MATH 4377 - MATH 6308

Demetrio Labate

dlabate@uh.edu

Outline

(1) Chapter 2

- Section 2.1 - Linear Transformations
- Section 2.2 - Matrix Representation of a Linear Transformation

Linear Transformations, null spaces, and ranges

Section 2.1

Linear transformations

Definition

Let V, W be vector spaces over the same field F. We call a function $T: V \rightarrow W$ a linear transformation from V to W if
(1) $\forall \mathbf{x}, \mathbf{y} \in V: T(\mathbf{x}+\mathbf{y})=T(\mathbf{x})+T(\mathbf{y})$
(2) $\forall c \in F, \forall \mathbf{x} \in V: T(c \mathbf{x})=c T(\mathbf{x})$

Remark: We can say T is linear, for short.

Example

Show that T is linear:

$$
T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, T\left(a_{1}, a_{2}\right)=\left(2 a_{1}+a_{2}, a_{1}\right)
$$

Example

Show that T is linear:

$$
T: \mathbb{R}^{5} \rightarrow \mathbb{R}^{7}, T\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right)=\left(a_{1}, a_{2}, 0, a_{4}, 0,0, a_{1}\right)
$$

Example

Show that T is linear:

$$
T: C^{\infty}(\mathbb{R}) \rightarrow C^{\infty}(\mathbb{R}), T(f)=\frac{d f}{d t}
$$

Example

Show that T is linear:

$$
T: M_{m \times n} \rightarrow M_{n \times m}, T(A)=A^{T}
$$

Example

Show that T is linear:

$$
T: M_{m \times n} \rightarrow M_{n \times m}, T(A)=A^{T}
$$

Need to show that:

$$
\begin{gathered}
T(\alpha A)=\alpha T(A) \\
T(A+B)=\alpha T(A)+T(B)
\end{gathered}
$$

Properties of linear transformation

- $T(\mathbf{x}-\mathbf{y})=T(\mathbf{x})-T(\mathbf{y})$
- $T(\mathbf{0})=\mathbf{0}$
- $T\left(a_{1} \mathbf{v}_{1}+\ldots+a_{n} \mathbf{v}_{n}\right)=a_{1} T\left(\mathbf{v}_{1}\right)+\ldots+a_{n} T\left(\mathbf{v}_{n}\right)$

Null Space

Definition

Let V, W be vector spaces. Let $T: V \rightarrow W$ be linear.
The null space (or kernel) of T is the set

$$
N(T)=\{\mathbf{x} \in V: T(\mathbf{x})=\mathbf{0}\} \subset V
$$

The range of T is the set

$$
R(T)=\{T(\mathbf{x}): \mathbf{x} \in V\} \subset W
$$

Example

Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}, T\left(a_{1}, a_{2}, a_{3}\right)=\left(a_{1}-a_{2}, 2 a_{3}\right)$.
Find null space and range.

Example

Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}, T\left(a_{1}, a_{2}, a_{3}\right)=\left(a_{1}-a_{2}, 2 a_{3}\right)$.
Find null space and range.
SOLUTION:

$$
N(T)=\left\{x \in \mathbb{R}^{3}: T\left(a_{1}, a_{2}, a_{3}\right)=\left(a_{1}-a_{2}, 2 a_{3}\right)=0\right\}
$$

This give the condition $a_{3}-0$ and $a_{1}=a_{2}$.
This implies that $\operatorname{dim} N(T)=1$.

Example

Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}, T\left(a_{1}, a_{2}, a_{3}\right)=\left(a_{1}-a_{2}, 2 a_{3}\right)$.
Find null space and range.
SOLUTION:

$$
N(T)=\left\{x \in \mathbb{R}^{3}: T\left(a_{1}, a_{2}, a_{3}\right)=\left(a_{1}-a_{2}, 2 a_{3}\right)=0\right\}
$$

This give the condition $a_{3}-0$ and $a_{1}=a_{2}$.
This implies that $\operatorname{dim} N(T)=1$.

$$
R(T)=\left\{T(x): x \in \mathbb{R}^{3}\right\}
$$

You can show that $R(T)=\mathbb{R}^{2}$.

