MATH 4377 - MATH 6308

Demetrio Labate

dlabate@uh.edu

Outline

- Section 1.1-1.2 - Vector Spaces
- Section 1.3 - Subspaces

Vectors

Definition

In \mathbb{R}^{2}, a vector is an ORDERED pair of real numbers where addition and multiplication by scalars hold:

$$
\begin{gathered}
\left(a_{1}, a_{2}\right)+\left(b_{1}, b_{2}\right)=\left(a_{1}+b_{1}, a_{2}+b_{2}\right) \\
\alpha\left(a_{1}, a_{2}\right)=\left(\alpha a_{1}, \alpha a_{2}\right) .
\end{gathered}
$$

In \mathbb{R}^{3}, a vector is an ORDERED triple of real numbers where addition and multiplication by scalars hold:

$$
\begin{aligned}
\left(a_{1}, a_{2}, a_{3}\right)+\left(b_{1}, b_{2}, b_{3}\right) & =\left(a_{1}+b_{1}+, a_{2}+b_{2}, a_{3}+b_{3}\right) \\
\alpha\left(a_{1}, a_{2}, a_{3}\right) & =\left(\alpha a_{1}, \alpha a_{2}, \alpha s_{3}\right) .
\end{aligned}
$$

Vectors have many physical applications, e.g., velocity, force, etc

Vectors

We depict vectors with arrows. To depict the vector $\left(a_{1}, a_{2}, a_{3}\right)$, you can choose any initial point and use the arrow

Notation: $\overrightarrow{Q R}$ and $\overrightarrow{O P}$ or $\mathbf{a}=\left(a_{1}, a_{2}, a_{3}\right)$.

Some properties of vectors

- Commutative:

$$
\mathbf{a}+\mathbf{b}=\mathbf{b}+\mathbf{a}
$$

- Associative:

$$
(\mathbf{a}+\mathbf{b})+\mathbf{c}=\mathbf{a}+(\mathbf{b}+\mathbf{c})
$$

- Zero vector:

$$
\mathbf{0}=(0,0,0) .
$$

Note: $\alpha \cdot \mathbf{0}=\mathbf{0}, \alpha$ being any real number.
We will see an abstract definition of these obvious properties belwo.

Graphical representation of $\mathbf{a}+\mathbf{b}$

Parallelogram law

or

Parallel vectors

Definition

Two vectors \mathbf{a} and \mathbf{b} are parallel if

$$
\mathbf{b}=\alpha \mathbf{a}
$$

for some real number α.

- if $\alpha>0$, \mathbf{a} and \mathbf{b} have the same direction
- if $\alpha<0$, \mathbf{a} and \mathbf{b} have opposite directions

Lines in 2D and 3D

In 2D, the line through the points $A=\left(x_{1}, x_{2}\right)$ and $B=\left(y_{1}, y_{2}\right)$ is

$$
\left\{\left(x_{1}, x_{2}\right)+t\left(y_{1}-x_{1}, y_{2}-x_{2}\right): t \in \mathbb{R}\right\} .
$$

In 3D, the line through the points $A=\left(x_{1}, x_{2}, x_{3}\right)$ and $B=\left(y_{1}, y_{2}, y_{3}\right)$ is

$$
\left\{\left(x_{1}, x_{2}, x_{3}\right)+t\left(y_{1}-x_{1}, y_{2}-x_{2}, y_{3}-x_{3}\right): t \in \mathbb{R}\right\}
$$

Example

Find the line through $(1,1,2)$ and $(0,3,-1)$.

Example

Find the line through $(1,1,2)$ and $(0,3,-1)$.
Solution:

$$
\begin{gathered}
(1,1,2)+t((0,3,-1)-(1,1,2)), \quad t \in \mathbb{R} \\
(1,1,2)+t(-1,2,-3), \quad t \in \mathbb{R}
\end{gathered}
$$

Planes

The plane through the points $A=\left(x_{1}, x_{2}, x_{3}\right), B=\left(y_{1}, y_{2}, y_{3}\right)$ and $C=\left(z_{1}, z_{2}, z_{3}\right)$ (not all three on a line) is
$\left\{\left(x_{1}, x_{2}, x_{3}\right)+s\left(y_{1}-x_{1}, y_{2}-x_{2}, y_{3}-x_{3}\right)+t\left(z_{1}-x_{1}, z_{2}-x_{2}, z_{3}-x_{3}\right): s, t \in \mathbb{R}\right\}$.

