
MATH 4377 - MATH 6308

Demetrio Labate
dlabate@uh.edu

D. Labate (UH) MATH 4377 1 / 55



Outline

Section 1.4 - Linear Combinations and System of Linear Equations
Section 1.5 - Linear Dependance/Independence
Section 1.6 - Bases and Dimension

D. Labate (UH) MATH 4377 2 / 55



Linear Combinations and System of
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Section 1.4
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Linear combination

Definition

Let V be a vector space over field F and S a nonempty subset of V .
We call v ∈ V a linear combination of vectors in S if there exist vectors
u1, . . . ,un ∈ S and scalars a1, . . . , an ∈ F such that

v = a1u1 + . . .+ anun

Exercise: Take V = R3 and S = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. Write
(3, 4, 1) as a linear combination of vectors in S .
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Example

Exercise: Write (3, 1, 2) as a linear combination of
(1, 0, 1), (0, 1, 1), (1, 2, 1).

To solve this problem, we need to solve

x1(1, 0, 1) + x2(0, 1, 1) + x3(1, 2, 1) = (3, 1, 2)

which is gives a system of linear equations:

x1 + x3 = 3

x2 + 2x3 = 1

x1 + x2 + x3 = 2
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Solving systems of linear equations

You can simplify the solution of a system of linear equations by performing
any of these elementary row operations:

Add a constant multiple of one equation to another.

Multiply an equation by a nonzero scalar.

Interchange the order of any two equations.

These there operations DO NOT change the solution of the system!
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Solving systems of linear equations

From the system of linear equations

x1 + x3 = 3

x2 + 2x3 = 1

x1 + x2 + x3 = 2

we write the augmented matrix 1 0 1 3
0 1 2 1
1 1 1 2


We will apply elementary row operations until we obtain a simplified
matrix which is equivalent to the original one.
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Solving systems of linear equations

r1 ↔ r3, r2 ↔ r3  1 0 1 3
0 1 2 1
1 1 1 2

 →

 1 1 1 2
1 0 1 3
0 1 2 1


r2 → r2 − r1  1 1 1 2

1 0 1 3
0 1 2 1

 →

 1 1 1 2
0 −1 0 1
0 1 2 1


r2 → −r2, r3 → r3 − r2; then r3 → 1

2 r3 1 1 1 2
0 −1 0 1
0 1 2 1

 →

 1 1 1 2
0 1 0 −1
0 0 2 2

 →

 1 1 1 2
0 1 0 −1
0 0 1 1


The last matrix is a row-echelon form matrix.
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Solving systems of linear equations

The row-echelon form matrix 1 1 1 2
0 1 0 −1
0 0 1 1


corresponds to the system

x1 + x2 + x3 = 2

x2 = −1

x3 = 1

which is easily solved: x1 = 2, x2 = −1, x3 = 1.

Thus we solve the original linear combination problem as

(3, 1, 2) = 2 (1, 0, 1)− (0, 1, 1) + (1, 2, 1)
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Example

Exercise: Write (3, 1, 2) as a linear combination of
(1, 0, 0), (0, 1, 0), (1, 2, 0).
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Example

Exercise: Write (3, 1, 2) as a linear combination of (1, 2,−1),(1, 6,−3),
(0, 1, 2),(1, 2, 1).

To solve this problem, we need to solve

x1(1, 2,−1) + x2(1, 6,−3) + x3(0, 1, 2) + x4(1, 2, 1) = (3, 1, 2)

which is gives a system of linear equations:

x1 + x2 + x4 = 3

2x1 + 6x2 + x3 + 2x4 = 1

−x1 − 3x2 + 2x3 + x4 = 2
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Example

 1 1 0 1 3
2 6 1 2 1

−1 −3 2 1 2

 →

 1 1 0 1 3
0 4 1 0 −5
0 −2 2 2 5

 → 1 1 0 1 3
0 −2 2 2 5
0 4 1 0 −5

 →

 1 1 0 1 3
0 1 −1 −1 −5/2
0 0 5 4 5


Hence we have the solution:

5x3 = 5− 4x4, x2 = −5/2 + x3 + x4, x1 = 3− x2 − x4

Choosing any value of x4 ∈ R, we find a solution of the linear combination
problem.
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Span

Definition

Let V be a vector space and S a nonempty subset of V . We call span(S)
the set of all vectors in V that can be written as a linear combination of
vectors in S .

