MATH 4377 - MATH 6308

Demetrio Labate

dlabate@uh.edu

Outline

- Section 1.4 - Linear Combinations and System of Linear Equations
- Section 1.5 - Linear Dependance/Independence
- Section 1.6 - Bases and Dimension

Linear Combinations and System of Linear Equations

Section 1.4

Linear combination

Definition

Let V be a vector space over field F and S a nonempty subset of V. We call $\mathbf{v} \in V$ a linear combination of vectors in S if there exist vectors $\mathbf{u}_{1}, \ldots, \mathbf{u}_{n} \in S$ and scalars $a_{1}, \ldots, a_{n} \in F$ such that

$$
\mathbf{v}=a_{1} \mathbf{u}_{1}+\ldots+a_{n} \mathbf{u}_{n}
$$

Exercise: Take $V=\mathbb{R}^{3}$ and $S=\{(1,0,0),(0,1,0),(0,0,1)\}$. Write $(3,4,1)$ as a linear combination of vectors in S.

Example

Exercise: Write $(3,1,2)$ as a linear combination of $(1,0,1),(0,1,1),(1,2,1)$.

Example

Exercise: Write $(3,1,2)$ as a linear combination of $(1,0,1),(0,1,1),(1,2,1)$.

To solve this problem, we need to solve

$$
x_{1}(1,0,1)+x_{2}(0,1,1)+x_{3}(1,2,1)=(3,1,2)
$$

which is gives a system of linear equations:

$$
\begin{array}{r}
x_{1}+x_{3}=3 \\
x_{2}+2 x_{3}=1 \\
x_{1}+x_{2}+x_{3}=2
\end{array}
$$

Solving systems of linear equations

You can simplify the solution of a system of linear equations by performing any of these elementary row operations:

- Add a constant multiple of one equation to another.
- Multiply an equation by a nonzero scalar.
- Interchange the order of any two equations.

These there operations DO NOT change the solution of the system!

Solving systems of linear equations

From the system of linear equations

$$
\begin{array}{r}
x_{1}+x_{3}=3 \\
x_{2}+2 x_{3}=1 \\
x_{1}+x_{2}+x_{3}=2
\end{array}
$$

we write the augmented matrix

$$
\left(\begin{array}{lll|l}
1 & 0 & 1 & 3 \\
0 & 1 & 2 & 1 \\
1 & 1 & 1 & 2
\end{array}\right)
$$

We will apply elementary row operations until we obtain a simplified matrix which is equivalent to the original one.

Solving systems of linear equations

$$
r_{1} \leftrightarrow r_{3}, r_{2} \leftrightarrow r_{3}
$$

$$
\left(\begin{array}{lll|l}
1 & 0 & 1 & 3 \\
0 & 1 & 2 & 1 \\
1 & 1 & 1 & 2
\end{array}\right) \rightarrow\left(\begin{array}{lll|l}
1 & 1 & 1 & 2 \\
1 & 0 & 1 & 3 \\
0 & 1 & 2 & 1
\end{array}\right)
$$

$$
r_{2} \rightarrow r_{2}-r_{1}
$$

$$
\left(\begin{array}{lll|l}
1 & 1 & 1 & 2 \\
1 & 0 & 1 & 3 \\
0 & 1 & 2 & 1
\end{array}\right) \rightarrow\left(\begin{array}{rrr|r}
1 & 1 & 1 & 2 \\
0 & -1 & 0 & 1 \\
0 & 1 & 2 & 1
\end{array}\right)
$$

$$
r_{2} \rightarrow-r_{2}, r_{3} \rightarrow r_{3}-r_{2} ; \text { then } r_{3} \rightarrow \frac{1}{2} r_{3}
$$

$$
\left(\begin{array}{rrr|r}
1 & 1 & 1 & 2 \\
0 & -1 & 0 & 1 \\
0 & 1 & 2 & 1
\end{array}\right) \rightarrow\left(\begin{array}{lll|r}
1 & 1 & 1 & 2 \\
0 & 1 & 0 & -1 \\
0 & 0 & 2 & 2
\end{array}\right) \rightarrow\left(\begin{array}{rrr|r}
1 & 1 & 1 & 2 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 1
\end{array}\right)
$$

The last matrix is a row-echelon form matrix.

