4.1 Determinants of Order 2

- Definition
- Linearity
- Inverses
- Orientation of an Ordered Basis
- Area of a Parallelogram

()

Determinants of Order 2: Definition

Definition

For the 2×2 matrix

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

4.1

the determinant of A, denoted det(A) or |A|, is the scalar ad - bc.

.

Determinants: Linearity

Theorem (4.1)

det : $M_{2\times 2}(F) \rightarrow F$ is a linear function of each row of a 2 × 2 matrix when the other row is held fixed. That is, for $u, v, w \in F^2$ and $k \in F$,

4.1

$$\det \begin{pmatrix} u + kv \\ w \end{pmatrix} = \det \begin{pmatrix} u \\ w \end{pmatrix} + k \det \begin{pmatrix} v \\ w \end{pmatrix}$$
$$\det \begin{pmatrix} w \\ u + kv \end{pmatrix} = \det \begin{pmatrix} w \\ u \end{pmatrix} + k \det \begin{pmatrix} w \\ v \end{pmatrix}$$

.

Determinants and Inverses

Theorem (4.2)

The determinant of $A \in M_{2 \times 2}(F)$ is nonzero if and only if A is invertible. If A is invertible then

4.1

$$A^{-1} = rac{1}{\det(A)} \det egin{pmatrix} A_{22} & -A_{12} \ -A_{21} & A_{11} \end{pmatrix}$$

▶ < ∃ ▶ < ∃</p>

Determinant and Orientation of an Ordered Basis

4.1

The **orientation** of an ordered basis $\beta = \{u, v\}$ for \mathbb{R}^2 is defined by

$$\operatorname{Orient} \begin{pmatrix} u \\ v \end{pmatrix} == \frac{\det \begin{pmatrix} u \\ v \end{pmatrix}}{\left| \det \begin{pmatrix} u \\ v \end{pmatrix} \right|}$$

Determinant and Left/Right-Handed Coordinate System

4.1

Note that Orient
$$\begin{pmatrix} u \\ v \end{pmatrix} = \pm 1$$
, and Orient $\begin{pmatrix} u \\ v \end{pmatrix} = 1$ if and only if $\{u, v\}$ forms a right-handed coordinate system (*u* can be rotated in a counterclockwise direction through an angle θ , with $0 < \theta < \pi$, to coincide with *v*).

.

Determinant and Area of a Parallelogram

The area of the parallelogram determined by u and v:

4.1

Area
$$\begin{pmatrix} u \\ v \end{pmatrix}$$
 = Orient $\begin{pmatrix} u \\ v \end{pmatrix} \cdot \det \begin{pmatrix} u \\ v \end{pmatrix} = \left| \det \begin{pmatrix} u \\ v \end{pmatrix} \right|$

4.2 Determinants of Order n

- Definition
- Linearity
- Cofactor Expansions
- Elementary Row Operations
- Triangulation

Math 4377/6308, Advanced Linear Algebra

• • = • • = •

For $A \in M_{n \times n}(F)$, for $n \ge 2$, denote the $(n-1) \times (n-1)$ matrix obtained from A by deleting row *i* and column *j* by \tilde{A}_{ij} .

4.2

Example						
<i>A</i> =	1 5 9	2 6 10	3 7 11	4 8 12	$\tilde{A}_{23} = $	
	13	14	15	16	L	

通 ト イヨト イヨト

Determinants of Order n: Definition

Recall that det
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} = ad - bc$$
 and we let det $[a] = a$.

4.2

Definition

Let $A = (a_{ij}) \in M_{n \times n}(F)$. If n = 1, define det $(A) = a_{11}$. For $n \ge 2$, define

$$det(A) = \sum_{j=1}^{n} (-1)^{1+j} a_{1j} \cdot det(\tilde{A}_{1j})$$
$$= a_{11} \cdot det(\tilde{A}_{11}) - a_{12} \cdot det(\tilde{A}_{12}) + \dots + (-1)^{1+n} a_{1n} \cdot det(\tilde{A}_{1n}),$$
where det(A) or |A| is the **determinant** of A.