Exercise: Let S = {(1, 0, 0), (0, 1, 0), (2, 1, 0)}. What is span(S)?
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Theorem

Theorem

The span of any subset S of a vector space V is a subspace of V .

Proof

Solution: need to show that spanS is closed under the operations of
addition and scalar multiplication.
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Examples

Exercise: Does S = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} span R3?
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Examples

Exercise: Does S = {(1, 2), (2, 1)} span R2?

To solve this problem, we need to verify that, for any (a, b) ∈ R2 we can
solve

x1(1, 2) + x2(2, 1) = (a, b)

This gives the system of linear equations:

x1 + 2x2 = a

2x1 + x2 = b

This is equivalent to the row-reduced system

x1 + 2x2 = a

−3x2 = b − 2a

showing that the system has always a solution.
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Examples

Exercise: Does S = {(1, 2)} span R2?

Using the argument above, we can see that not every element in R2 can
be written as a linear combination of S .

D. Labate (UH) MATH 4377 17 / 55



Examples

Exercise: Which (a, b, c) are in span({(1, 1, 2), (0, 1, 1), (2, 1, 3)})?

To solve this problem, we can examine the linear system

x1(1, 1, 2) + x2(0, 1, 1) + x3(2, 1, 3) = (a, b, c)

which is associated with the augmented matrix 1 0 2 a
1 1 1 b
2 1 3 c

 →

 1 0 2 a
0 1 −1 b − a
0 1 1 c − 2a

 →

 1 0 2 a
0 1 −1 b − a
0 0 2 c − b − a


Since the linear system can be solved for any (a, b, c) ∈ R3, then
span({(1, 1, 2), (0, 1, 1), (2, 1, 3)}) = R3
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Linear Dependance and Linear
Independence

Section 1.5
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Linear dependence

Goal: given a vector space V , we want to find the SMALLEST set S ⊂ V
such that span(S) = V .
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Linear dependence

Definition

A subset S of a vector space V is called linearly dependent if there exist a
finite number of vectors u1, . . . ,un ∈ S and scalars a1, . . . , an, NOT ALL
EQUAL TO ZERO, such that

a1u1 + . . .+ anun = 0.

If the vectors in S are not linearly dependent, we say that they are linearly
independent.

Remark: Linear dependence is equivalent to say that at least one vector in
S can be written as a linear combinations of the others. Linear
independence on the other hand implies that no vector in the set can be
expressed as a linear combination of the others
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Example

Let S = {(1, 1, 1), (2, 2, 2)}.

S linearly dependent since

2(1, 1, 1) = (2, 2, 2)

equivalently
2(1, 1, 1)− (2, 2, 2) = 0

Let R = {(2, 0, 0), (0, 1, 0)}.

R linearly independent since

a1(2, 0, 0) + a2(0, 1, 0) = (2a1, a2, 0) = 0

implies that a1 = a2 = 0, showing that R is not linearly dependent.
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Remark

If S = {u1,u2} ⊂ V , then S is linearly dependent if and only if there
exists a constant α ̸= 0 such that u1 = αu2.

If S consists of more then two vectors, verifying linear dependence or
independence requires more work.
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Example

Let S = {(1, 1, 1), (−2, 0,−3), (3, 1, 4)}.

S linearly dependent since

(3, 1, 4) = (1, 1, 1)− (−2, 0,−3)

Let R = {(2, 0, 0), (0, 1, 0), (0, 0, 4)}.

R linearly independent since

a1(2, 0, 0) + a2(0, 1, 0) + a3(0, 0, 4) = (2a1, a2, 4a3) = 0

implies that a1 = a2 = a3 = 0, showing that R is not linearly dependent.
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Linear independence

Remark

Let S be a subset of a vector space V and let u1, . . . ,un ∈ S . These
vectors are linearly independent if and only if

a1u1 + . . .+ anun = 0 ⇒ a1, . . . , an = 0.
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Theorem

Theorem

Let V be a vector space. If S1 ⊆ S2 and S1 is linearly dependent, then S2
is linearly dependent.

Proof
It follows form the definition.
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Another theorem

Theorem

Let S be a linearly independent subset of V . Let v ∈ V \ S . Then S ∪ {v}
is linearly dependent if and only if v ∈ span(S).

