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Vectors

Definition

In R2, a vector is an ORDERED pair of real numbers where addition and
multiplication by scalars hold:

(a1, a2) + (b1, b2) = (a1 + b1, a2 + b2)

α(a1, a2) = (αa1, αa2).

In R3, a vector is an ORDERED triple of real numbers where addition and
multiplication by scalars hold:

(a1, a2, a3) + (b1, b2, b3) = (a1 + b1+, a2 + b2, a3 + b3)

α(a1, a2, a3) = (αa1, αa2, αs3).

Vectors have many physical applications, e.g., velocity, force, etc
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Vectors

We depict vectors with arrows. To depict the vector (a1, a2, a3), you can
choose any initial point and use the arrow

Notation:
−→
QR and

−→
OP or a = (a1, a2, a3).
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Some properties of vectors

Commutative:
a+ b = b+ a.

Associative:
(a+ b) + c = a+ (b+ c).

Zero vector:
0 = (0, 0, 0).

Note: α · 0 = 0, α being any real number.

We will see an abstract definition of these obvious properties belwo.
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Graphical representation of a+ b

Parallelogram law

or

tail-to-head
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Parallel vectors

Definition

Two vectors a and b are parallel if

b = αa

for some real number α.

if α > 0, a and b have the same direction

if α < 0, a and b have opposite directions
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Lines in 2D and 3D

In 2D, the line through the points A = (x1, x2) and B = (y1, y2) is

{(x1, x2) + t(y1 − x1, y2 − x2) : t ∈ R}.

In 3D, the line through the points A = (x1, x2, x3) and B = (y1, y2, y3) is

{(x1, x2, x3) + t(y1 − x1, y2 − x2, y3 − x3) : t ∈ R}.
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Example

Find the line through (1, 1, 2) and (0, 3,−1).

Solution:

(1, 1, 2) + t ((0, 3,−1)− (1, 1, 2)) , t ∈ R

(1, 1, 2) + t (−1, 2,−3) , t ∈ R
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Planes

The plane through the points A = (x1, x2, x3), B = (y1, y2, y3) and
C = (z1, z2, z3) (not all three on a line) is

{(x1, x2, x3)+s(y1−x1, y2−x2, y3−x3)+t(z1−x1, z2−x2, z3−x3) : s, t ∈ R}.
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Example

Find the plane through the points A = (1, 0,−1), B = (0, 1, 2) and
C = (1, 1, 0)

Solution:

{(1, 0,−1) + s ((0, 1, 2)− (1, 0,−1)) + t ((1, 1, 0)− (1, 0,−1)) : s, t ∈ R}

{(1, 0,−1) + s (−1, 1, 3) + t (0, 1, 1) : s, t ∈ R}
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Vector space

Definition

A vector space (or linear space) V over a field F (e.g, R or C) is a set
together with two binary operations defined on it, namely, vector addition
mapping V × V → V and scalar multiplication mapping F × V → V .

Vector addition and scalar multiplication satisfy the classical vector
properties that we spell out in detail below.
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Vector space

Definition

A vector space (or linear space) V over a field F (e.g, R or C) is a set
with a binary operation denoted “+” and a map F × V → V such that

1 ∀x, y ∈ V : x+ y = y + x

2 ∀x, y, z ∈ V : (x+ y) + z = x+ (y + z)

3 ∃0 ∈ V : ∀x ∈ V , x+ 0 = x

4 ∀x ∈ V , ∃y ∈ V : x+ y = 0

5 ∀x ∈ V : 1x = x, where 1 is the neutral element of multiplication in F

6 ∀a, b ∈ F , ∀x ∈ V : (ab)x = a(bx)

7 ∀a ∈ F , ∀x, y ∈ V : a(x+ y) = ax+ ay

8 ∀a, b ∈ F , ∀x ∈ V : (a+ b)x = ax+ bx
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Remark

In the above definition, the elements of F are called scalars and the
elements of V are called vectors.

The map F × V → V :

∀a ∈ F , ∀x ∈ V : ax ∈ V

is called scalar multiplication.
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Example of vector spaces: set of n-tuples

Definition

An object in the form (a1, a2, ..., an), with a1, a2, ..., an elements of a field
F , is called n-tuple.
The elements a1, a2, ..., an are called entries or components.

The set of all the n-tuples with entries from F is denoted by F n. F n is a
vector space over F with componentwise addition and scalar multiplication.

Vectors in F n may be written as column vectors
a1
a2
...
an


Special cases: R2, R3
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Generalization: matrices

An m × n matrix with entries from field F is a rectangular array:
a11 a12 · · · a1n
a21 a22 · · · a2n
...

