

Is $W = \{(a, b, c) : 3a - b + 2c = 0\} \subset \mathbb{R}^3$ a subspace? Answer: Yes.

To prove it, we can use the Theorem above, which requires to verify that
∀x, y ∈ W : x + y ∈ W
∀c ∈ ℝ³, ∀x ∈ W : c ⋅ x ∈ W

Is $W = \{(a, b, c) : 3a - b + 2c = 1\} \subset \mathbb{R}^3$ a subspace?

Is $W = \{(a, b, c) : 3a - b + 2c = 1\} \subset \mathbb{R}^3$ a subspace? Answer: No.

To prove it, it is sufficient to show that the sum of two generic elements of W does not belong to W.

The trace of a square matrix $A = (a_{ij})_{i,j=1,...,n}$ is $tr(A) = \sum_{i=1}^{n} a_{ii}$. Is $W = \{A = (a_{ij})_{i,j=1,...,n} : tr(A) = 0\} \subset M_{n \times n}$ a subspace?

The trace of a square matrix $A = (a_{ij})_{i,j=1,...,n}$ is $tr(A) = \sum_{i=1}^{n} a_{ii}$. Is $W = \{A = (a_{ij})_{i,j=1,...,n} : tr(A) = 0\} \subset M_{n \times n}$ a subspace? Answer: Yes.

To prove it, we can use the Theorem above, which requires to verify that $\forall x, y \in W : x + y \in W$

Is the set of the upper triangular matrices U a subspace of $M_{n \times n}$?

- Is the set of the upper triangular matrices U a subspace of $M_{n \times n}$? Answer: Yes.
- To prove it, we can use the Theorem above, which requires to verify that • $\forall \mathbf{x}, \mathbf{y} \in W : \mathbf{x} + \mathbf{y} \in W$ • $\forall c \in \mathbb{R}^3, \forall \mathbf{x} \in W : c \cdot \mathbf{x} \in W$

Definition

Let V be a vector space and let S, T be nonempty subsets of V. Then let $S + T = {\mathbf{x} + \mathbf{y} : \mathbf{x} \in S, \mathbf{y} \in T}$. We call S + T the sum of S and T.

Definition

Let V be a vector space and let W, U be subspaces of V. If V = W + Uand $W \cap U = \{\mathbf{0}\}$, we call V the *direct sum* of W and U and write it as $V = W \oplus U$.

Proposition

Let V be a vector space and let W, U be subspaces of V. Then the sum W + U is a subspace of V (containing both W and U).

Consider the sum $\{(a, b, 0, c) : a, b, c \in \mathbb{R}\} + \{(d, 0, e, f) : d, e, f \in \mathbb{R}\} = \mathbb{R}^4$. Is this a direct sum? Consider the sum $\{(a, b, 0, c) : a, b, c \in \mathbb{R}\} + \{(d, 0, e, f) : d, e, f \in \mathbb{R}\} = \mathbb{R}^4$. Is this a direct sum?

Answer: No.

To show it, we will examine the intersection of the two sets. Let $W = \{(a, b, 0, c) : a, b, c \in \mathbb{R}\}$ and $V = \{(d, 0, e, f) : d, e, f \in \mathbb{R}\}$ We have that

$$W \cap V = \{(a, 0, 0, c) : a, b, c \in \mathbb{R}\} \neq \emptyset$$

Consider the sum $\{(a,0,0,b): a, b \in \mathbb{R}\} + \{(0,c,d,0): c, d \in \mathbb{R}\} = \mathbb{R}^4$. Is this a direct sum? Consider the sum $\{(a, 0, 0, b) : a, b \in \mathbb{R}\} + \{(0, c, d, 0) : c, d \in \mathbb{R}\} = \mathbb{R}^4$. Is this a direct sum?

Answer: Yes.

Let $W = \{(a, b, 0, c) : a, b, c \in \mathbb{R}\}$ and $V = \{(d, 0, e, f) : d, e, f \in \mathbb{R}\}$ We have that

$$W \cap V = \{(0,0,0,0)\} = \emptyset$$

We also have that

$$W + V = \{(a, b, c, d) : a, b, c, d \in \mathbb{R}\} = \mathbb{R}^4$$

Set of upper triangular square matrices + Set of lower triangular square matrices = Set of square matrices. Is this a direct sum? Set of upper triangular square matrices + Set of lower triangular square matrices = Set of square matrices. Is this a direct sum?

Answer: No.

To show it, we will examine the intersection of the two sets. One can verify that this intersection contains the set of diagonal matrices, hence it is non empty.