Theorem

Theorem
Let V, W be vector spaces and $T: V \rightarrow W$ linear. Then
(1) $N(T)$ is a subspace of V
(2) $R(T)$ is a subspace of W

Proof. Use definition of subspace.

Another theorem

Theorem

Let V, W be vector spaces and $T: V \rightarrow W$ linear. Let $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ be a basis for V. Then

$$
R(T)=\operatorname{span}\left\{T\left(\mathbf{v}_{1}\right), \ldots, T\left(\mathbf{v}_{n}\right)\right\} .
$$

Proof.

Another theorem

Theorem

Let V, W be vector spaces and $T: V \rightarrow W$ linear. Let $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ be a basis for V. Then

$$
R(T)=\operatorname{span}\left\{T\left(\mathbf{v}_{1}\right), \ldots, T\left(\mathbf{v}_{n}\right)\right\}
$$

Proof. For any $v \in V$, there are constants c_{1}, \ldots, c_{n} such that

$$
v=\sum_{i=1}^{n} c_{i} v_{i}
$$

By linearity,

$$
T(v)=T\left(\sum_{i=1}^{n} c_{i} v_{i}\right)=\sum_{i=1}^{n} c_{i} T\left(v_{i}\right)
$$

Hence,

$$
R(T)=\operatorname{span}\left\{T\left(v_{1}\right), \ldots, T\left(v_{n}\right)\right\}
$$

Another theorem

Remark.

The theorem below shows that we can represent the span of $R(T)$ using a basis $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ of V.
However, this does not imply that $\left\{T\left(\mathbf{v}_{1}\right), \ldots, T\left(\mathbf{v}_{n}\right)\right\}$ is a basis of $R(T)$.

Theorem

Let V, W be vector spaces and $T: V \rightarrow W$ linear. Let $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ be a basis for V. Then

$$
R(T)=\operatorname{span}\left\{T\left(\mathbf{v}_{1}\right), \ldots, T\left(\mathbf{v}_{n}\right)\right\}
$$

Example

Find a basis for $R(T)$ when

$$
T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}, T\left(a_{1}, a_{2}, a_{3}\right)=\left(a_{1}-2 a_{2}, a_{2}+a_{3}, 2 a_{1}+a_{2}+5 a_{3}\right)
$$

Example

Find a basis for $R(T)$ when

$$
T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}, T\left(a_{1}, a_{2}, a_{3}\right)=\left(a_{1}-2 a_{2}, a_{2}+a_{3}, 2 a_{1}+a_{2}+5 a_{3}\right)
$$

SOLUTION. Let $\left\{e_{1}, e_{2}, e_{3}\right\}$ be the canonical basis of \mathbb{R}^{3}.
By the theorem above,

$$
\left\{T\left(e_{1}\right), T\left(e_{2}\right), T\left(e_{3}\right)\right\}=\{(1,0,2),(-2,1,1),(0,1,5)\}
$$

spans $R(T)$.
Note that $2(1,0,2)+(-2,1,1)=(0,1,5)$, so the 3 vectors are I.d., showing that they do not form a basis of $R(T)$.
However, $\{(1,0,2),(-2,1,1)\}$ are l.i. vectors spanning $R(T)$, hence they form a basis of $R(T)$.

Nullity and Rank

Definition

Let V, W be vector spaces and $T: V \rightarrow W$ be linear. If $N(T), R(T)$ are finite dimensional, then let

$$
\operatorname{nullity}(T)=\operatorname{dim} N(T), \quad \operatorname{rank}(T)=\operatorname{dim} R(T)
$$

Dimension Theorem

Dimension Theorem

Let V, W be vector spaces and $T: V \rightarrow W$ be linear. If V is finite-dimensional, then

$$
\operatorname{nullity}(T)+\operatorname{rank}(T)=\operatorname{dim} V
$$

Proof. Let $\left\{v_{1}, \ldots, v_{k}\right\}$ be a basis for $N(T) \subset V$, hence, $\operatorname{nullity}(T)=k$. By the Replacement theorem, we can find additional I.i. vectors $\left\{v_{k+1}, \ldots, v_{n}\right\}$ such that $\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis for V, where $\operatorname{dim}(V)=n$. For any $v \in V$, we can write

$$
v=\sum_{i=1}^{n} a_{i} v_{i}
$$

and, by linearity

$$
T(v)=T\left(\sum_{i=1}^{n} a_{i} v_{i}\right)=\sum_{i=1}^{n} a_{i} T\left(v_{i}\right)
$$

