MATH 4377 - MATH 6308

Demetrio Labate

dlabate@uh.edu

D. Labate (UH) MATH 4377

Outline

- Section 1.4 Linear Combinations and System of Linear Equations
- Section 1.5 Linear Dependance/Independence
- Section 1.6 Bases and Dimension

D. Labate (UH) MATH 4377 2 / 55

Linear Combinations and System of Linear Equations

Section 1.4

D. Labate (UH) MATH 4377

Linear combination

Definition

Let V be a vector space over field F and S a nonempty subset of V. We call $\mathbf{v} \in V$ a *linear combination* of vectors in S if there exist vectors $\mathbf{u}_1, \ldots, \mathbf{u}_n \in S$ and scalars $a_1, \ldots, a_n \in F$ such that

$$\mathbf{v} = a_1\mathbf{u}_1 + \ldots + a_n\mathbf{u}_n$$

Exercise: Take $V = \mathbb{R}^3$ and $S = \{(1,0,0), (0,1,0), (0,0,1)\}$. Write (3,4,1) as a linear combination of vectors in S.

D. Labate (UH) MATH 4377 4 / 55

Exercise: Write (3,1,2) as a linear combination of (1,0,1), (0,1,1), (1,2,1).

D. Labate (UH) MATH 4377 5 / 55

Exercise: Write (3, 1, 2) as a linear combination of (1, 0, 1), (0, 1, 1), (1, 2, 1).

To solve this problem, we need to solve

$$x_1(1,0,1) + x_2(0,1,1) + x_3(1,2,1) = (3,1,2)$$

which is gives a system of linear equations:

$$\begin{cases} x_1 + x_3 &= 3 \\ x_2 + 2x_3 &= 1 \\ x_1 + x_2 + x_3 &= 2 \end{cases}$$

5 / 55

D. Labate (UH) MATH 4377

You can simplify the solution of a system of linear equations by performing any of these **elementary row operations**:

- Add a constant multiple of one equation to another.
- Multiply an equation by a nonzero scalar.
- Interchange the order of any two equations.

These there operations DO NOT change the solution of the system!

D. Labate (UH) MATH 4377

From the system of linear equations

$$\begin{array}{c} x_1+x_3\\ x_2+2x_3\\ x_1+x_2+x_3\\ \end{array}= \begin{bmatrix} 3\\ 1\\ 2 \end{bmatrix}$$
 we write the augmented matrix
$$\begin{bmatrix} 1 & 0 & 1\\ 0 & 1 & 2\\ 1 & 1 & 1\\ 2 \end{bmatrix}$$

We will apply elementary row operations until we obtain a simplified matrix which is equivalent to the original one.

D. Labate (UH) MATH 4377 7 / 55

$$r_1 \leftrightarrow r_3, r_2 \leftrightarrow r_3$$

$$\begin{pmatrix}
1 & 0 & 1 & | & 3 \\
0 & 1 & 2 & | & 1 \\
1 & 1 & 1 & | & 2
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & 1 & 1 & | & 2 \\
1 & 0 & 1 & | & 3 \\
0 & 1 & 2 & | & 1
\end{pmatrix}$$

$$r_2 \rightarrow r_2 - r_1$$

$$\begin{pmatrix}
1 & 1 & 1 & 2 \\
1 & 0 & 1 & 3 \\
0 & 1 & 2 & 1
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & 1 & 1 & 2 \\
0 & -1 & 0 & 1 \\
0 & 1 & 2 & 1
\end{pmatrix}$$

$$r_2 \to -r_2, \ r_3 \to r_3 - r_2$$
; then $r_3 \to \frac{1}{2}r_3$

$$\left(\begin{array}{cc|cc|c} 1 & 1 & 1 & 2 \\ 0 & -1 & 0 & 1 \\ 0 & 1 & 2 & 1 \end{array}\right) \rightarrow \left(\begin{array}{cc|cc|c} 1 & 1 & 1 & 2 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 2 & 2 \end{array}\right) \rightarrow \left(\begin{array}{cc|cc|c} 1 & 1 & 1 & 2 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 1 \end{array}\right)$$

The last matrix is a row-echelon form matrix.