- 4 週 ト - 4 国 ト - 4 国 ト

Determinants: Example

Example

Compute the determinant of
$$A = \begin{bmatrix} 1 & 2 & 0 \\ 3 & -1 & 2 \\ 2 & 0 & 1 \end{bmatrix}$$

Solution

$$\det A = 1 \det \begin{bmatrix} -1 & 2 \\ 0 & 1 \end{bmatrix} - 2 \det \begin{bmatrix} 3 & 2 \\ 2 & 1 \end{bmatrix} + 0 \det \begin{bmatrix} 3 & -1 \\ 2 & 0 \end{bmatrix}$$

$$= -----=$$
Common notation:
$$\det \begin{bmatrix} 3 & 2 \\ 2 & 1 \end{bmatrix} = \begin{vmatrix} 3 & 2 \\ 2 & 1 \end{vmatrix}$$
So
$$\begin{vmatrix} 1 & 2 & 0 \\ 3 & -1 & 2 \\ 2 & 0 & 1 \end{vmatrix} = 1 \begin{vmatrix} -1 & 2 \\ 0 & 1 \end{vmatrix} - 2 \begin{vmatrix} 3 & 2 \\ 2 & 1 \end{vmatrix} + 0 \begin{vmatrix} 3 & -1 \\ 2 & 0 \end{vmatrix}$$

Math 4377/6308, Advanced Linear Algebr

æ

・ 同 ト ・ ヨ ト ・ ヨ ト …

Determinants and Cofactor Expansion

Cofactor

The (i, j)-cofactor of A is the number C_{ij} where

$$C_{ij} = (-1)^{i+j} \det \widetilde{A}_{ij}.$$

4.2

Note that

$$\det(A) = a_{11}C_{11} + a_{12}C_{12} + a_{1n}C_{1n},$$

the cofactor expansion along the first row of A.

Example (Cofactor Expansion)

$$\begin{vmatrix} 1 & 2 & 0 \\ 3 & -1 & 2 \\ 2 & 0 & 1 \end{vmatrix} = 1C_{11} + 2C_{12} + 0C_{13}$$

(cofactor expansion across row 1)

Math 4377/6308, Advanced Linear Algebra

Determinants: Linearity

Theorem (4.3)

$$\det: M_{n \times n}(F) \to F \text{ is an n-linear function} \\ \begin{pmatrix} a_1 \\ \cdot \\ a_{i-1} \\ u + kv \\ a_{i+1} \\ \cdot \\ a_n \end{pmatrix} = \det \begin{pmatrix} a_1 \\ \cdot \\ a_{i-1} \\ u \\ a_{i+1} \\ \cdot \\ a_n \end{pmatrix} + k \det \begin{pmatrix} a_1 \\ \cdot \\ a_{i-1} \\ v \\ a_{i+1} \\ \cdot \\ a_n \end{pmatrix}$$

By induction on n. If n = 1 or r = 1, trivial ?. For $n \ge 2$, r > 1,

$$\det(A) \stackrel{?}{=} \sum_{j=1}^{n} (-1)^{1+j} a_{1j} \cdot \det(\tilde{A}_{1j}) \stackrel{?}{=} \sum_{j=1}^{n} (-1)^{1+j} a_{1j} \cdot \det(\tilde{B}_{1j} + k\tilde{C}_{1j})$$
$$= \sum_{j=1}^{n} (-1)^{1+j} a_{1j} \cdot \det(\tilde{B}_{1j}) + k \sum_{j=1}^{n} (-1)^{1+j} a_{1j} \cdot \det(\tilde{B}_{1j})$$
$$\stackrel{?}{=} \det(B) + \det(C)$$

Determinant of Matrices with a Row of Zeros

Corollary

If $A \in M_{n \times n}(F)$ has a row consisting entirely of zeros, then det(A) = 0.

4.2

$$\det(A) = \det\begin{pmatrix}a_{1}\\ \cdot\\ a_{i-1}\\ 0\\ a_{i+1}\\ \cdot\\ a_{n}\end{pmatrix} \stackrel{?}{=} \det\begin{pmatrix}a_{1}\\ \cdot\\ a_{i-1}\\ 0\\ a_{i+1}\\ \cdot\\ a_{n}\end{pmatrix} + k \det\begin{pmatrix}a_{1}\\ \cdot\\ a_{i-1}\\ 0\\ a_{i+1}\\ \cdot\\ a_{n}\end{pmatrix}$$
$$= \det(A) + k \det(A), \quad \forall k \in F,$$

 $\stackrel{?}{\Longrightarrow}$ det(A) = 0.