Dimension Theorem

Since $T\left(v_{i}\right)=0$, when $i=1, \ldots, k$, then
$T(v) \in \operatorname{span}\left\{T\left(v_{k+1}\right), \ldots, T\left(v_{n}\right)\right\}$ and $R(T)=\operatorname{span}\left\{v_{k+1}, \ldots, v_{n}\right\}$.
We need to show that the set $\left\{T\left(v_{k+1}\right), \ldots, T\left(v_{n}\right)\right\}$ is l.i., so that it as basis of $R(T)$.
Suppose $c_{k+1} T\left(v_{k+1}\right)+\ldots+c_{n} T\left(v_{n}\right)=0$.
This implies that $T\left(c_{k+1} v_{k+1}+\ldots+c_{n} v_{n}\right)=0$, so that
$c_{k+1} v_{k+1}+\ldots+c_{n} v_{n} \in N(T)$.
Since $\left\{v_{1}, \ldots, v_{k}\right\}$ is a basis for $N(T)$, we can write

$$
c_{k+1} v_{k+1}+\ldots+c_{n} v_{n}=a_{1} v_{1}+\ldots+c_{k} v_{k}
$$

which implies

$$
a_{1} v_{1}+\ldots+a_{k} v_{k}-c_{k+1} v_{k+1}-\ldots-c_{n} v_{n}=0
$$

Since $\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis, the above equation implies that all coefficients a_{1}, \ldots, a_{k} and c_{k+1}, \ldots, c_{n} are 0 , showing that $\left\{T\left(v_{k+1}\right), \ldots, T\left(v_{n}\right)\right\}$ is I.i. This also implies that $\operatorname{dim} R(T)=n-k$.

Theorem

Theorem

Let V, W vector spaces. Let $T: V \rightarrow W$ linear. Then T is one-to-one if and only if $N(T)=\{\mathbf{0}\}$.

Proof for \Rightarrow Assume T is one-to-one. Since T is linear $T(0)=0$. Suppose we also have that $T(x)=0$ for some $x \in V$. Since T is one-to-one, $T(x)=T(0)$ implies $x=0$. Thus, $N(T)=\{0\}$.

Proof for \Leftarrow Assume $N(T)=\{\mathbf{0}\}$. For any $x, y \in V$, suppose $T(x)=T(y)$, which is equivalent to $T(x-y)=0$. Since $N(T)=\{0\}$, the last equation implies that $x-y=0$. This shows that $T(x)=T(y)$ implies $x=y$, hence T is one-to-one.

Theorem

Theorem

Let V, W vector spaces with $\operatorname{dim} V=\operatorname{dim} W$ (both finite!). Let $T: V \rightarrow W$ linear. Then the following are equivalent:
(1) T is one-to-one
(2) T is onto
(3) $\operatorname{rank} T=\operatorname{dim} V$
$\operatorname{Proof}(1) \Leftrightarrow(3) . T$ is one-to-one if and only if nullity $(T)=0$ Thus, by the Dimension Theorem, using the hypothesis that $\operatorname{dim} V=\operatorname{dim} W$, the statement that T is one-to-one is also equivalent to $\operatorname{rank} T=\operatorname{dim} V$.

Example

We have seen the following linear T :

$$
T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, T\left(a_{1}, a_{2}\right)=\left(2 a_{1}+a_{2}, a_{1}\right)
$$

Is T one-to-one? Is T onto?

Example

We have seen the following linear T :

$$
T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, T\left(a_{1}, a_{2}\right)=\left(2 a_{1}+a_{2}, a_{1}\right)
$$

Is T one-to-one? Is T onto?

To check T one-to-one, we can verify that $N(T)=\{0\}$

Example

We have seen the following linear T :

$$
T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, T\left(a_{1}, a_{2}\right)=\left(2 a_{1}+a_{2}, a_{1}\right)
$$

Is T one-to-one? Is T onto?