D. Labate (UH) MATH 4377

The row-echelon form matrix

$$\left(\begin{array}{ccc|c}
1 & 1 & 1 & 2 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 1
\end{array}\right)$$

corresponds to the system

$$x_1 + x_2 + x_3 = 2$$

 $x_2 = -1$
 $x_3 = 1$

which is easily solved: $x_1 = 2, x_2 = -1, x_3 = 1$.

Thus we solve the original linear combination problem as

$$(3,1,2) = 2(1,0,1) - (0,1,1) + (1,2,1)$$

D. Labate (UH) MATH 4377

Exercise: Write (3, 1, 2) as a linear combination of (1, 0, 0), (0, 1, 0), (1, 2, 0).

D. Labate (UH) MATH 4377

Exercise: Write (3,1,2) as a linear combination of (1,2,-1), (1,6,-3), (0,1,2), (1,2,1).

D. Labate (UH) MATH 4377

Exercise: Write (3, 1, 2) as a linear combination of (1, 2, -1), (1, 6, -3), (0, 1, 2), (1, 2, 1).

To solve this problem, we need to solve

$$x_1(1,2,-1) + x_2(1,6,-3) + x_3(0,1,2) + x_4(1,2,1) = (3,1,2)$$

which is gives a system of linear equations:

$$x_1 + x_2 + x_4 = 3$$

$$2x_1 + 6x_2 + x_3 + 2x_4 = 1$$

$$-x_1 - 3x_2 + 2x_3 + x_4 = 2$$

D. Labate (UH) MATH 4377 11 / 55

$$\begin{pmatrix} 1 & 1 & 0 & 1 & 3 \\ 2 & 6 & 1 & 2 & 1 \\ -1 & -3 & 2 & 1 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 0 & 1 & 3 \\ 0 & 4 & 1 & 0 & -5 \\ 0 & -2 & 2 & 2 & 5 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 0 & 1 & 3 \\ 0 & -2 & 2 & 2 & 5 \\ 0 & 4 & 1 & 0 & -5 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 0 & 1 & 3 \\ 0 & 1 & -1 & -1 & -5/2 \\ 0 & 0 & 5 & 4 & 5 \end{pmatrix}$$

Hence we have the solution:

$$5x_3 = 5 - 4x_4, x_2 = -5/2 + x_3 + x_4, x_1 = 3 - x_2 - x_4$$

Choosing any value of $x_4 \in \mathbb{R}$, we find a solution of the linear combination problem.

D. Labate (UH) MATH 4377 12 / 55

Span

Definition

Let V be a vector space and S a nonempty subset of V. We call span(S) the set of all vectors in V that can be written as a linear combination of vectors in S.

Exercise: Let $S = \{(1,0,0), (0,1,0), (2,1,0)\}$. What is span(S)?

D. Labate (UH) MATH 4377

Theorem

Theorem

The span of any subset S of a vector space V is a subspace of V.

Proof

D. Labate (UH) MATH 4377 14 / 55

Theorem

Theorem

The span of any subset S of a vector space V is a subspace of V.

Proof

Solution: need to show that span S is closed under the operations of addition and scalar multiplication.

D. Labate (UH) MATH 4377 14 / 55

Exercise: Does $S = \{(1,0,0), (0,1,0), (0,0,1)\}$ span \mathbb{R}^3 ?

D. Labate (UH) MATH 4377

Exercise: Does $S = \{(1, 2), (2, 1)\}$ span \mathbb{R}^2 ?

D. Labate (UH) MATH 4377

Exercise: Does $S = \{(1, 2), (2, 1)\}$ span \mathbb{R}^2 ?