Example

Find the plane through the points $A=(1,0,-1), B=(0,1,2)$ and $C=(1,1,0)$

Example

Find the plane through the points $A=(1,0,-1), B=(0,1,2)$ and $C=(1,1,0)$

Solution:

$$
\begin{aligned}
\{(1,0,-1)+ & s((0,1,2)-(1,0,-1))+t((1,1,0)-(1,0,-1)): s, t \in \mathbb{R}\} \\
& \{(1,0,-1)+s(-1,1,3)+t(0,1,1): s, t \in \mathbb{R}\}
\end{aligned}
$$

Vector space

Definition

A vector space (or linear space) V over a field F (e.g, \mathbb{R} or \mathbb{C}) is a set together with two binary operations defined on it, namely, vector addition mapping $V \times V \rightarrow V$ and scalar multiplication mapping $F \times V \rightarrow V$.

Vector addition and scalar multiplication satisfy the classical vector properties that we spell out in detail below.

Vector space

Definition

A vector space (or linear space) V over a field F (e.g, \mathbb{R} or \mathbb{C}) is a set with a binary operation denoted " + " and a map $F \times V \rightarrow V$ such that
(1) $\forall \mathbf{x}, \mathbf{y} \in V: \mathbf{x}+\mathbf{y}=\mathbf{y}+\mathbf{x}$
(2) $\forall \mathbf{x}, \mathbf{y}, \mathbf{z} \in V:(\mathbf{x}+\mathbf{y})+\mathbf{z}=\mathbf{x}+(\mathbf{y}+\mathbf{z})$
(3) $\exists \mathbf{0} \in V: \forall \mathbf{x} \in V, \mathbf{x}+\mathbf{0}=\mathbf{x}$
(3) $\forall \mathbf{x} \in V, \exists \mathbf{y} \in V: \mathbf{x}+\mathbf{y}=\mathbf{0}$
(6) $\forall \mathbf{x} \in V: 1 \mathbf{x}=\mathbf{x}$, where 1 is the neutral element of multiplication in F
(0) $\forall a, b \in F, \forall \mathbf{x} \in V:(a b) \mathbf{x}=a(b \mathbf{x})$
(1) $\forall a \in F, \forall \mathbf{x}, \mathbf{y} \in V: a(\mathbf{x}+\mathbf{y})=a \mathbf{x}+a \mathbf{y}$
(3) $\forall a, b \in F, \forall \mathbf{x} \in V:(a+b) \mathbf{x}=a \mathbf{x}+b \mathbf{x}$

Remark

In the above definition, the elements of F are called scalars and the elements of V are called vectors.

The map $F \times V \rightarrow V$:

$$
\forall a \in F, \forall \mathbf{x} \in V: a \mathbf{x} \in V
$$

is called scalar multiplication.

Example of vector spaces: set of n-tuples

Definition

An object in the form $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$, with $a_{1}, a_{2}, \ldots, a_{n}$ elements of a field F, is called n-tuple.
The elements $a_{1}, a_{2}, \ldots, a_{n}$ are called entries or components.

The set of all the n-tuples with entries from F is denoted by $F^{n} . F^{n}$ is a vector space over F with componentwise addition and scalar multiplication.

Vectors in F^{n} may be written as column vectors

$$
\left[\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right]
$$

Special cases: $\mathbb{R}^{2}, \mathbb{R}^{3}$

Generalization: matrices

An $m \times n$ matrix with entries from field F is a rectangular array:

$$
\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \cdots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right]
$$

The set of all the $m \times n$ matrices with entries in F is denoted by $M_{m \times n}$ and it is a vector space over F with componentwise addition and scalar multiplication.