To check T one-to-one, we can verify that $N(T)=\{0\}$
Since T one-to-one and $\operatorname{dim} V=\operatorname{dim} W$, by previous theorem, T onto.

Remarks

- If $T: V \rightarrow W$ linear and $\operatorname{dim} V<\operatorname{dim} W$, then T cannot be onto.

Remarks

- If $T: V \rightarrow W$ linear and $\operatorname{dim} V<\operatorname{dim} W$, then T cannot be onto.

By the Dimension Theorem: $\operatorname{dim} V-\operatorname{dim} N(T)=\operatorname{dim} R(T)$ If $\operatorname{dim} V<\operatorname{dim} W$, then $\operatorname{dim} R(T)>\operatorname{dim} V$, then T cannot be onto by theorem above.

- If $T: V \rightarrow W$ linear and $\operatorname{dim} V>\operatorname{dim} W$, then T cannot be one-to-one.

Remarks

- If $T: V \rightarrow W$ linear and $\operatorname{dim} V<\operatorname{dim} W$, then T cannot be onto.

By the Dimension Theorem: $\operatorname{dim} V-\operatorname{dim} N(T)=\operatorname{dim} R(T)$ If $\operatorname{dim} V<\operatorname{dim} W$, then $\operatorname{dim} R(T)>\operatorname{dim} V$, then T cannot be onto by theorem above.

- If $T: V \rightarrow W$ linear and $\operatorname{dim} V>\operatorname{dim} W$, then T cannot be one-to-one.

By the Dimension Theorem: $\operatorname{dim} V-\operatorname{dim} R(T)=\operatorname{dim} N(T)$ If $\operatorname{dim} W<\operatorname{dim} V$, then necessarily $\operatorname{dim} N(T) \geq 1$, hence T cannot be one-to-one.

Example

Consider the linear transformation:

$$
T: P_{2}(\mathbb{R}) \rightarrow P_{3}(\mathbb{R}), T(p(x))=2 p^{\prime}(x)+\int_{0}^{x} p(t) d t
$$

(1) Is T onto? (2) Is T one-to-one?

Example

Consider the linear transformation:

$$
T: P_{2}(\mathbb{R}) \rightarrow P_{3}(\mathbb{R}), T(p(x))=2 p^{\prime}(x)+\int_{0}^{x} p(t) d t
$$

(1) Is T onto? (2) Is T one-to-one?
(1) $\operatorname{dim}\left(P_{2}(\mathbb{R})\right)=3$ and $\operatorname{dim}\left(P_{3}(\mathbb{R})\right)=4$.

Thus by above remark T is not onto.

Example

Consider the linear transformation:

$$
T: P_{2}(\mathbb{R}) \rightarrow P_{3}(\mathbb{R}), T(p(x))=2 p^{\prime}(x)+\int_{0}^{x} p(t) d t
$$

(1) Is T onto? (2) Is T one-to-one?
(1) $\operatorname{dim}\left(P_{2}(\mathbb{R})\right)=3$ and $\operatorname{dim}\left(P_{3}(\mathbb{R})\right)=4$.

Thus by above remark T is not onto.
(2) We compute $N(T)=\left\{p \in P_{2}: T(p)=0\right\}$.

Direct calculation shows that $N(T)=\{0\})$, hence T one-to-one.

Theorem

Theorem

Let V, W vector spaces. Let $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ be a basis for V. Let $\mathbf{w}_{1}, \ldots, \mathbf{w}_{n}$ be a list of arbitrary vectors in W. Then there exists a unique $T: V \rightarrow W$ linear such that $T\left(\mathbf{v}_{i}\right)=\mathbf{w}_{i}$ for all $i=1, \ldots, n$.

Theorem

Theorem

Let V, W vector spaces. Let $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ be a basis for V. Let $\mathbf{w}_{1}, \ldots, \mathbf{w}_{n}$ be a list of arbitrary vectors in W. Then there exists a unique $T: V \rightarrow W$ linear such that $T\left(\mathbf{v}_{i}\right)=\mathbf{w}_{i}$ for all $i=1, \ldots, n$.

