MATH 4377 - MATH 6308

Demetrio Labate

dlabate@uh.edu

- Section 1.4 Linear Combinations and System of Linear Equations
- Section 1.5 Linear Dependance/Independence
- Section 1.6 Bases and Dimension

Linear Combinations and System of Linear Equations

Section 1.4

Definition

Let V be a vector space over field F and S a nonempty subset of V. We call $\mathbf{v} \in V$ a *linear combination* of vectors in S if there exist vectors $\mathbf{u}_1, \ldots, \mathbf{u}_n \in S$ and scalars $a_1, \ldots, a_n \in F$ such that

 $\mathbf{v} = a_1\mathbf{u}_1 + \ldots + a_n\mathbf{u}_n$

Exercise: Take $V = \mathbb{R}^3$ and $S = \{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}$. Write (3, 4, 1) as a linear combination of vectors in *S*.

Exercise: Write (3, 1, 2) as a linear combination of (1, 0, 1), (0, 1, 1), (1, 2, 1).

Exercise: Write (3, 1, 2) as a linear combination of (1, 0, 1), (0, 1, 1), (1, 2, 1).

To solve this problem, we need to solve

$$x_1(1,0,1) + x_2(0,1,1) + x_3(1,2,1) = (3,1,2)$$

which is gives a system of linear equations:

$$x_1 + x_3 = 3$$

 $x_2 + 2x_3 = 1$
 $x_1 + x_2 + x_3 = 2$

You can simplify the solution of a system of linear equations by performing any of these **elementary row operations**:

- Add a constant multiple of one equation to another.
- Multiply an equation by a nonzero scalar.
- Interchange the order of any two equations.

These there operations DO NOT change the solution of the system!

From the system of linear equations

$$x_1 + x_3 = 3$$

 $x_2 + 2x_3 = 1$
 $x_1 + x_2 + x_3 = 2$

we write the augmented matrix

We will apply elementary row operations until we obtain a simplified matrix which is equivalent to the original one.

Solving systems of linear equations

 $r_1 \leftrightarrow r_3, r_2 \leftrightarrow r_3$ $\left(\begin{array}{ccc|c} 1 & 0 & 1 & 3 \\ 0 & 1 & 2 & 1 \\ 1 & 1 & 1 & 2 \end{array}\right) \rightarrow \left(\begin{array}{ccc|c} 1 & 1 & 1 & 2 \\ 1 & 0 & 1 & 3 \\ 0 & 1 & 2 & 1 \end{array}\right)$ $r_2 \rightarrow r_2 - r_1$ $\left(\begin{array}{rrrrr} 1 & 1 & 1 & 2 \\ 1 & 0 & 1 & 3 \\ 0 & 1 & 2 & 1 \end{array}\right) \rightarrow \left(\begin{array}{rrrrrr} 1 & 1 & 1 & 2 \\ 0 & -1 & 0 & 1 \\ 0 & 1 & 2 & 1 \end{array}\right)$ $r_2 \rightarrow -r_2$, $r_3 \rightarrow r_3 - r_2$; then $r_3 \rightarrow \frac{1}{2}r_3$ $\left(\begin{array}{ccc|c} 1 & 1 & 1 & 2 \\ 0 & -1 & 0 & 1 \\ 0 & 1 & 2 & 1 \end{array} \right) \rightarrow \left(\begin{array}{ccc|c} 1 & 1 & 1 & 2 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 2 & 2 \end{array} \right) \rightarrow \left(\begin{array}{ccc|c} 1 & 1 & 1 & 2 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 1 \end{array} \right)$

The last matrix is a row-echelon form matrix.

D. Labate (UH)

Solving systems of linear equations

The row-echelon form matrix

$$\left(egin{array}{ccc|c} 1 & 1 & 1 & 2 \ 0 & 1 & 0 & -1 \ 0 & 0 & 1 & 1 \end{array}
ight)$$

corresponds to the system

$$egin{array}{rcl} x_1+x_2+x_3&=&2\ &x_2&=&-1\ &x_3&=&1 \end{array}$$

which is easily solved: $x_1 = 2, x_2 = -1, x_3 = 1$.

Thus we solve the original linear combination problem as

$$(3,1,2) = 2(1,0,1) - (0,1,1) + (1,2,1)$$

9 / 55

Exercise: Write (3, 1, 2) as a linear combination of (1, 0, 0), (0, 1, 0), (1, 2, 0).

Exercise: Write (3, 1, 2) as a linear combination of (1, 2, -1), (1, 6, -3), (0, 1, 2), (1, 2, 1).