To solve this problem, we need to verify that, for any $(a, b) \in \mathbb{R}^2$ we can solve

This gives the system of linear equations:
$$x_1(1,2) + x_2(2,1) = (a,b)$$

16 / 55

$$\begin{cases} x_1 + 2x_2 = a \\ 2x_1 + x_2 = b \end{cases}$$

D. Labate (UH) **MATH 4377**

Exercise: Does $S = \{(1, 2), (2, 1)\}$ span \mathbb{R}^2 ?

To solve this problem, we need to verify that, for any $(a,b) \in \mathbb{R}^2$ we can solve

$$x_1(1,2) + x_2(2,1) = (a,b)$$

This gives the system of linear equations:

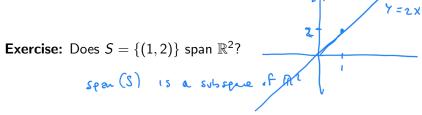
$$x_1 + 2x_2 = a$$
$$2x_1 + x_2 = b$$

This is equivalent to the row-reduced system

$$\begin{array}{cccc}
x_1 + 2x_2 & = & a \\
-3x_2 & = & b - 2a
\end{array}$$

showing that the system has always a solution.

D. Labate (UH) MATH 4377



Using the argument above, we can see that not every element in \mathbb{R}^2 can be written as a linear combination of S.

D. Labate (UH) MATH 4377 17 / 55

Exercise: Which (a, b, c) are in span $(\{(1, 1, 2), (0, 1, 1), (2, 1, 3)\})$?

D. Labate (UH) MATH 4377

Exercise: Which (a, b, c) are in span $(\{(1, 1, 2), (0, 1, 1), (2, 1, 3)\})$?

To solve this problem, we can examine the linear system

$$x_1(1,1,2) + x_2(0,1,1) + x_3(2,1,3) = (a,b,c)$$

which is associated with the augmented matrix

$$\begin{pmatrix} 1 & 0 & 2 & | & a \\ 1 & 1 & 1 & | & b \\ 2 & 1 & 3 & | & c \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 2 & | & a \\ 0 & 1 & -1 & | & b - a \\ 0 & 1 & 1 & | & c - 2a \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 2 & | & a \\ 0 & 1 & -1 & | & b - a \\ 0 & 0 & 2 & | & c - b - a \end{pmatrix}$$

Since the linear system can be solved for any $(a, b, c) \in \mathbb{R}^3$, then $\text{span}(\{(1,1,2),(0,1,1),(2,1,3)\}) = \mathbb{R}^3$

D. Labate (UH) MATH 4377 18 / 55

Linear Dependance and Linear Independence

Section 1.5

D. Labate (UH) MATH 4377

Linear dependence

Goal: given a vector space V, we want to find the SMALLEST set $S \subset V$ such that span(S) = V.

D. Labate (UH) MATH 4377

Linear dependence

Definition

A subset S of a vector space V is called <u>linearly dependent</u> if there exist a finite number of vectors $\mathbf{u}_1, \ldots, \mathbf{u}_n \in S$ and scalars a_1, \ldots, a_n , NOT ALL EQUAL TO ZERO, such that

$$a_1\mathbf{u}_1+\ldots+a_n\mathbf{u}_n=\mathbf{0}.$$

If the vectors in S are not linearly dependent, we say that they are *linearly independent*.

Remark: Linear dependence is equivalent to say that at least one vector in S can be written as a linear combinations of the others. Linear independence on the other hand implies that no vector in the set can be expressed as a linear combination of the others

D. Labate (UH) MATH 4377 21 / 55

Let $S = \{(1,1,1),(2,2,2)\}.$

S linearly dependent since

$$2(1,1,1)=(2,2,2)$$

equivalently

$$2(1,1,1)-(2,2,2)=0$$

Let $R = \{(2,0,0),(0,1,0)\}.$

R linearly independent since

$$a_1(2,0,0) + a_2(0,1,0) = (2a_1,a_2,0) = 0$$

implies that $a_1 = a_2 = 0$, showing that R is not linearly dependent.