... · · ·
...

am1 am2 · · · amn


The set of all the m × n matrices with entries in F is denoted by Mm×n

and it is a vector space over F with componentwise addition and scalar
multiplication.
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Other examples of vector spaces

Let F be the set of all real-valued functions on a nonempty set S .
This is a vector space over R under the operations of ordinary
addition and scalar multiplication of functions:

(f + g)(x) = f (x) + g(x)

and
(af )(x) = af (x)

for any x ∈ S

Special cases:
Continuous functions on [0, 1], differentiable functions on [0, 1].
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Other examples of vector spaces

Let n ≥ 0 be an integer and

Pn = set of all polynomials of degree at most n ≥ 0

The elements of Pn have the form

p(x) = a0 + a1x + · · ·+ anx
n

where a0, . . . , an are real numbers. This is a vector space over R
under the operations of ordinary addition and scalar multiplication of
functions.
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Cancellation law for vector spaces

Theorem (Cancellation law for vector spaces)

Let V be a vector space and x, y, z ∈ V . If x+ z = y + z, then x = y.

Proof
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Corollaries to cancellation law for vector spaces

Corollary 1

The vector 0 is unique.

Corollary 2

The additive inverse is unique.

Note: the additive inverse of x is denoted by −x.
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Another theorem for vector spaces

Theorem

Let V be a vector space. Then the following statements are true.

1 ∀x ∈ V : 0x = 0

2 ∀x ∈ V , ∀a ∈ F : (−a)x = −(ax) = a(−x)

3 ∀a ∈ F : a0 = 0

Proof...
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Subspaces

Definition

A subset W of a vector space V over the field F is called a subspace of V
if W is a vector space with + and scalar multiplication from V .

To show that a subset is a subspace, the following theorem is useful:

Theorem

A nonempty subset W of the vector space V is a subspace of V if and
only if

1 ∀x, y ∈ W : x+ y ∈ W

2 ∀c ∈ F , ∀x ∈ W : c · x ∈ W
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Example

Is W = {(a, b) : a+ b = 0} ⊂ R2 a subspace?

Answer: Yes.

To prove it, we can use the Theorem above, which requires to verify that

1 ∀x, y ∈ W : x+ y ∈ W

2 ∀c ∈ R2,∀x ∈ W : c · x ∈ W
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Example

Is W = {(a, b, c) : 3a− b + 2c = 0} ⊂ R3 a subspace?

Answer: Yes.

To prove it, we can use the Theorem above, which requires to verify that

1 ∀x, y ∈ W : x+ y ∈ W

2 ∀c ∈ R3,∀x ∈ W : c · x ∈ W
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Example

Is W = {(a, b, c) : 3a− b + 2c = 1} ⊂ R3 a subspace?

Answer: No.

To prove it, it is sufficient to show that the sum of two generic elements of
W does not belong to W .
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Example

The trace of a square matrix A = (aij)i ,j=1,...,n is tr(A) =
∑n

i=1 aii . Is
W = {A = (aij)i ,j=1,...,n : tr(A) = 0} ⊂ Mn×n a subspace?

Answer: Yes.

To prove it, we can use the Theorem above, which requires to verify that

1 ∀x, y ∈ W : x+ y ∈ W

2 ∀c ∈ R,∀x ∈ W : c · x ∈ W
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Example

Is the set of the upper triangular matrices U a subspace of Mn×n?

Answer: Yes.

To prove it, we can use the Theorem above, which requires to verify that

1 ∀x, y ∈ W : x+ y ∈ W

2 ∀c ∈ R3,∀x ∈ W : c · x ∈ W
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Sum and direct sum

Definition

Let V be a vector space and let S ,T be nonempty subsets of V . Then let
S + T = {x+ y : x ∈ S , y ∈ T}. We call S + T the sum of S and T .

Definition

Let V be a vector space and let W ,U be subspaces of V . If V = W + U
and W ∩ U = {0}, we call V the direct sum of W and U and write it as
V = W ⊕ U.

Proposition

Let V be a vector space and let W ,U be subspaces of V . Then the sum
W + U is a subspace of V (containing both W and U).
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Example

Consider the sum
{(a, b, 0, c) : a, b, c ∈ R}+ {(d , 0, e, f ) : d , e, f ∈ R} = R4.
Is this a direct sum?

Answer: No.

To show it, we will examine the intersection of the two sets.
Let W = {(a, b, 0, c) : a, b, c ∈ R} and V = {(d , 0, e, f ) : d , e, f ∈ R}
We have that

W ∩ V = {(a, 0, 0, c) : a, b, c ∈ R} ≠ ∅
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Example
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Example

Set of upper triangular square matrices + Set of lower triangular square
matrices = Set of square matrices.
Is this a direct sum?

Answer: No.

To show it, we will examine the intersection of the two sets.
One can verify that this intersection contains the set of diagonal matrices,
hence it is non empty.
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