Exercise: Write (3, 1, 2) as a linear combination of (1, 2, -1), (1, 6, -3), (0, 1, 2), (1, 2, 1).

To solve this problem, we need to solve

$$x_1(1,2,-1) + x_2(1,6,-3) + x_3(0,1,2) + x_4(1,2,1) = (3,1,2)$$

which is gives a system of linear equations:

$$x_1 + x_2 + x_4 = 3$$

$$2x_1 + 6x_2 + x_3 + 2x_4 = 1$$

$$-x_1 - 3x_2 + 2x_3 + x_4 = 2$$

$$\begin{pmatrix} 1 & 1 & 0 & 1 & | & 3 \\ 2 & 6 & 1 & 2 & | & 1 \\ -1 & -3 & 2 & 1 & | & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 0 & 1 & | & 3 \\ 0 & 4 & 1 & 0 & | & -5 \\ 0 & -2 & 2 & 2 & | & 5 \\ 0 & 4 & 1 & 0 & | & -5 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 0 & 1 & | & 3 \\ 0 & 1 & -1 & -1 & | & -5/2 \\ 0 & 0 & 5 & 4 & | & 5 \end{pmatrix}$$
Hence we have the solution:

$$5x_3 = 5 - 4x_4, x_2 = -5/2 + x_3 + x_4, x_1 = 3 - x_2 - x_4$$

Choosing any value of $x_4 \in \mathbb{R}$, we find a solution of the linear combination problem.

Definition

Let V be a vector space and S a nonempty subset of V. We call span(S) the set of all vectors in V that can be written as a linear combination of vectors in S.

Exercise: Let $S = \{(1,0,0), (0,1,0), (2,1,0)\}$. What is span(S)?

Theorem

The span of any subset S of a vector space V is a subspace of V.

Proof

Theorem

The span of any subset S of a vector space V is a subspace of V.

Proof

Solution: need to show that span S is closed under the operations of addition and scalar multiplication.

Exercise: Does $S = \{(1,0,0), (0,1,0), (0,0,1)\}$ span \mathbb{R}^3 ?

Exercise: Does $S = \{(1, 2), (2, 1)\}$ span \mathbb{R}^2 ?

Exercise: Does $S = \{(1, 2), (2, 1)\}$ span \mathbb{R}^2 ?

To solve this problem, we need to verify that, for any $(a, b) \in \mathbb{R}^2$ we can solve

$$x_1(1,2) + x_2(2,1) = (a,b)$$

This gives the system of linear equations:

$$x_1 + 2x_2 = a$$

 $2x_1 + x_2 = b$

Exercise: Does $S = \{(1, 2), (2, 1)\}$ span \mathbb{R}^2 ?

To solve this problem, we need to verify that, for any $(a, b) \in \mathbb{R}^2$ we can solve

$$x_1(1,2) + x_2(2,1) = (a,b)$$

This gives the system of linear equations:

$$x_1 + 2x_2 = a$$

 $2x_1 + x_2 = b$

This is equivalent to the row-reduced system

$$x_1 + 2x_2 = a$$
$$-3x_2 = b - 2a$$

showing that the system has always a solution.

D. Labate (UH)

Exercise: Does $S = \{(1,2)\}$ span \mathbb{R}^2 ?

Using the argument above, we can see that not every element in \mathbb{R}^2 can be written as a linear combination of S.

Exercise: Which (a, b, c) are in span $(\{(1, 1, 2), (0, 1, 1), (2, 1, 3)\})$?

Exercise: Which (a, b, c) are in span $(\{(1, 1, 2), (0, 1, 1), (2, 1, 3)\})$?

To solve this problem, we can examine the linear system

$$x_1(1,1,2) + x_2(0,1,1) + x_3(2,1,3) = (a,b,c)$$

which is associated with the augmented matrix

$$\begin{pmatrix} 1 & 0 & 2 & a \\ 1 & 1 & 1 & b \\ 2 & 1 & 3 & c \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 2 & a \\ 0 & 1 & -1 & b - a \\ 0 & 1 & 1 & c - 2a \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 2 & a \\ 0 & 1 & -1 & b - a \\ 0 & 0 & 2 & c - b - a \end{pmatrix}$$

Since the linear system can be solved for any $(a, b, c) \in \mathbb{R}^3$, then span $(\{(1, 1, 2), (0, 1, 1), (2, 1, 3)\}) = \mathbb{R}^3$

Linear Dependance and Linear Independence

Section 1.5

Goal: given a vector space V, we want to find the SMALLEST set $S \subset V$ such that span(S) = V.