Other examples of vector spaces

- Let \mathcal{F} be the set of all real-valued functions on a nonempty set S. This is a vector space over \mathbb{R} under the operations of ordinary addition and scalar multiplication of functions:

$$
(f+g)(x)=f(x)+g(x)
$$

and

$$
(a f)(x)=a f(x)
$$

for any $x \in S$

Special cases:
Continuous functions on $[0,1]$, differentiable functions on $[0,1]$.

Other examples of vector spaces

- Let $n \geq 0$ be an integer and

$$
P_{n}=\text { set of all polynomials of degree at most } n \geq 0
$$

The elements of P_{n} have the form

$$
p(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}
$$

where a_{0}, \ldots, a_{n} are real numbers. This is a vector space over \mathbb{R} under the operations of ordinary addition and scalar multiplication of functions.

Cancellation law for vector spaces

Theorem (Cancellation law for vector spaces)
Let V be a vector space and $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V$. If $\mathbf{x}+\mathbf{z}=\mathbf{y}+\mathbf{z}$, then $\mathbf{x}=\mathbf{y}$.

Proof

Corollaries to cancellation law for vector spaces

Corollary 1

The vector $\mathbf{0}$ is unique.

Corollary 2

The additive inverse is unique.

Note: the additive inverse of \mathbf{x} is denoted by $-\mathbf{x}$.

Another theorem for vector spaces

Theorem

Let V be a vector space. Then the following statements are true.
(1) $\forall \mathbf{x} \in V: 0 \mathrm{x}=\mathbf{0}$
(2) $\forall \mathbf{x} \in V, \forall a \in F:(-a) \mathbf{x}=-(a \mathbf{x})=a(-\mathbf{x})$
(3) $\forall a \in F: a \mathbf{0}=\mathbf{0}$

Proof...

Subspaces

Definition

A subset W of a vector space V over the field F is called a subspace of V if W is a vector space with + and scalar multiplication from V.

To show that a subset is a subspace, the following theorem is useful:

Theorem

A nonempty subset W of the vector space V is a subspace of V if and only if
(1) $\forall \mathbf{x}, \mathbf{y} \in W: \mathbf{x}+\mathbf{y} \in W$
(2) $\forall c \in F, \forall \mathbf{x} \in W: c \cdot \mathbf{x} \in W$

Example

Is $W=\{(a, b): a+b=0\} \subset \mathbb{R}^{2}$ a subspace?

Example

Is $W=\{(a, b): a+b=0\} \subset \mathbb{R}^{2}$ a subspace?
Answer: Yes.
To prove it, we can use the Theorem above, which requires to verify that
(1) $\forall \mathbf{x}, \mathbf{y} \in W: \mathbf{x}+\mathbf{y} \in W$
(2) $\forall c \in \mathbb{R}^{2}, \forall \mathbf{x} \in W: c \cdot \mathbf{x} \in W$

Example

Is $W=\{(a, b, c): 3 a-b+2 c=0\} \subset \mathbb{R}^{3}$ a subspace?

Example

Is $W=\{(a, b, c): 3 a-b+2 c=0\} \subset \mathbb{R}^{3}$ a subspace?
Answer: Yes.
To prove it, we can use the Theorem above, which requires to verify that
(1) $\forall \mathbf{x}, \mathbf{y} \in W: \mathbf{x}+\mathbf{y} \in W$
(2) $\forall c \in \mathbb{R}^{3}, \forall \mathbf{x} \in W: c \cdot \mathbf{x} \in W$

Example

$$
\text { Is } W=\{(a, b, c): 3 a-b+2 c=1\} \subset \mathbb{R}^{3} \text { a subspace? }
$$

Example

Is $W=\{(a, b, c): 3 a-b+2 c=1\} \subset \mathbb{R}^{3}$ a subspace?
Answer: No.
To prove it, it is sufficient to show that the sum of two generic elements of W does not belong to W.

Example

The trace of a square matrix $A=\left(a_{i j}\right)_{i, j=1, \ldots, n}$ is $\operatorname{tr}(A)=\sum_{i=1}^{n} a_{i i}$. Is $W=\left\{A=\left(a_{i j}\right)_{i, j=1, \ldots, n}: \operatorname{tr}(A)=0\right\} \subset M_{n \times n}$ a subspace?