Proof.
For any $v \in V$, we can write

$$
v=\sum_{i=1}^{n} a_{i} v_{i}
$$

and the expansion is unique.
By linearity, with the notation $w_{i}=T\left(v_{i}\right)$,

$$
T(v)=T\left(\sum_{i=1}^{n} a_{i} v_{i}\right)=\sum_{i=1}^{n} a_{i} T\left(v_{i}\right)=\sum_{i=1}^{n} a_{i} W_{i}
$$

This representation is also unique.

Corollary

Corollary

Let V, W vector spaces. Let $U, T: V \rightarrow W$ linear with $U\left(\mathbf{v}_{i}\right)=T\left(\mathbf{v}_{i}\right)$ on a basis $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ for V. Then $U=T$.

This follows directly from the theorem.

The Matrix Representation of a Linear Transformation

Section 2.2

Ordered basis

Definition

Let V be a finite dimensional vector space. An ordered basis for V is a basis endowed with a specific order.

Ex: ordered bases

$$
\begin{aligned}
& \beta_{1}=\{(1,0,0),(0,1,0),(0,0,1)\} \\
& \beta_{2}=\{(0,1,0),(1,0,0),(0,0,1)\}
\end{aligned}
$$

are different!

Coordinate vector

Let $\beta=\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}\right\}$ ordered basis for V. We saw earlier:

$$
\forall \mathbf{x} \in V, \exists!a_{1}, \ldots, a_{n}: \mathbf{x}=a_{1} \mathbf{u}_{1}+\ldots+a_{n} \mathbf{u}_{n}
$$

Write

$$
[\mathbf{x}]_{\beta}=\left(a_{1}, \ldots, a_{n}\right)
$$

for the coordinate vector of \mathbf{x} relative to β.
Ex: Find coordinate vector of $\mathbf{x}=(3,2,5)$ relative to $\beta=\{(0,1,0),(1,0,0),(0,0,1)\}$.

Coordinate vector

Let $\beta=\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}\right\}$ ordered basis for V. We saw earlier:

$$
\forall \mathbf{x} \in V, \exists!a_{1}, \ldots, a_{n}: \mathbf{x}=a_{1} \mathbf{u}_{1}+\ldots+a_{n} \mathbf{u}_{n}
$$

Write

$$
[\mathbf{x}]_{\beta}=\left(a_{1}, \ldots, a_{n}\right)
$$

for the coordinate vector of \mathbf{x} relative to β.
Ex: Find coordinate vector of $\mathbf{x}=(3,2,5)$ relative to
$\beta=\{(0,1,0),(1,0,0),(0,0,1)\}$.
SOLUTION:

$$
(3,2,5)=2(0,1,0)+3(1,0,0), 5(0,0,1)
$$

Hence $[\mathbf{x}]_{\beta}=(2,3,5)$.

Matrix representation of T

Let $T: V \rightarrow W$ linear.
Let $\beta=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$, be a basis for V and $\gamma=\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{m}\right\}$ a basis for W.

Write

$$
T\left(\mathbf{v}_{j}\right)=\sum_{i=1}^{m} a_{i j} \mathbf{w}_{i} \quad \text { for } j=1, \ldots, n
$$

We call the matrix $\left(a_{i j}\right)$ the matrix representation of T with respect to β and γ and denote it by $[T]_{\beta}^{\gamma}$.
Notice that the j-th column of the matrix representation is $\left[T\left(\mathbf{v}_{j}\right)\right]_{\gamma}$
Particular case: when $V=W$ and $\beta=\gamma$, we denote the matrix representation by $[T]_{\beta}$.