Linear dependence

Definition

A subset S of a vector space V is called *linearly dependent* if there exist a finite number of vectors $\mathbf{u}_1, \ldots, \mathbf{u}_n \in S$ and scalars a_1, \ldots, a_n , NOT ALL EQUAL TO ZERO, such that

$$\mathbf{a}_1\mathbf{u}_1+\ldots+\mathbf{a}_n\mathbf{u}_n=\mathbf{0}.$$

If the vectors in S are not linearly dependent, we say that they are *linearly independent*.

Remark: Linear dependence is equivalent to say that at least one vector in S can be written as a linear combinations of the others. Linear independence on the other hand implies that no vector in the set can be expressed as a linear combination of the others

Let $S = \{(1, 1, 1), (2, 2, 2)\}.$

S linearly dependent since

$$2(1,1,1) = (2,2,2)$$

equivalently

$$2(1,1,1)-(2,2,2)=0\\$$

Let $R = \{(2, 0, 0), (0, 1, 0)\}.$

R linearly independent since

$$a_1(2,0,0) + a_2(0,1,0) = (2a_1,a_2,0) = 0$$

implies that $a_1 = a_2 = 0$, showing that R is not linearly dependent.

22 / 55

If $S = {\mathbf{u}_1, \mathbf{u}_2} \subset V$, then S is linearly dependent if and only if there exists a constant $\alpha \neq 0$ such that $\mathbf{u}_1 = \alpha \mathbf{u}_2$.

If S consists of more then two vectors, verifying linear dependence or independence requires more work.

Let
$$S = \{(1, 1, 1), (-2, 0, -3), (3, 1, 4)\}.$$

S linearly dependent since

$$(3,1,4) = (1,1,1) - (-2,0,-3)$$

Let $R = \{(2,0,0), (0,1,0), (0,0,4)\}.$

R linearly independent since

$$a_1(2,0,0) + a_2(0,1,0) + a_3(0,0,4) = (2a_1,a_2,4a_3) = 0$$

implies that $a_1 = a_2 = a_3 = 0$, showing that R is not linearly dependent.

Remark

Let S be a subset of a vector space V and let $\mathbf{u}_1, \ldots, \mathbf{u}_n \in S$. These vectors are *linearly independent* if and only if

$$a_1\mathbf{u}_1+\ldots+a_n\mathbf{u}_n=\mathbf{0}\Rightarrow a_1,\ldots,a_n=0.$$

Theorem

Let V be a vector space. If $S_1 \subseteq S_2$ and S_1 is linearly dependent, then S_2 is linearly dependent.

Proof It follows form the definition.

Another theorem

Theorem

Let S be a linearly independent subset of V. Let $\mathbf{v} \in V \setminus S$. Then $S \cup \{\mathbf{v}\}$ is linearly dependent if and only if $\mathbf{v} \in \text{span}(S)$.

Another theorem

Theorem

Let S be a linearly independent subset of V. Let $\mathbf{v} \in V \setminus S$. Then $S \cup \{\mathbf{v}\}$ is linearly dependent if and only if $\mathbf{v} \in \text{span}(S)$.

Let $S = \{u_1, \ldots, u_m\}$ *Proof for* (\Leftarrow). If $v \in \text{span}(S)$, then v is a linear combination of elements in $\{u_1, \ldots, u_m\}$, hence $\{v, u_1, \ldots, u_m\}$ is linearly dependent. *Proof for* (\Rightarrow). If $S \cup \{v\}$ is linearly dependent, then there are constants $c_1, \ldots, c_m, c_{m+1}$ not all zero such that

 $c_1u_1+\cdots+c_mu_m+c_{m+1}v=0$

In this sum, it must be $c_{m+1} \neq 0$. If not, the rest of the sum would be 0 with c_1, \ldots, c_m not all zero, violating the hypothesis that S is linearly independent. Since $c_{m+1} \neq 0$, we can then write

$$v = -\frac{1}{c_{m+1}}(c_1u_1 + \cdots + c_mu_m)$$

showing that $v \in \text{span}(S)$.

A homogeneous system of equations like

$$\begin{array}{rcl} x_1 + 2x_2 - 3x_3 &=& 0\\ 3x_1 + 5x_2 + 9x_3 &=& 0\\ 5x_1 + 9x_2 + 3x_3 &=& 0 \end{array}$$

can be written as a vector equation

$$x_1(1,3,5) + x_2(2,5,9) + x_3(-3,9,3) = (0,0,0)$$

Fact. The vectors (1, 3, 5), (2, 5, 9), (-3, 9, 3) are linearly independent if and only if the trivial solution $x_1 = x_2 = x_3 = 0$ is the only solution of the homogeneous system.