• • = • • = •

Determinant and Cofactor Expansions

Lemma

Let $B \in M_{n \times n}(F)$ with $n \ge 2$. If row *i* of *B* equals e_k for some *k*, $1 \le k \le n$, then $\det(B) = (-1)^{i+k} \det(\tilde{B}_{ik})$.

4.2

By induction on *n*. If
$$n = 1, 2$$
 or $i = 1$, trivial ?. For $n \ge 3$, $i > 1$,

$$\det(B) \stackrel{?}{=} \sum_{j=1}^{n} (-1)^{1+j} b_{1j} \cdot \det(\tilde{B}_{1j})$$

$$\stackrel{?}{=} \sum_{j < k} (-1)^{1+j} b_{1j} \cdot \det(\tilde{B}_{1j}) + \sum_{j > k} (-1)^{1+j} b_{1j} \cdot \det(\tilde{B}_{1j})$$

$$\stackrel{?}{=} \sum_{j < k} (-1)^{1+j} b_{1j} \cdot \left[(-1)^{(i-1)+(k-1)} \det(C_{1j}) \right]$$

$$+ \sum_{j > k} (-1)^{1+j} b_{1j} \cdot \left[(-1)^{(i-1)+(k)} \det(C_{1j}) \right]$$

$$\stackrel{?}{=} (-1)^{i+k} \left[\sum_{j < k} (-1)^{1+j} b_{1j} \cdot \det(C_{1j}) + \sum_{j > k} (-1)^{1+(j-1)} b_{1j} \cdot \det(C_{1j}) \right]$$

$$\stackrel{?}{=} (-1)^{i+k} \det(\tilde{B}_{ik})$$

Determinant and Cofactor Expansions (cont.)

Theorem (4.4)

The determinant of a square matrix $A = (a_{ij})$ can be evaluated by cofactor expansion along any row i, $1 \le i \le n$:

$$\det(A) = \sum_{j=1}^n (-1)^{i+j} \mathsf{a}_{ij} \cdot \det(\widetilde{A}_{ij}),$$

For i = 1, trivial. For i > 1, let row *i* of *A* be $a_i = \sum_{j=1}^n a_{ij}e_j$, let B_i be the matrix obtained from *A* by replacing row *i* of *A* by e_i .

$$\det(A) \stackrel{?}{=} \sum_{j=1}^{n} a_{ij} \det(B_j) \stackrel{?}{=} \sum_{j=1}^{n} (-1)^{i+j} a_{ij} \cdot \det(\tilde{A}_{ij}).$$

Cofactor Expansion: Theorem

Cofactor Expansion

The determinant of an $n \times n$ matrix A can be computed by a cofactor expansion across any row or down any column:

4 2

$$\det A = a_{i1}C_{i1} + a_{i2}C_{i2} + \dots + a_{in}C_{in}$$
(expansion across row i)

$$\det A = a_{1j}C_{1j} + a_{2j}C_{2j} + \dots + a_{nj}C_{nj}$$
(expansion down column j)

Use a matrix of signs to determine $(-1)^{i+j}$

$$+ - + \cdots$$

 $- + - \cdots$
 $+ - + \cdots$
 $\vdots \vdots \vdots \cdots$

Math 4377/6308, Advanced Linear Algebra

Cofactor Expansion: Example

Example Compute the determinant of $A = \begin{bmatrix} 1 & 2 & 0 \\ 3 & -1 & 2 \\ 2 & 0 & 1 \end{bmatrix}$ using cofactor expansion down column 3.

4.2

Solution

$$\begin{vmatrix} 1 & 2 & 0 \\ 3 & -1 & 2 \\ 2 & 0 & 1 \end{vmatrix} = 0 \begin{vmatrix} 3 & -1 \\ 2 & 0 \end{vmatrix} - 2 \begin{vmatrix} 1 & 2 \\ 2 & 0 \end{vmatrix} + 1 \begin{vmatrix} 1 & 2 \\ 3 & -1 \end{vmatrix} = 1.$$