Example

Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be given by

$$
T\left(a_{1}, a_{2}\right)=\left(a_{1}+3 a_{2}, 0,2 a_{1}-4 a_{2}\right) .
$$

Write $[T]_{\beta}^{\gamma}$ with $\beta=\{(1,0),(0,1)\}$ and $\gamma=\{(1,0,0),(0,1,0),(0,0,1)\}$. (standard bases)

Example

Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be given by

$$
T\left(a_{1}, a_{2}\right)=\left(a_{1}+3 a_{2}, 0,2 a_{1}-4 a_{2}\right)
$$

Write $[T]_{\beta}^{\gamma}$ with $\beta=\{(1,0),(0,1)\}$ and $\gamma=\{(1,0,0),(0,1,0),(0,0,1)\}$. (standard bases)
SOLUTION:
$T\left(v_{1}\right)=(1,0,2)=1(1,0,0)+0(0,1,0)+2(0,0,1), \rightarrow\left[T\left(v_{1}\right)\right]_{\gamma}=\left(\begin{array}{l}1 \\ 0 \\ 2\end{array}\right)$
$T\left(v_{2}\right)=(3,0,-4)=3(1,0,0)+0(0,1,0)-4(0,0,1), \rightarrow\left[T\left(v_{2}\right)\right]_{\gamma}=\left(\begin{array}{c}3 \\ 0 \\ -4\end{array}\right)$
Hence $[T]_{\beta}^{\gamma}=\left(\begin{array}{cc}1 & 3 \\ 0 & 0 \\ 2 & -4\end{array}\right)$

Example

Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be given by

$$
T\left(a_{1}, a_{2}\right)=\left(a_{1}+3 a_{2}, 0,2 a_{1}-4 a_{2}\right) .
$$

Write $[T]_{\beta}^{\tilde{\gamma}}$ with $\beta=\{(1,0),(0,1)\}$ and $\tilde{\gamma}=\{(0,1,0),(1,0,0),(0,0,1)\}$.

Example

Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be given by

$$
T\left(a_{1}, a_{2}\right)=\left(a_{1}+3 a_{2}, 0,2 a_{1}-4 a_{2}\right) .
$$

Write $[T]_{\beta}^{\tilde{\gamma}}$ with $\beta=\{(1,0),(0,1)\}$ and $\tilde{\gamma}=\{(0,1,0),(1,0,0),(0,0,1)\}$. SOLUTION:

$$
\begin{aligned}
& T\left(v_{1}\right)=(1,0,2)=0(0,1,0)+1(1,0,0)+2(0,0,1), \rightarrow\left[T\left(v_{1}\right)\right]_{\gamma}=\left(\begin{array}{l}
0 \\
1 \\
2
\end{array}\right) \\
& T\left(v_{2}\right)=(3,0,-4)=0(0,1,0)+3(1,0,0)-4(0,0,1), \rightarrow\left[T\left(v_{2}\right)\right]_{\gamma}=\left(\begin{array}{c}
0 \\
3 \\
-4
\end{array}\right)
\end{aligned}
$$

Hence $[T]_{\beta}^{\gamma}=\left(\begin{array}{cc}0 & 0 \\ 1 & 3 \\ 2 & -4\end{array}\right)$

Example

Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be given by

$$
T\left(a_{1}, a_{2}\right)=\left(a_{1}+3 a_{2}, 0,2 a_{1}-4 a_{2}\right)
$$

Write $[T]_{\tilde{\beta}}^{\gamma}$ with $\tilde{\beta}=\{(0,1),(1,0)\}$ and $\gamma=\{(1,0,0),(0,1,0),(0,0,1)\}$.

Example

Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be given by

$$
T\left(a_{1}, a_{2}\right)=\left(a_{1}+3 a_{2}, 0,2 a_{1}-4 a_{2}\right)
$$

Write $[T]_{\tilde{\beta}}^{\gamma}$ with $\tilde{\beta}=\{(0,1),(1,0)\}$ and $\gamma=\{(1,0,0),(0,1,0),(0,0,1)\}$. SOLUTION:

$$
\begin{aligned}
& T\left(u_{1}\right)=(3,0,-4)=3(1,0,0)+0(0,1,0)-4(0,0,1), \rightarrow\left[T\left(v_{2}\right)\right]_{\gamma}=\left(\begin{array}{c}
3 \\
0 \\
-4
\end{array}\right) \\
& T\left(u_{2}\right)=(1,0,2)=1(1,0,0)+0(0,1,0)+2(0,0,1), \rightarrow\left[T\left(v_{1}\right)\right]_{\gamma}=\left(\begin{array}{l}
1 \\
0 \\
2
\end{array}\right)
\end{aligned}
$$

Hence $[T]_{\beta}^{\gamma}=\left(\begin{array}{cc}3 & 1 \\ 0 & 0 \\ -4 & 2\end{array}\right)$

Example

Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be given by

$$
T\left(a_{1}, a_{2}\right)=\left(a_{1}+3 a_{2}, 0,2 a_{1}-4 a_{2}\right) .
$$

Write $[T]_{\beta}^{\delta}$ with $\beta=\{(1,0),(0,1)\}$ and $\delta=\{(1,1,0),(0,1,1),(2,2,3)\}$.