Example

The trace of a square matrix $A=\left(a_{i j}\right)_{i, j=1, \ldots, n}$ is $\operatorname{tr}(A)=\sum_{i=1}^{n} a_{i j}$. Is $W=\left\{A=\left(a_{i j}\right)_{i, j=1, \ldots, n}: \operatorname{tr}(A)=0\right\} \subset M_{n \times n}$ a subspace?

Answer: Yes.
To prove it, we can use the Theorem above, which requires to verify that
(1) $\forall \mathbf{x}, \mathbf{y} \in W: \mathbf{x}+\mathbf{y} \in W$
(2) $\forall c \in \mathbb{R}, \forall \mathbf{x} \in W: c \cdot \mathbf{x} \in W$

Example

Is the set of the upper triangular matrices U a subspace of $M_{n \times n}$?

Example

Is the set of the upper triangular matrices U a subspace of $M_{n \times n}$?
Answer: Yes.
To prove it, we can use the Theorem above, which requires to verify that
(1) $\forall \mathbf{x}, \mathbf{y} \in W: \mathbf{x}+\mathbf{y} \in W$
(2) $\forall c \in \mathbb{R}^{3}, \forall \mathbf{x} \in W: c \cdot \mathbf{x} \in W$

Sum and direct sum

Definition

Let V be a vector space and let S, T be nonempty subsets of V. Then let $S+T=\{\mathbf{x}+\mathbf{y}: \mathbf{x} \in S, \mathbf{y} \in T\}$. We call $S+T$ the sum of S and T.

Definition

Let V be a vector space and let W, U be subspaces of V. If $V=W+U$ and $W \cap U=\{\mathbf{0}\}$, we call V the direct sum of W and U and write it as $V=W \oplus U$.

Proposition

Let V be a vector space and let W, U be subspaces of V. Then the sum $W+U$ is a subspace of V (containing both W and U).

Example

Consider the sum $\{(a, b, 0, c): a, b, c \in \mathbb{R}\}+\{(d, 0, e, f): d, e, f \in \mathbb{R}\}=\mathbb{R}^{4}$. Is this a direct sum?

Example

Consider the sum $\{(a, b, 0, c): a, b, c \in \mathbb{R}\}+\{(d, 0, e, f): d, e, f \in \mathbb{R}\}=\mathbb{R}^{4}$.
Is this a direct sum?
Answer: No.
To show it, we will examine the intersection of the two sets.
Let $W=\{(a, b, 0, c): a, b, c \in \mathbb{R}\}$ and $V=\{(d, 0, e, f): d, e, f \in \mathbb{R}\}$ We have that

$$
W \cap V=\{(a, 0,0, c): a, b, c \in \mathbb{R}\} \neq \emptyset
$$

Example

Consider the sum $\{(a, 0,0, b): a, b \in \mathbb{R}\}+\{(0, c, d, 0): c, d \in \mathbb{R}\}=\mathbb{R}^{4}$. Is this a direct sum?

Example

Consider the sum $\{(a, 0,0, b): a, b \in \mathbb{R}\}+\{(0, c, d, 0): c, d \in \mathbb{R}\}=\mathbb{R}^{4}$. Is this a direct sum?

Answer: Yes.
Let $W=\{(a, b, 0, c): a, b, c \in \mathbb{R}\}$ and $V=\{(d, 0, e, f): d, e, f \in \mathbb{R}\}$ We have that

$$
W \cap V=\{(0,0,0,0)\}=\emptyset
$$

We also have that

$$
W+V=\{(a, b, c, d): a, b, c, d \in \mathbb{R}\}=\mathbb{R}^{4}
$$

Example

Set of upper triangular square matrices + Set of lower triangular square matrices $=$ Set of square matrices.
Is this a direct sum?

Example

Set of upper triangular square matrices + Set of lower triangular square matrices $=$ Set of square matrices.
Is this a direct sum?
Answer: No.
To show it, we will examine the intersection of the two sets.
One can verify that this intersection contains the set of diagonal matrices, hence it is non empty.