・ 何 ト ・ ヨ ト ・ ヨ ト

Cofactor Expansion: Example

Example Compute the determinant of $A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 2 & 1 & 5 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 3 & 5 \end{bmatrix}$ Solution: $= 1 \begin{vmatrix} 2 & 1 & 5 \\ 0 & 2 & 1 \\ 0 & 3 & 5 \end{vmatrix} - 0 \begin{vmatrix} 2 & 3 & 4 \\ 0 & 2 & 1 \\ 0 & 3 & 5 \end{vmatrix} + 0 \begin{vmatrix} 2 & 3 & 4 \\ 2 & 1 & 5 \\ 0 & 3 & 5 \end{vmatrix} - 0 \begin{vmatrix} 2 & 3 & 4 \\ 2 & 1 & 5 \\ 0 & 2 & 1 \end{vmatrix}$ $= 1 \cdot 2 \begin{vmatrix} 2 & 1 \\ 3 & 5 \end{vmatrix} = 14$

4.2

Math 4377/6308, Advanced Linear Algebra

Triangular Matrices

Method of cofactor expansion is not practical for large matrices

4.2

Theorem

If A is a triangular matrix, then det A is the product of the main diagonal entries of A.

э

- 4 同 6 4 日 6 4 日 6

Triangular Matrices: Example

Example

æ

過 ト イヨ ト イヨト

Determinant: Properties

Corollary

If $A \in M_{n \times n}(F)$ has two identical rows, then det(A) = 0.

4.2

By induction on *n*. If n = 2, trivial. For $n \ge 2$, choose *i* other than *r* and *s*.

$$\det(A) = \sum_{j=1}^{n} (-1)^{i+j} a_{ij} \cdot \det(\tilde{A}_{ij}) = 0,$$

since the induction hypothesis implies $det(\tilde{A}_{ij}) \stackrel{?}{=} 0$ for $\forall j$.

Determinant and Elementary Row Operations Theorem (4.5)

4.2

If $A \in M_{n \times n}(F)$ and B is obtained from A by interchanging any two rows of A, then det(B) = -det(A). $0 = \det \begin{pmatrix} \cdot \\ \cdot \\ a_r + a_s \\ \cdot \\ a_r + a_s \\ \cdot \\ a_n \end{pmatrix} \stackrel{?}{=} \det \begin{pmatrix} \cdot \\ a_r \\ \cdot \\ a_r + a_s \\ \cdot \\ a_n \end{pmatrix} + \det \begin{pmatrix} \cdot \\ \cdot \\ a_s \\ \cdot \\ a_r + a_s \\ \cdot \\ a_n \end{pmatrix}$

Math 4377/6308, Advanced Linear Algebra

Determinant and Elementary Row Operations (cont.)

Theorem (4.6)

If $A \in M_{n \times n}(F)$ and B is obtained from A by adding a multiple of one row of A to another row of A, then det(B) = det(A).

Determinant and Elementary Row Operations (cont.)

Theorem (4.7)

If $A \in M_{n \times n}(F)$ has rank less than n, then det(A) = 0.

Math 4377/6308, Advanced Linear Algebra

< 回 ト < 三 ト < 三 ト

Evaluating Determinants by Elementary Row Operations

Effect of elementary row operations on the determinant of $A \in M_{n \times n}(F)$:

- (a) If B is obtained by interchanging any two rows of A, then det(B) = -det(A)
- (b) If B is obtained by multiplying a row of A by nonzero scalar k, then det(B) = k det(A)
- (c) If B is obtained by adding a multiple of one row of A to another row of A, then det(B) = det(A)

Theorem still holds if the word *row* is replaced

with _____.

Evaluate the determinant using row operations:

- Transform the matrix into an upper triangular form (row operations of types 1 and 3)
- The determinant of an upper triangular matrix is the product of its diagonal entries

Properties of Determinants: Example

Example				
Compute	1	2	3	4
	0	5	0	0
	2	7	6	10
	2	9	7	11

Solution

$$\begin{vmatrix} 1 & 2 & 3 & 4 \\ 0 & 5 & 0 & 0 \\ 2 & 7 & 6 & 10 \\ 2 & 9 & 7 & 11 \end{vmatrix} = 5 \begin{vmatrix} 1 & 3 & 4 \\ 2 & 6 & 10 \\ 2 & 7 & 11 \end{vmatrix} = 5 \begin{vmatrix} 1 & 3 & 4 \\ 0 & 0 & 2 \\ 2 & 7 & 11 \end{vmatrix}$$
$$= 5 \begin{vmatrix} 1 & 3 & 4 \\ 0 & 0 & 2 \\ 0 & 1 & 3 \end{vmatrix} = -5 \begin{vmatrix} 1 & 3 & 4 \\ 0 & 1 & 3 \\ 0 & 0 & 2 \end{vmatrix} = -...= = ...$$