D. Labate (UH) MATH 4377

Remark

If $S = \{\mathbf{u}_1, \mathbf{u}_2\} \subset V$, then S is linearly dependent if and only if there exists a constant $\alpha \neq 0$ such that $\mathbf{u}_1 = \alpha \mathbf{u}_2$.

If S consists of more then two vectors, verifying linear dependence or independence requires more work.

D. Labate (UH) MATH 4377 23 / 55

Let
$$S = \{(1,1,1), (-2,0,-3), (3,1,4)\}.$$

S linearly dependent since

$$(3,1,4) = (1,1,1) - (-2,0,-3)$$

Let
$$R = \{(2,0,0), (0,1,0), (0,0,4)\}.$$

R linearly independent since

$$a_1(2,0,0) + a_2(0,1,0) + a_3(0,0,4) = (2a_1, a_2, 4a_3) = 0$$

implies that $a_1 = a_2 = a_3 = 0$, showing that R is not linearly dependent.

D. Labate (UH) MATH 4377 24 / 55

Linear independence

Remark

Let S be a subset of a vector space V and let $\mathbf{u}_1, \dots, \mathbf{u}_n \in S$. These vectors are *linearly independent* if and only if

$$a_1\mathbf{u}_1 + \ldots + a_n\mathbf{u}_n = \mathbf{0} \Rightarrow a_1, \ldots, a_n = 0.$$

D. Labate (UH) MATH 4377

Theorem

Theorem

Let V be a vector space. If $S_1 \subseteq S_2$ and S_1 is linearly dependent, then S_2 is linearly dependent.

Proof

It follows form the definition.

D. Labate (UH) MATH 4377

Another theorem

Theorem

Let S be a linearly independent subset of V. Let $\mathbf{v} \in V \setminus S$. Then $S \cup \{\mathbf{v}\}$ is linearly dependent if and only if $\mathbf{v} \in \operatorname{span}(S)$.

D. Labate (UH) MATH 4377 27 / 55

Another theorem

Theorem

Let S be a linearly independent subset of V. Let $\mathbf{v} \in V \setminus S$. Then $S \cup \{\mathbf{v}\}$ is linearly dependent if and only if $\mathbf{v} \in \operatorname{span}(S)$.

Let
$$S = \{u_1, ..., u_m\}$$

Proof for (\Leftarrow) . If $v \in \text{span}(S)$, then v is a linear combination of elements in $\{u_1, \ldots, u_m\}$, hence $\{v, u_1, \ldots, u_m\}$ is linearly dependent.

Proof for (\Rightarrow). If $S \cup \{v\}$ is linearly dependent, then there are constants $c_1, \ldots, c_m, c_{m+1}$ not all zero such that

$$c_1u_1+\cdots+c_mu_m+c_{m+1}v=0$$

In this sum, it must be $c_{m+1} \neq 0$. If not, the rest of the sum would be 0 with c_1, \ldots, c_m not all zero, violating the hypothesis that S is linearly independent. Since $c_{m+1} \neq 0$, we can then write

$$v = -\frac{1}{c_{m+1}}(c_1u_1 + \cdots + c_mu_m)$$

showing that $v \in \text{span}(S)$.

D. Labate (UH) MATH 4377

Linear dependence and homogeneous systems of equations

A homogeneous system of equations like

3 eq. S
3 on Knows
$$x_1 + 2x_2 - 3x_3 = 0$$

 $3x_1 + 5x_2 + 9x_3 = 0$
 $5x_1 + 9x_2 + 3x_3 = 0$
can be written as a vector equation $x_1(1,3,5) + x_2(2,5,9) + x_3(-3,9,3) = (0,0,0)$

Fact. The vectors (1,3,5), (2,5,9), (-3,9,3) are linearly independent if and only if the trivial solution $x_1 = x_2 = x_3 = 0$ is the only solution of the homogeneous system.

D. Labate (UH) MATH 4377 28 / 55

Linear dependence and homogeneous systems of equations

The last observation implies that we can check the linear dependence or independence of a set of vectors by examining the solution set of the associated homogeneous system.