Solving systems of linear equations

The row-echelon form matrix

$$
\left(\begin{array}{rrr|r}
1 & 1 & 1 & 2 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 1
\end{array}\right)
$$

corresponds to the system

$$
\begin{aligned}
x_{1}+x_{2}+x_{3} & =2 \\
x_{2} & =-1 \\
x_{3} & =1
\end{aligned}
$$

which is easily solved: $x_{1}=2, x_{2}=-1, x_{3}=1$.
Thus we solve the original linear combination problem as

$$
(3,1,2)=2(1,0,1)-(0,1,1)+(1,2,1)
$$

Example

Exercise: Write $(3,1,2)$ as a linear combination of $(1,0,0),(0,1,0),(1,2,0)$.

Example

Exercise: Write $(3,1,2)$ as a linear combination of $(1,2,-1),(1,6,-3)$, $(0,1,2),(1,2,1)$.

Example

Exercise: Write $(3,1,2)$ as a linear combination of $(1,2,-1),(1,6,-3)$, $(0,1,2),(1,2,1)$.

To solve this problem, we need to solve

$$
x_{1}(1,2,-1)+x_{2}(1,6,-3)+x_{3}(0,1,2)+x_{4}(1,2,1)=(3,1,2)
$$

which is gives a system of linear equations:

$$
\begin{array}{r}
x_{1}+x_{2}+x_{4}=3 \\
2 x_{1}+6 x_{2}+x_{3}+2 x_{4}=1 \\
-x_{1}-3 x_{2}+2 x_{3}+x_{4}=2
\end{array}
$$

Example

$\left(\begin{array}{rrrr|r}1 & 1 & 0 & 1 & 3 \\ 2 & 6 & 1 & 2 & 1 \\ -1 & -3 & 2 & 1 & 2\end{array}\right) \rightarrow\left(\begin{array}{rrrr|r}1 & 1 & 0 & 1 & 3 \\ 0 & 4 & 1 & 0 & -5 \\ 0 & -2 & 2 & 2 & 5\end{array}\right) \rightarrow$
$\left(\begin{array}{rrrr|r}1 & 1 & 0 & 1 & 3 \\ 0 & -2 & 2 & 2 & 5 \\ 0 & 4 & 1 & 0 & -5\end{array}\right) \rightarrow\left(\begin{array}{rrrr|r}1 & 1 & 0 & 1 & 3 \\ 0 & 1 & -1 & -1 & -5 / 2 \\ 0 & 0 & 5 & 4 & 5\end{array}\right)$
Hence we have the solution:

$$
5 x_{3}=5-4 x_{4}, x_{2}=-5 / 2+x_{3}+x_{4}, x_{1}=3-x_{2}-x_{4}
$$

Choosing any value of $x_{4} \in \mathbb{R}$, we find a solution of the linear combination problem.

Span

Definition

Let V be a vector space and S a nonempty subset of V. We call $\operatorname{span}(S)$ the set of all vectors in V that can be written as a linear combination of vectors in S.

Exercise: Let $S=\{(1,0,0),(0,1,0),(2,1,0)\}$. What is $\operatorname{span}(S)$?

Theorem

Theorem

The span of any subset S of a vector space V is a subspace of V.

Proof

Theorem

Theorem

The span of any subset S of a vector space V is a subspace of V.

Proof

Solution: need to show that span S is closed under the operations of addition and scalar multiplication.

Examples

Exercise: Does $S=\{(1,0,0),(0,1,0),(0,0,1)\}$ span \mathbb{R}^{3} ?

Examples

Exercise: Does $S=\{(1,2),(2,1)\}$ span \mathbb{R}^{2} ?

Examples

Exercise: Does $S=\{(1,2),(2,1)\}$ span \mathbb{R}^{2} ?

To solve this problem, we need to verify that, for any $(a, b) \in \mathbb{R}^{2}$ we can solve

$$
x_{1}(1,2)+x_{2}(2,1)=(a, b)
$$

This gives the system of linear equations:

$$
\begin{aligned}
& x_{1}+2 x_{2}=a \\
& 2 x_{1}+x_{2}=b
\end{aligned}
$$

Examples

Exercise: Does $S=\{(1,2),(2,1)\}$ span \mathbb{R}^{2} ?