Math 4377/6308, Advanced Linear Algebra

Properties of Determinants: Example

	*	*	*		*	*	*	
Theorem (c) indicates that	-2 <i>k</i>	5 <i>k</i>	4 <i>k</i>	= k	-2	5	4	
	*	*	*		*	*	*	

Example

	2	4	6
Compute	5	6	7
	7	6	10

Solution

$$\begin{vmatrix} 2 & 4 & 6 \\ 5 & 6 & 7 \\ 7 & 6 & 10 \end{vmatrix} = 2 \begin{vmatrix} 1 & 2 & 3 \\ 5 & 6 & 7 \\ 7 & 6 & 10 \end{vmatrix} = 2 \begin{vmatrix} 1 & 2 & 3 \\ 0 & -4 & -8 \\ 0 & -8 & -11 \end{vmatrix}$$
$$= 2(-4) \begin{vmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & -8 & -11 \end{vmatrix} = 2(-4) \begin{vmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 5 \end{vmatrix} = -40$$

Properties of Determinants: Example

Example

Compute	2 4 7 1	3 7 9 2	0 0 -2 0	1 3 4 4	by row reduction and cofac. expansion.
Solution	2 4 7 1	3 7 9 2	0 0 -2 0	1 3 4 4	$ = -2 \begin{vmatrix} 2 & 3 & 1 \\ 4 & 7 & 3 \\ 1 & 2 & 4 \end{vmatrix} = -2 \begin{vmatrix} 2 & 3 & 1 \\ 0 & 1 & 1 \\ 1 & 2 & 4 \end{vmatrix} $
= 2	2 1 0	3 2 1	1 4 = 1	=	$2 \begin{vmatrix} 1 & 2 & 4 \\ 2 & 3 & 1 \\ 0 & 1 & 1 \end{vmatrix} = -2 \begin{vmatrix} 1 & 2 & 4 \\ 0 & -1 & -7 \\ 0 & 1 & 1 \end{vmatrix}$
=	= -2	2 1 2 C C	2) -1) 0	. —	$\begin{vmatrix} 4 \\ -7 \\ -6 \end{vmatrix} = -2(1)(-1)(-6) = -12.$

Math 4377/6308, Advanced Linear Algebra

Properties of Determinants: Triangulation

4.2

Suppose A has been reduced to

$$U = \begin{bmatrix} \bullet & * & * & \cdots & * \\ 0 & \bullet & * & \cdots & * \\ 0 & 0 & \bullet & \cdots & * \\ 0 & 0 & 0 & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \bullet \end{bmatrix}$$

by row replacements and row interchanges, then

$$\det A = \begin{cases} (-1)^r \begin{pmatrix} \text{product of} \\ \text{pivots in } U \end{pmatrix} & \text{when } A \text{ is invertible} \\ 0 & \text{when } A \text{ is not invertible} \end{cases}$$

4.3 Properties of Determinants

- Determinants of Products of Matrices
- Determinant of Inverse of Matrix
- Determinant of Transpose of Matrix
- Cramer's Rule and Solution of Linear System

Properties of Determinants: Product

Theorem (4.7)

For $A, B \in M_{n \times n}(F)$, $det(AB) = det(A) \cdot det(B)$.

4.2

Math 4377/6308, Advanced Linear Algebra

くほと くほと くほと

Properties of Determinants: Inverse

Corollary

 $A \in M_{nn}(F)$ is invertible if and only if $\det(A) \neq 0$. If A is invertible, then $\det(A^{-1}) = \frac{1}{\det(A)}$.

4.2

Math 4377/6308, Advanced Linear Algebra

Properties of Determinants: Transpose

4.2

Theorem (4.8)

For $A \in M_{n \times n}(F)$, $\det(A^t) = \det(A)$.

Math 4377/6308, Advanced Linear Algebra

Properties of Determinants: Cramer's Rule

Theorem (4.9 - Cramer's Rule)

Let Ax = b be a system of n linear equations in n unknowns. If $det(A) \neq 0$, it has a unique solution $x = (x_1, \dots, x_n)^t$ with $x_k = \frac{det(M_k)}{det(A)}$, where M_k is A with column k replaced by b.

4 0

・ 同 ト ・ ヨ ト ・ ヨ ト