We examine the augmented matrix of the system

$$\left(\begin{array}{cc|cc|c} 1 & 2 & -3 & 0 \\ 3 & 5 & 9 & 0 \\ 5 & 9 & 3 & 0 \end{array}\right) \rightarrow \left(\begin{array}{cc|cc|c} 1 & 2 & -3 & 0 \\ 0 & -1 & 18 & 0 \\ 0 & -1 & 18 & 0 \end{array}\right) \rightarrow \left(\begin{array}{cc|cc|c} 1 & 2 & -3 & 0 \\ 0 & -1 & 18 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right)$$

Since the row-reduced system has a row of zeros, then the homogeneous system has non-trivial solutions and, thus, the vectors (1,3,5),(2,5,9),(-3,9,3) are **linearly dependent**.

D. Labate (UH) MATH 4377 29 / 55

Linear dependence and homogeneous systems of equations

Fact

Each linear dependence relation among the columns of the matrix A corresponds to a nontrivial solution to Ax = 0.

The columns of a matrix A are linearly independent if and only if the equation Ax = 0 has only the trivial solution.

D. Labate (UH) MATH 4377

Facts about linearly dependent/independent sets

- If a set S in a vector space V contains the 0 vector, then it is linearly dependent (since the linear dependence condition is always satisfied).
- The set of a single element $\{v\}$ is linearly independent if and only if $v \neq 0$ (it follows from the last property).
- If a set S in the vector space \mathbb{R}^n consists of m > n vectors, then S is linearly dependent. It follows from the observation that an homogeneous linear system Ax = 0 there the matrix A has more columns than rows has always nontrivial solutions.

D. Labate (UH) MATH 4377 31/55

Bases and Dimension

Section 1.6

D. Labate (UH) MATH 4377

Basis

Definition

Let V be a vector space. A (vector) basis B of V is a linearly independent subset of V which satisfies span(B) = V.

D. Labate (UH) MATH 4377 33 / 55

Let $S = \{(1,0), (1,1), (2,3)\}$. Is S a basis for \mathbb{R}^2 ?

D. Labate (UH) MATH 4377

Let $S = \{(1,0), (1,1), (2,3)\}$. Is S a basis for \mathbb{R}^2 ?

Solution. No, since \P contains 3 vectors in \mathbb{R}^2 , then the set is linearly dependent.

D. Labate (UH) MATH 4377

Let $S = \{(1,0), (0,1), (0,2)\}$. Is S a basis for \mathbb{R}^2 ?

D. Labate (UH) MATH 4377

Let $S = \{(1,0), (0,1), (0,2)\}$. Is S a basis for \mathbb{R}^2 ?

Solution. No, since A contains 3 vectors in \mathbb{R}^2 , then the set is linearly dependent.

D. Labate (UH) MATH 4377

Let $S = \{(1,0)\}$. Is S a basis for \mathbb{R}^2 ?

D. Labate (UH) MATH 4377

Let $S = \{(1,0)\}$. Is S a basis for \mathbb{R}^2 ?

Solution. No, because the set does not span S.

D. Labate (UH) MATH 4377

Let $S = \{(1,0), (1,1)\}$. Is S a basis for \mathbb{R}^2 ?

Need to check
$$span(S) = \mathbb{R}^2$$

$$S \quad (S \quad 2.i.$$

D. Labate (UH) MATH 4377 37 / 55

Let $S = \{(1,0), (1,1)\}$. Is S a basis for \mathbb{R}^2 ?

Solution. Yes, because the set is linearly independent and does span S.

This can be seen by observing the matrix

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

The column are linearly independent since the matrix is reduced in row-echelon form.

The vectors span \mathbb{R}^2 because the matrix Ax = 0 has only the trivial solution.

To clock they spen
$$\mathbb{R}^2$$
, well to clock
$$A \times = \begin{pmatrix} a \\ b \end{pmatrix} \quad \text{ca. is slud} \quad \begin{pmatrix} a \\ b \end{pmatrix}$$

D. Labate (UH) MATH 4377 37 / 55

Let $S = \{(1,0,0), (0,1,0), (0,0,1)\}$. Is S a basis for \mathbb{R}^3 ?