To solve this problem, we need to verify that, for any $(a, b) \in \mathbb{R}^{2}$ we can solve

$$
x_{1}(1,2)+x_{2}(2,1)=(a, b)
$$

This gives the system of linear equations:

$$
\begin{aligned}
& x_{1}+2 x_{2}=a \\
& 2 x_{1}+x_{2}=b
\end{aligned}
$$

This is equivalent to the row-reduced system

$$
\begin{aligned}
x_{1}+2 x_{2} & =a \\
-3 x_{2} & =b-2 a
\end{aligned}
$$

showing that the system has always a solution.

Examples

Exercise: Does $S=\{(1,2)\}$ span \mathbb{R}^{2} ?

Using the argument above, we can see that not every element in \mathbb{R}^{2} can be written as a linear combination of S.

Examples

Exercise: Which (a, b, c) are in $\operatorname{span}(\{(1,1,2),(0,1,1),(2,1,3)\})$?

Examples

Exercise: Which (a, b, c) are in $\operatorname{span}(\{(1,1,2),(0,1,1),(2,1,3)\})$?

To solve this problem, we can examine the linear system

$$
x_{1}(1,1,2)+x_{2}(0,1,1)+x_{3}(2,1,3)=(a, b, c)
$$

which is associated with the augmented matrix

$$
\left(\begin{array}{rrr|r}
1 & 0 & 2 & a \\
1 & 1 & 1 & b \\
2 & 1 & 3 & c
\end{array}\right) \rightarrow\left(\begin{array}{rrr|r}
1 & 0 & 2 & a \\
0 & 1 & -1 & b-a \\
0 & 1 & 1 & c-2 a
\end{array}\right) \rightarrow\left(\begin{array}{rrr|r}
1 & 0 & 2 & \\
0 & 1 & -1 & a \\
0 & 0 & 2 & b-a \\
c-b-a
\end{array}\right)
$$

Since the linear system can be solved for any $(a, b, c) \in \mathbb{R}^{3}$, then $\operatorname{span}(\{(1,1,2),(0,1,1),(2,1,3)\})=\mathbb{R}^{3}$

Linear Dependance and Linear Independence

Section 1.5

Linear dependence

Goal: given a vector space V, we want to find the SMALLEST set $S \subset V$ such that $\operatorname{span}(S)=V$.

Linear dependence

Definition

A subset S of a vector space V is called linearly dependent if there exist a finite number of vectors $\mathbf{u}_{1}, \ldots, \mathbf{u}_{n} \in S$ and scalars a_{1}, \ldots, a_{n}, NOT ALL EQUAL TO ZERO, such that

$$
a_{1} \mathbf{u}_{1}+\ldots+a_{n} \mathbf{u}_{n}=\mathbf{0}
$$

If the vectors in S are not linearly dependent, we say that they are linearly independent.

Remark: Linear dependence is equivalent to say that at least one vector in S can be written as a linear combinations of the others. Linear independence on the other hand implies that no vector in the set can be expressed as a linear combination of the others

Example

Let $S=\{(1,1,1),(2,2,2)\}$.
S linearly dependent since

$$
2(1,1,1)=(2,2,2)
$$

equivalently

$$
2(1,1,1)-(2,2,2)=0
$$

Let $R=\{(2,0,0),(0,1,0)\}$.
R linearly independent since

$$
a_{1}(2,0,0)+a_{2}(0,1,0)=\left(2 a_{1}, a_{2}, 0\right)=0
$$

implies that $a_{1}=a_{2}=0$, showing that R is not linearly dependent.

If $S=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\} \subset V$, then S is linearly dependent if and only if there exists a constant $\alpha \neq 0$ such that $\mathbf{u}_{1}=\alpha \mathbf{u}_{2}$.

If S consists of more then two vectors, verifying linear dependence or independence requires more work.

Example

Let $S=\{(1,1,1),(-2,0,-3),(3,1,4)\}$.
S linearly dependent since

$$
(3,1,4)=(1,1,1)-(-2,0,-3)
$$

Let $R=\{(2,0,0),(0,1,0),(0,0,4)\}$.
R linearly independent since

$$
a_{1}(2,0,0)+a_{2}(0,1,0)+a_{3}(0,0,4)=\left(2 a_{1}, a_{2}, 4 a_{3}\right)=0
$$

implies that $a_{1}=a_{2}=a_{3}=0$, showing that R is not linearly dependent.