Let S = {u1, . . . , um}

Proof for (⇐). If v ∈ span(S), then v is a linear combination of elements in
{u1, . . . , um}, hence {v , u1, . . . , um} is linearly dependent.

Proof for (⇒). If S ∪ {v} is linearly dependent, then there are constants
c1, . . . , cm, cm+1 not all zero such that

c1u1 + · · ·+ cmum + cm+1v = 0

In this sum, it must be cm+1 ̸= 0. If not, the rest of the sum would be 0 with
c1, . . . , cm not all zero, violating the hypothesis that S is linearly independent.
Since cm+1 ̸= 0, we can then write

v = − 1
cm+1

(c1u1 + · · ·+ cmum)

showing that v ∈ span(S).
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Linear dependence and homogeneous systems of equations

A homogeneous system of equations like

x1 + 2x2 − 3x3 = 0

3x1 + 5x2 + 9x3 = 0

5x1 + 9x2 + 3x3 = 0

can be written as a vector equation

x1(1, 3, 5) + x2(2, 5, 9) + x3(−3, 9, 3) = (0, 0, 0)

Fact. The vectors (1, 3, 5), (2, 5, 9), (−3, 9, 3) are linearly independent if
and only if the trivial solution x1 = x2 = x3 = 0 is the only solution of the
homogeneous system.
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Linear dependence and homogeneous systems of equations

The last observation implies that we can check the linear dependence or
independence of a set of vectors by examining the solution set of the
associated homogeneous system.
We examine the augmented matrix of the system 1 2 −3 0

3 5 9 0
5 9 3 0

 →

 1 2 −3 0
0 −1 18 0
0 −1 18 0

 →

 1 2 −3 0
0 −1 18 0
0 0 0 0


Since the row-reduced system has a row of zeros, then the homogeneous
system has non-trivial solutions and, thus, the vectors
(1, 3, 5), (2, 5, 9), (−3, 9, 3) are linearly dependent.
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Linear dependence and homogeneous systems of equations

Fact

Each linear dependence relation among the columns of the matrix A
corresponds to a nontrivial solution to Ax = 0.
The columns of a matrix A are linearly independent if and only if the
equation Ax = 0 has only the trivial solution.
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Facts about linearly dependent/independent sets

If a set S in a vector space V contains the 0 vector, then it is linearly
dependent (since the linear dependence condition is always satisfied).

The set of a single element {v} is linearly independent if and only if
v ̸= 0 (it follows from the last property).

If a set S in the vector space Rn consists of m > n vectors, then S is
linearly dependent. It follows from the observation that an
homogeneous linear system Ax = 0 there the matrix A has more
columns than rows has always nontrivial solutions.
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Bases and Dimension

Section 1.6
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Basis

Definition

Let V be a vector space. A (vector) basis B of V is a linearly independent
subset of V which satisfies span(B) = V .
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Example

Let S = {(1, 0), (1, 1), (2, 3)}. Is S a basis for R2?

Solution. No, since A contains 3 vectors in R2, then the set is linearly
dependent.
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Example

Let S = {(1, 0), (0, 1), (0, 2)}. Is S a basis for R2?

Solution. No, since S contains 3 vectors in R2, then the set is linearly
dependent.

D. Labate (UH) MATH 4377 35 / 55



Example
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Example

Let S = {(1, 0)}. Is S a basis for R2?

Solution. No, because the set does not span S.
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Example

Let S = {(1, 0), (1, 1)}. Is S a basis for R2?

Solution. Yes, because the set is linearly independent and does span S.

This can be seen by observing the matrix

A =

(
1 1
0 1

)
The columns are A are linearly independent since the matrix is reduced in
row-echelon form.

The vectors span R2 because the matrix Ax =

(
a
b

)
can be solved for

any

(
a
b

)
∈ R2.
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Example

Let S = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. Is S a basis for R3?

Solution. Yes, because the set is linearly independent and does span S.

This basis is called the canonical basis of R3.

Similarly we define the canonical basis of Rn, for any n.
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Theorem for bases

Theorem

Let V be a vector space. Let B = {u1, . . . ,un} be a subset of V . Then

B is a basis of V ⇔ ∀v ∈ V : ∃! a1, . . . , an ∈ F , v = a1u1 + . . .+ anun.