D. Labate (UH) MATH 4377

Let $S = \{(1,0,0), (0,1,0), (0,0,1)\}$. Is S a basis for \mathbb{R}^3 ?

Solution. Yes, because the set is linearly independent and does span S.

This basis is called the **canonical basis** of \mathbb{R}^3 .

Similarly we define the **canonical basis** of \mathbb{R}^n , for any n.

D. Labate (UH) MATH 4377

Theorem for bases

Theorem

Let V be a vector space. Let $B = \{\mathbf{u}_1, \dots, \mathbf{u}_n\}$ be a subset of V. Then

B is a basis of $V \Leftrightarrow \forall \mathbf{v} \in V : \exists ! a_1, \dots, a_n \in F, \mathbf{v} = a_1 \mathbf{u}_1 + \dots + a_n \mathbf{u}_n$.

Proof for \Rightarrow If B is a basis, for every $v \in V$, there are a_1, \ldots, a_n such that $v = a_1u_1 + \ldots + a_nu_n$ since B spans V. To prove uniqueness, suppose there is another expansion $v = b_1u_1 + \ldots + b_nu_n$. Then $(a_1 - b_1)u_1 + \ldots + (a_n - b_n)u_n = 0$. By the l.i., it must be $(a_i - b_i) = 0$ for all coefficients. This shows that the expansion must be unique.

Proof for \Leftarrow If for every $v \in V$, there is a unique sequence a_1, \ldots, a_n such that $v = a_1u_1 + \ldots + a_nu_n$, then B spans V. To show that B is l.i., consider the expansion of the 0 vector, that can be expressed by taking $a_1 = \ldots = a_n = 0$. By the uniqueness, this is the only expansion of the 0 vector. This also implies that B is l.i.

D. Labate (UH) MATH 4377

Theorem

Theorem

Let V be a vector space. Let S be a finite subset of V with span(S) = V. Then there exists a subset of S which is a basis for V. In particular, V has a finite basis.

Proof

D. Labate (UH) MATH 4377

Exercise

Let $S = \{(1,0), (1,1), (2,3)\}$. We have $\mathbb{R}^2 = \operatorname{span}(S)$ but S is not a basis. Find a subset of S which is a basis for \mathbb{R}^2 .

D. Labate (UH) MATH 4377

Exercise

Let $S = \{(1,0), (0,1), (0,2)\}$. We have $\mathbb{R}^2 = \operatorname{span}(S)$ but S is not a basis. Find a subset of S which is a basis for \mathbb{R}^2 .

D. Labate (UH) MATH 4377

Exercise

Let $S = \{(-1, -1, -1), (5, 5, 5), (0, 2, 2), (0, 0, 3), (0, 2, 5)\}$. Is S a basis for \mathbb{R}^3 ? If not, can you find a subset of S which is a basis for \mathbb{R}^3 ?

D. Labate (UH) MATH 4377

Replacement Theorem

Question: given a vector space V, which is the SMALLEST set $S \subset V$ such that span(S) = V?

Theorem (Replacement Theorem)

Let V be a vector space. Let $V = \operatorname{span}(G)$, where G is a subset of V of cardinality n. Let L be a linearly independent subset of V of cardinality m. Then the following holds.

- 0 m < n
- ② there exists a subset $H \subseteq G$ of cardinality n-m such that $\operatorname{span}(L \cup H) = V$

D. Labate (UH) MATH 4377 44 / 55

In other words

Let's consider two subsets of vector space V:

- $G = \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4, \mathbf{u}_5\}$ (cardinality n = 5), such that we have $V = \operatorname{span}(G)$,
- $L = \{v_1, v_2\}$ (cardinality m = 2) linearly independent.

Replacement theorem tells you that there are 2 vectors in G that can be replaced with the two vectors in L and the new set obtained by this replacement still spans V.