Linear independence

Remark

Let S be a subset of a vector space V and let $\mathbf{u}_{1}, \ldots, \mathbf{u}_{n} \in S$. These vectors are linearly independent if and only if

$$
a_{1} \mathbf{u}_{1}+\ldots+a_{n} \mathbf{u}_{n}=\mathbf{0} \Rightarrow a_{1}, \ldots, a_{n}=0
$$

Theorem

Theorem

Let V be a vector space. If $S_{1} \subseteq S_{2}$ and S_{1} is linearly dependent, then S_{2} is linearly dependent.

Proof
It follows form the definition.

Another theorem

Theorem
 Let S be a linearly independent subset of V. Let $\mathbf{v} \in V \backslash S$. Then $S \cup\{\mathbf{v}\}$ is linearly dependent if and only if $\mathbf{v} \in \operatorname{span}(S)$.

Another theorem

Theorem

Let S be a linearly independent subset of V. Let $\mathbf{v} \in V \backslash S$. Then $S \cup\{\mathbf{v}\}$ is linearly dependent if and only if $\mathbf{v} \in \operatorname{span}(S)$.

Let $S=\left\{u_{1}, \ldots, u_{m}\right\}$
Proof for (\Leftarrow). If $v \in \operatorname{span}(S)$, then v is a linear combination of elements in $\left\{u_{1}, \ldots, u_{m}\right\}$, hence $\left\{v, u_{1}, \ldots, u_{m}\right\}$ is linearly dependent.
Proof for (\Rightarrow). If $S \cup\{v\}$ is linearly dependent, then there are constants $c_{1}, \ldots, c_{m}, c_{m+1}$ not all zero such that

$$
c_{1} u_{1}+\cdots+c_{m} u_{m}+c_{m+1} v=0
$$

In this sum, it must be $c_{m+1} \neq 0$. If not, the rest of the sum would be 0 with c_{1}, \ldots, c_{m} not all zero, violating the hypothesis that S is linearly independent. Since $c_{m+1} \neq 0$, we can then write

$$
v=-\frac{1}{c_{m+1}}\left(c_{1} u_{1}+\cdots+c_{m} u_{m}\right)
$$

showing that $v \in \operatorname{span}(S)$.

Linear dependence and homogeneous systems of equations

A homogeneous system of equations like

$$
\begin{array}{r}
x_{1}+2 x_{2}-3 x_{3}=0 \\
3 x_{1}+5 x_{2}+9 x_{3}=0 \\
5 x_{1}+9 x_{2}+3 x_{3}=0
\end{array}
$$

can be written as a vector equation

$$
x_{1}(1,3,5)+x_{2}(2,5,9)+x_{3}(-3,9,3)=(0,0,0)
$$

Fact. The vectors $(1,3,5),(2,5,9),(-3,9,3)$ are linearly independent if and only if the trivial solution $x_{1}=x_{2}=x_{3}=0$ is the only solution of the homogeneous system.

Linear dependence and homogeneous systems of equations

The last observation implies that we can check the linear dependence or independence of a set of vectors by examining the solution set of the associated homogeneous system.
We examine the augmented matrix of the system

$$
\left(\begin{array}{rrr|r}
1 & 2 & -3 & 0 \\
3 & 5 & 9 & 0 \\
5 & 9 & 3 & 0
\end{array}\right) \rightarrow\left(\begin{array}{rrr|r}
1 & 2 & -3 & 0 \\
0 & -1 & 18 & 0 \\
0 & -1 & 18 & 0
\end{array}\right) \rightarrow\left(\begin{array}{rrr|r}
1 & 2 & -3 & 0 \\
0 & -1 & 18 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Since the row-reduced system has a row of zeros, then the homogeneous system has non-trivial solutions and, thus, the vectors $(1,3,5),(2,5,9),(-3,9,3)$ are linearly dependent.

Linear dependence and homogeneous systems of equations

Fact

Each linear dependence relation among the columns of the matrix A corresponds to a nontrivial solution to $A x=0$.
The columns of a matrix A are linearly independent if and only if the equation $A x=0$ has only the trivial solution.

Facts about linearly dependent/independent sets

- If a set S in a vector space V contains the 0 vector, then it is linearly dependent (since the linear dependence condition is always satisfied).
- The set of a single element $\{\mathbf{v}\}$ is linearly independent if and only if $\mathbf{v} \neq \mathbf{0}$ (it follows from the last property).
- If a set S in the vector space \mathbb{R}^{n} consists of $m>n$ vectors, then S is linearly dependent. It follows from the observation that an homogeneous linear system $A x=0$ there the matrix A has more columns than rows has always nontrivial solutions.