The last observation implies that we can check the linear dependence or independence of a set of vectors by examining the solution set of the associated homogeneous system.

We examine the augmented matrix of the system

$$\left(\begin{array}{ccc|c}1&2&-3&0\\3&5&9&0\\5&9&3&0\end{array}\right)\to \left(\begin{array}{ccc|c}1&2&-3&0\\0&-1&18&0\\0&-1&18&0\end{array}\right)\to \left(\begin{array}{ccc|c}1&2&-3&0\\0&-1&18&0\\0&0&0&0&0\end{array}\right)$$

Since the row-reduced system has a row of zeros, then the homogeneous system has non-trivial solutions and, thus, the vectors (1,3,5), (2,5,9), (-3,9,3) are **linearly dependent**.

Fact

Each linear dependence relation among the columns of the matrix A corresponds to a nontrivial solution to Ax = 0. The columns of a matrix A are linearly independent if and only if the equation Ax = 0 has only the trivial solution.

- If a set S in a vector space V contains the 0 vector, then it is linearly dependent (since the linear dependence condition is always satisfied).
- The set of a single element $\{v\}$ is linearly independent if and only if $v \neq 0$ (it follows from the last property).
- If a set S in the vector space ℝⁿ consists of m > n vectors, then S is linearly dependent. It follows from the observation that an homogeneous linear system Ax = 0 there the matrix A has more columns than rows has always nontrivial solutions.

Bases and Dimension

Section 1.6

Definition

Let V be a vector space. A (vector) basis B of V is a linearly independent subset of V which satisfies span(B) = V.

Let $S = \{(1,0), (1,1), (2,3)\}$. Is S a basis for \mathbb{R}^2 ?

Let $S = \{(1,0), (1,1), (2,3)\}$. Is S a basis for \mathbb{R}^2 ?

Solution. No, since A contains 3 vectors in \mathbb{R}^2 , then the set is linearly dependent.

Let $S = \{(1,0), (0,1), (0,2)\}$. Is S a basis for \mathbb{R}^2 ?

Let $S = \{(1,0), (0,1), (0,2)\}$. Is S a basis for \mathbb{R}^2 ?

Solution. No, since S contains 3 vectors in \mathbb{R}^2 , then the set is linearly dependent.

Let $S = \{(1,0)\}$. Is S a basis for \mathbb{R}^2 ?

Let $S = \{(1,0)\}$. Is S a basis for \mathbb{R}^2 ?

Solution. No, because the set does not span S.

Let $S = \{(1,0), (1,1)\}$. Is S a basis for \mathbb{R}^2 ?

Let $S = \{(1,0), (1,1)\}$. Is S a basis for \mathbb{R}^2 ?

Solution. Yes, because the set is linearly independent and does span S. This can be seen by observing the matrix

$$A = \left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array}\right)$$

The columns are A are linearly independent since the matrix is reduced in row-echelon form.

The vectors span \mathbb{R}^2 because the matrix $Ax = \begin{pmatrix} a \\ b \end{pmatrix}$ can be solved for

any
$$\left(\begin{array}{c} a \\ b \end{array}
ight) \in \mathbb{R}^2.$$

Let $S = \{(1,0,0), (0,1,0), (0,0,1)\}$. Is S a basis for \mathbb{R}^3 ?

Let $S = \{(1,0,0), (0,1,0), (0,0,1)\}$. Is S a basis for \mathbb{R}^3 ?

Solution. Yes, because the set is linearly independent and does span S.

This basis is called the **canonical basis** of \mathbb{R}^3 .

Similarly we define the **canonical basis** of \mathbb{R}^n , for any *n*.

Theorem

Let V be a vector space. Let $B = {\mathbf{u}_1, \dots, \mathbf{u}_n}$ be a subset of V. Then

B is a basis of $V \Leftrightarrow \forall \mathbf{v} \in V : \exists ! a_1, \dots, a_n \in F, \mathbf{v} = a_1 \mathbf{u}_1 + \dots + a_n \mathbf{u}_n$.