D. Labate (UH) MATH 4377 45 / 55

Corollary 1

Let V be a vector space with a finite basis $B = \{u_1, \dots, u_n\}$. Then any set containing more than n vectors is linearly dependent.

D. Labate (UH) MATH 4377

Corollary 1

Let V be a vector space with a finite basis $B = \{u_1, \dots, u_n\}$. Then any set containing more than n vectors is linearly dependent.

Proof Suppose S is a set with p > n vectors. By the Replacement Theorem, S cannot be a a l.i. subset of V.

D. Labate (UH) MATH 4377

Corollary 2

Let V be a vector space with a finite basis. Then all bases contain the same number of elements.

D. Labate (UH) MATH 4377

Corollary 2

Let V be a vector space with a finite basis. Then all bases contain the same number of elements.

Proof. Suppose that B_1 and B_1 are two bases of V.

By the definition of basis, both sets are I.i.

By Corollary 1, B_1 cannot contain more elements of B_2 , otherwise it would be linearly dependent.

Similarly, by Corollary 1, B_2 cannot contain more elements of B_1 , otherwise it would be linearly dependent.

Thus, B_1 and B_1 have the same number of elements.

D. Labate (UH) MATH 4377 47 / 55

Dimension of V

Definition

A vector space is called <u>finite dimensional</u> if there exists a basis consisting of finitely many vectors.

Definition

The unique cardinality of a basis of a finite dimensional vector space is called the *dimension* of V, denoted $\dim(V)$.

D. Labate (UH) MATH 4377 48 / 55

D. Labate (UH) MATH 4377 49 / 55

Let P_n be the vector space of the polynomials of degree n. dim $(P_n) = N \leftarrow 1$

D. Labate (UH) MATH 4377

Corollary 2

Let $S \subset V$. If V = span(S) and $\#S = \dim(V)$, then S is a basis.

Example
$$S = \{(1,1),(1,0)\} \subset \mathbb{R}^2$$

It is sufficient to show space(S) = \mathbb{R}^2

the S is outmostically lie

D. Labate (UH) MATH 4377 51/55

Corollary 3

Let $S \subset V$. If S is linearly independent and $\#S = \dim(V)$, then S is a basis.

D. Labate (UH) MATH 4377 52 / 55

Dimension of subspaces

Theorem

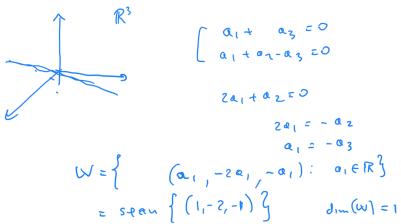
Let V be a vector space. Let W be a subspace of V. Assume dim V is finite. Then dim $W \le \dim V$ and equality holds if and only if V = W.

Proof

Immediate from Replacement Theorem.

D. Labate (UH) MATH 4377 53 / 55

Let $W = \{(a_1, a_2, a_3) \mid a_1 + a_3 = 0 \text{ and } a_1 + a_2 - a_3 = 0\} \subset \mathbb{R}^3$. Find a basis for and the dimension of subspace W.



D. Labate (UH) MATH 4377 54 / 55

Let $W = \{(a_1, a_2, a_3, a_4, a_5) \mid a_1 + a_3 + a_5 = 0 \text{ and } a_2 = a_4\} \subset \mathbb{R}^5$. Find a basis for and the dimension of subspace W.

$$a_1 + a_3 + a_5 = 0$$
 $\Rightarrow a_5 = -a_1 - a_3$

$$a_2 = a_4$$

$$W = \left\{ (a_1, a_2, a_3, a_2, -a_1 - a_3) : a_1, a_7, a_3 \in \mathbb{R} \right\}$$

$$= spen \left\{ (1, 00, 0, -1), (0, 1, 0, 0), (0, 0, 0, 0 - 1) \right\}$$

$$d_m W = 3$$

D. Labate (UH) MATH 4377 55 / 55