Bases and Dimension

Section 1.6

Basis

Definition

Let V be a vector space. A (vector) basis B of V is a linearly independent subset of V which satisfies $\operatorname{span}(B)=V$.

Example

$$
\text { Let } S=\{(1,0),(1,1),(2,3)\} . \text { Is } S \text { a basis for } \mathbb{R}^{2} \text { ? }
$$

Example

$$
\text { Let } S=\{(1,0),(1,1),(2,3)\} . \text { Is } S \text { a basis for } \mathbb{R}^{2} \text { ? }
$$

Solution. No, since A contains 3 vectors in \mathbb{R}^{2}, then the set is linearly dependent.

Example

$$
\text { Let } S=\{(1,0),(0,1),(0,2)\} . \text { Is } S \text { a basis for } \mathbb{R}^{2} \text { ? }
$$

Example

$$
\text { Let } S=\{(1,0),(0,1),(0,2)\} . \text { Is } S \text { a basis for } \mathbb{R}^{2} \text { ? }
$$

Solution. No, since S contains 3 vectors in \mathbb{R}^{2}, then the set is linearly dependent.

Example

Let $S=\{(1,0)\}$. Is S a basis for \mathbb{R}^{2} ?

Example

Let $S=\{(1,0)\}$. Is S a basis for \mathbb{R}^{2} ?

Solution. No, because the set does not span S.

Example

Let $S=\{(1,0),(1,1)\}$. Is S a basis for \mathbb{R}^{2} ?

Example

Let $S=\{(1,0),(1,1)\}$. Is S a basis for \mathbb{R}^{2} ?

Solution. Yes, because the set is linearly independent and does span S.
This can be seen by observing the matrix

$$
A=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

The columns are A are linearly independent since the matrix is reduced in row-echelon form.
The vectors span \mathbb{R}^{2} because the matrix $A x=\binom{a}{b}$ can be solved for any $\binom{a}{b} \in \mathbb{R}^{2}$.

Example

Let $S=\{(1,0,0),(0,1,0),(0,0,1)\}$. Is S a basis for \mathbb{R}^{3} ?

Example

Let $S=\{(1,0,0),(0,1,0),(0,0,1)\}$. Is S a basis for \mathbb{R}^{3} ?

Solution. Yes, because the set is linearly independent and does span S.
This basis is called the canonical basis of \mathbb{R}^{3}.
Similarly we define the canonical basis of \mathbb{R}^{n}, for any n.

Theorem for bases

Theorem

Let V be a vector space. Let $B=\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}\right\}$ be a subset of V. Then B is a basis of $V \Leftrightarrow \forall \mathbf{v} \in V: \exists!a_{1}, \ldots, a_{n} \in F, \mathbf{v}=a_{1} \mathbf{u}_{1}+\ldots+a_{n} \mathbf{u}_{n}$.

Proof for \Rightarrow If B is a basis, for every $v \in V$, there are a_{1}, \ldots, a_{n} such that $v=a_{1} u_{1}+\ldots+a_{n} u_{n}$ since B spans V. To prove uniqueness, suppose there is another expansion $v=b_{1} u_{1}+\ldots+b_{n} u_{n}$. Then $\left(a_{1}-b_{1}\right) u_{1}+\ldots+\left(a_{n}-b_{n}\right) u_{n}=0$. By the l.i., it must be $\left(a_{i}-b_{i}\right)=0$ for all coefficients. This shows that the expansion must be unique.

Proof for \Leftarrow If for every $v \in V$, there is a unique sequence a_{1}, \ldots, a_{n} such that $v=a_{1} u_{1}+\ldots+a_{n} u_{n}$, then B spans V. To show that B is l.i., consider the expansion of the 0 vector, that can be expressed by taking $a_{1}=\ldots=a_{n}=0$. By the uniqueness, this is the only expansion of the 0 vector. This also implies that B is I.i.

Theorem

Theorem

Let V be a vector space. Let S be a finite subset of V with $\operatorname{span}(S)=V$. Then there exists a subset of S which is a basis for V. In particular, V has a finite basis.

Proof

Exercise

Let $S=\{(1,0),(1,1),(2,3)\}$. We have $\mathbb{R}^{2}=\operatorname{span}(S)$ but S is not a basis. Find a subset of S which is a basis for \mathbb{R}^{2}.