Proof for \Rightarrow If B is a basis, for every $v \in V$, there are a_1, \ldots, a_n such that $v = a_1u_1 + \ldots + a_nu_n$ since B spans V. To prove uniqueness, suppose there is another expansion $v = b_1u_1 + \ldots + b_nu_n$. Then $(a_1 - b_1)u_1 + \ldots + (a_n - b_n)u_n = 0$. By the l.i., it must be $(a_i - b_i) = 0$ for all coefficients. This shows that the expansion must be unique.

Proof for \leftarrow If for every $v \in V$, there is a unique sequence a_1, \ldots, a_n such that $v = a_1u_1 + \ldots + a_nu_n$, then B spans V. To show that B is l.i., consider the expansion of the 0 vector, that can be expressed by taking $a_1 = \ldots = a_n = 0$. By the uniqueness, this is the only expansion of the 0 vector. This also implies that B is l.i.

Theorem

Let V be a vector space. Let S be a finite subset of V with span(S) = V. Then there exists a subset of S which is a basis for V. In particular, V has a finite basis.

Proof

Let $S = \{(1,0), (1,1), (2,3)\}$. We have $\mathbb{R}^2 = \operatorname{span}(S)$ but S is not a basis. Find a subset of S which is a basis for \mathbb{R}^2 .

Let $S = \{(1,0), (0,1), (0,2)\}$. We have $\mathbb{R}^2 = \operatorname{span}(S)$ but S is not a basis. Find a subset of S which is a basis for \mathbb{R}^2 .

Let $S = \{(-1, -1, -1), (5, 5, 5), (0, 2, 2), (0, 0, 3), (0, 2, 5)\}$. Is S a basis for \mathbb{R}^3 ? If not, can you find a subset of S which is a basis for \mathbb{R}^3 ?

Question: given a vector space V, which is the SMALLEST set $S \subset V$ such that span(S) = V?

Theorem (Replacement Theorem)

Let V be a vector space. Let V = span(G), where G is a subset of V of cardinality n. Let L be a linearly independent subset of V of cardinality m. Then the following holds.

$$\bullet m \leq n$$

② there exists a subset $H \subseteq G$ of cardinality n - m such that span $(L \cup H) = V$

Let's consider two subsets of vector space V:

- $G = {\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4, \mathbf{u}_5}$ (cardinality n = 5), such that we have $V = \operatorname{span}(G)$,
- $L = {\mathbf{v}_1, \mathbf{v}_2}$ (cardinality m = 2) linearly independent.

Replacement theorem tells you that there are 2 vectors in G that can be replaced with the two vectors in L and the new set obtained by this replacement still spans V.

Let V be a vector space with a finite basis $B = \{u_1, \ldots, u_n\}$. Then any set containing more than n vectors is linearly dependent.

Let V be a vector space with a finite basis $B = \{u_1, \ldots, u_n\}$. Then any set containing more than n vectors is linearly dependent.

Proof Suppose S is a set with p > n vectors. By the Replacement Theorem, S cannot be a a l.i. subset of V.

Let V be a vector space with a finite basis. Then all bases contain the same number of elements.

Let V be a vector space with a finite basis. Then all bases contain the same number of elements.

Proof. Suppose that B_1 and B_1 are two bases of V.

By the definition of basis, both sets are l.i.

By Corollary 1, B_1 cannot contain more elements of B_2 , otherwise it would be linearly dependent.

Similarly, by Corollary 1, B_2 cannot contain more elements of B_1 , otherwise it would be linearly dependent.

Thus, B_1 and B_1 have the same number of elements.

Definition

A vector space is called *finite dimensional* if there exists a basis consisting of finitely many vectors.

Definition

The unique cardinality of a basis of a finite dimensional vector space is called the *dimension* of V, denoted dim(V).

Let P_n be the vector space of the polynomials of degree n. dim $(P_n) =$

Let $S \subset V$. If V = span(S) and $\#S = \dim(V)$, then S is a basis.

Proof

Let $S \subset V$. If S is linearly independent and $\#S = \dim(V)$, then S is a basis.

Proof

Theorem

Let V be a vector space. Let W be a subspace of V. Assume dim V is finite. Then dim $W \leq \dim V$ and equality holds if and only if V = W.

Proof Immediate from Replacement Theorem. Let $W = \{(a_1, a_2, a_3) \mid a_1 + a_3 = 0 \text{ and } a_1 + a_2 - a_3 = 0\} \subset \mathbb{R}^3$. Find a basis for and the dimension of subspace W.

Let $W = \{(a_1, a_2, a_3, a_4, a_5) \mid a_1 + a_3 + a_5 = 0 \text{ and } a_2 = a_4\} \subset \mathbb{R}^5$. Find a basis for and the dimension of subspace W.