Proof for ⇒ If B is a basis, for every v ∈ V , there are a1, . . . , an such that
v = a1u1 + . . .+ anun since B spans V . To prove uniqueness, suppose
there is another expansion v = b1u1 + . . .+ bnun. Then
(a1 − b1)u1 + . . .+ (an − bn)un = 0. By the l.i., it must be (ai − bi ) = 0
for all coefficients. This shows that the expansion must be unique.

Proof for ⇐ If for every v ∈ V , there is a unique sequence a1, . . . , an such
that v = a1u1 + . . .+ anun, then B spans V . To show that B is l.i.,
consider the expansion of the 0 vector, that can be expressed by taking
a1 = . . . = an = 0. By the uniqueness, this is the only expansion of the 0
vector. This also implies that B is l.i.
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Theorem

Theorem

Let V be a vector space. Let S be a finite subset of V with span(S) = V .
Then there exists a subset of S which is a basis for V . In particular, V has
a finite basis.

Proof
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Exercise

Let S = {(1, 0), (1, 1), (2, 3)}. We have R2 = span(S) but S is not a
basis. Find a subset of S which is a basis for R2.
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Exercise

Let S = {(1, 0), (0, 1), (0, 2)}. We have R2 = span(S) but S is not a
basis. Find a subset of S which is a basis for R2.
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Exercise

Let S = {(−1,−1,−1), (5, 5, 5), (0, 2, 2), (0, 0, 3), (0, 2, 5)}. Is S a basis
for R3? If not, can you find a subset of S which is a basis for R3?
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Replacement Theorem

Question: given a vector space V , which is the SMALLEST set S ⊂ V
such that span(S) = V ?

Theorem (Replacement Theorem)

Let V be a vector space. Let V = span(G ), where G is a subset of V of
cardinality n. Let L be a linearly independent subset of V of cardinality m.
Then the following holds.

1 m ≤ n

2 there exists a subset H ⊆ G of cardinality n −m such that
span(L ∪ H) = V
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In other words

Let’s consider two subsets of vector space V :

G = {u1,u2,u3,u4,u5} (cardinality n = 5), such that we have
V = span(G ),

L = {v1, v2} (cardinality m = 2) linearly independent.

Replacement theorem tells you that there are 2 vectors in G that can be
replaced with the two vectors in L and the new set obtained by this
replacement still spans V.
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Corollaries to replacement theorem

Corollary 1

Let V be a vector space with a finite basis B = {u1, . . . , un}. Then any
set containing more than n vectors is linearly dependent.

Proof Suppose S is a set with p > n vectors. By the Replacement
Theorem, S cannot be a a l.i. subset of V .
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Corollaries to replacement theorem

Corollary 2

Let V be a vector space with a finite basis. Then all bases contain the
same number of elements.

Proof. Suppose that B1 and B1 are two bases of V .
By the definition of basis, both sets are l.i.
By Corollary 1, B1 cannot contain more elements of B2, otherwise it would
be linearly dependent.
Similarly, by Corollary 1, B2 cannot contain more elements of B1,
otherwise it would be linearly dependent.
Thus, B1 and B1 have the same number of elements.
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Dimension of V

Definition

A vector space is called finite dimensional if there exists a basis consisting
of finitely many vectors.

Definition

The unique cardinality of a basis of a finite dimensional vector space is
called the dimension of V , denoted dim(V ).
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Examples

1 dim(Rn) =

2 dim(Mn×m) =
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Examples

Let Pn be the vector space of the polynomials of degree n. dim(Pn) =
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Corollaries to replacement theorem

Corollary 2

Let S ⊂ V . If V = span(S) and #S = dim(V ), then S is a basis.

Proof
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Corollaries to replacement theorem

Corollary 3

Let S ⊂ V . If S is linearly independent and #S = dim(V ), then S is a
basis.

Proof
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Dimension of subspaces

Theorem

Let V be a vector space. Let W be a subspace of V . Assume dimV is
finite. Then dimW ≤ dimV and equality holds if and only if V = W .

Proof
Immediate from Replacement Theorem.
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Example

Let W = {(a1, a2, a3) | a1 + a3 = 0 and a1 + a2 − a3 = 0} ⊂ R3. Find a
basis for and the dimension of subspace W .
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Example

Let W = {(a1, a2, a3, a4, a5) | a1 + a3 + a5 = 0 and a2 = a4} ⊂ R5. Find a
basis for and the dimension of subspace W .
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