Exercise

Let $S=\{(1,0),(0,1),(0,2)\}$. We have $\mathbb{R}^{2}=\operatorname{span}(S)$ but S is not a basis. Find a subset of S which is a basis for \mathbb{R}^{2}.

Exercise

Let $S=\{(-1,-1,-1),(5,5,5),(0,2,2),(0,0,3),(0,2,5)\}$. Is S a basis for \mathbb{R}^{3} ? If not, can you find a subset of S which is a basis for \mathbb{R}^{3} ?

Replacement Theorem

Question: given a vector space V, which is the SMALLEST set $S \subset V$ such that $\operatorname{span}(S)=V$?

Theorem (Replacement Theorem)

Let V be a vector space. Let $V=\operatorname{span}(G)$, where G is a subset of V of cardinality n. Let L be a linearly independent subset of V of cardinality m. Then the following holds.
(1) $m \leq n$
(2) there exists a subset $H \subseteq G$ of cardinality $n-m$ such that $\operatorname{span}(L \cup H)=V$

In other words

Let's consider two subsets of vector space V :

- $G=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}, \mathbf{u}_{5}\right\}$ (cardinality $n=5$), such that we have $V=\operatorname{span}(G)$,
- $L=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ (cardinality $m=2$) linearly independent.

Replacement theorem tells you that there are 2 vectors in G that can be replaced with the two vectors in L and the new set obtained by this replacement still spans V.

Corollaries to replacement theorem

Corollary 1

Let V be a vector space with a finite basis $B=\left\{u_{1}, \ldots, u_{n}\right\}$. Then any set containing more than n vectors is linearly dependent.

Corollaries to replacement theorem

Corollary 1

Let V be a vector space with a finite basis $B=\left\{u_{1}, \ldots, u_{n}\right\}$. Then any set containing more than n vectors is linearly dependent.

Proof Suppose S is a set with $p>n$ vectors. By the Replacement Theorem, S cannot be a a l.i. subset of V.

Corollaries to replacement theorem

Corollary 2

Let V be a vector space with a finite basis. Then all bases contain the same number of elements.

Corollaries to replacement theorem

Corollary 2

Let V be a vector space with a finite basis. Then all bases contain the same number of elements.

Proof. Suppose that B_{1} and B_{1} are two bases of V. By the definition of basis, both sets are I.i.
By Corollary 1, B_{1} cannot contain more elements of B_{2}, otherwise it would be linearly dependent.
Similarly, by Corollary $1, B_{2}$ cannot contain more elements of B_{1}, otherwise it would be linearly dependent.
Thus, B_{1} and B_{1} have the same number of elements.

Dimension of V

Definition

A vector space is called finite dimensional if there exists a basis consisting of finitely many vectors.

Definition

The unique cardinality of a basis of a finite dimensional vector space is called the dimension of V, denoted $\operatorname{dim}(V)$.

Examples

(1) $\operatorname{dim}\left(\mathbb{R}^{n}\right)=$
(2) $\operatorname{dim}\left(M_{n \times m}\right)=$

Examples

Let P_{n} be the vector space of the polynomials of degree $n \cdot \operatorname{dim}\left(P_{n}\right)=$

Corollaries to replacement theorem

Corollary 2

Let $S \subset V$. If $V=\operatorname{span}(S)$ and $\# S=\operatorname{dim}(V)$, then S is a basis.

Proof

Corollaries to replacement theorem

Corollary 3

Let $S \subset V$. If S is linearly independent and $\# S=\operatorname{dim}(V)$, then S is a basis.

Proof

Dimension of subspaces

Theorem

Let V be a vector space. Let W be a subspace of V. Assume $\operatorname{dim} V$ is finite. Then $\operatorname{dim} W \leq \operatorname{dim} V$ and equality holds if and only if $V=W$.

Proof
Immediate from Replacement Theorem.

Example

Let $W=\left\{\left(a_{1}, a_{2}, a_{3}\right) \mid a_{1}+a_{3}=0\right.$ and $\left.a_{1}+a_{2}-a_{3}=0\right\} \subset \mathbb{R}^{3}$. Find a basis for and the dimension of subspace W.

Example

Let $W=\left\{\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right) \mid a_{1}+a_{3}+a_{5}=0\right.$ and $\left.a_{2}=a_{4}\right\} \subset \mathbb{R}^{5}$. Find a basis for and the dimension of subspace W.