Example

Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be given by

$$
T\left(a_{1}, a_{2}\right)=\left(a_{1}+3 a_{2}, 0,2 a_{1}-4 a_{2}\right)
$$

Write $[T]_{\beta}^{\delta}$ with $\beta=\{(1,0),(0,1)\}$ and $\delta=\{(1,1,0),(0,1,1),(2,2,3)\}$.
SOLUTION: $T\left(v_{1}\right)=(1,0,2)=a_{1}(1,1,0)+a_{2}(0,1,1)+a_{3}(2,2,3)=$ $\left(a_{1}+2 a_{3}, a_{1}+a_{2}+2 a_{3}, a_{2}+3 a_{3}\right)$
By solving the linear system we obtain $\rightarrow\left[T\left(v_{1}\right)\right]_{\gamma}=\left(\begin{array}{c}-1 \\ -1 \\ 1\end{array}\right)$
$T\left(v_{2}\right)=(3,0,-4)=b_{1}(1,1,0)+b_{2}(0,1,1)+b_{3}(2,2,3)=$
$\left(b_{1}+2 b_{3}, b_{1}+b_{2}+2 b_{3}, b_{2}+3 b_{3}\right)$
By solving the linear system we obtain $\rightarrow\left[T\left(v_{2}\right)\right]_{\gamma}=\left(\begin{array}{c}11 / 3 \\ -3 \\ -1 / 3\end{array}\right)$
Hence $[T]_{\beta}^{\gamma}=\left(\begin{array}{cc}-1 & 11 / 3 \\ -1 & -3 \\ 1 & -1 / 3\end{array}\right)$

Sum and scalar multiplication for linear transfirmations

Definition

Let $U: V \rightarrow W$ and $T: V \rightarrow W$ be linear. Then

$$
(U+T)(\mathbf{x})=U(\mathbf{x})+T(\mathbf{x})
$$

and

$$
(c T)(\mathbf{x})=c T(\mathbf{x}) .
$$

Theorem

Theorem

Let V, W be given vector spaces. The set of all linear transformations $V \rightarrow W$ is a vector space with + and \cdot defined as above. Write $\mathcal{L}(V, W)$ for this vector space.

Proof
Check the properties in the definition of vector space

Theorem

Theorem

Let $U, T: V \rightarrow W$ linear. Then
(1) $[U+T]_{\beta}^{\gamma}=[U]_{\beta}^{\gamma}+[T]_{\beta}^{\gamma}$
(2) $[a T]_{\beta}^{\gamma}=a[T]_{\beta}^{\gamma}$

Theorem

Theorem

Let $U, T: V \rightarrow W$ linear. Then
(1) $[U+T]_{\beta}^{\gamma}=[U]_{\beta}^{\gamma}+[T]_{\beta}^{\gamma}$
(2) $[a T]_{\beta}^{\gamma}=a[T]_{\beta}^{\gamma}$

Proof for (1):

$$
(U+T)\left(v_{j}\right)=U\left(v_{j}\right)+T\left(v_{j}\right)=\sum_{i=1}^{m} a_{i j} w_{i}+\sum_{i=1}^{m} b_{i j} w_{i}=\sum_{i=1}^{m} c_{i j} w_{i}
$$

where $c_{i j}=a_{i j}+b_{i j}$, showing that $[U+T]_{\beta}^{\gamma}=\left(c_{i j}\right)$.
Hence $[U+T]_{\beta}^{\gamma}=[U]_{\beta}^{\gamma}+[T]_{\beta}^{\gamma}$.
Proof of (2) is similar.

