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4.1

Determinants of Order 2: Definition

Definition

For the 2× 2 matrix

A =

(
a b
c d

)
the determinant of A, denoted det(A) or |A|, is the scalar ad − bc.
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4.1

Determinants: Linearity

Theorem (4.1)

det : M2×2(F )→ F is a linear function of each row of a 2× 2
matrix when the other row is held fixed. That is, for u, v ,w ∈ F 2

and k ∈ F ,

det

(
u + kv

w

)
= det

(
u
w

)
+ k det

(
v
w

)

det

(
w

u + kv

)
= det

(
w
u

)
+ k det

(
w
v

)
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4.1

Determinants and Inverses

Theorem (4.2)

The determinant of A ∈ M2×2(F ) is nonzero if and only if A is
invertible. If A is invertible then

A−1 =
1

det(A)
det

(
A22 −A12

−A21 A11

)

Math 4377/6308, Advanced Linear Algebra



4.1

Determinant and Orientation of an Ordered Basis

The orientation of an ordered basis β = {u, v} for R2 is defined by

Orient

(
u
v

)
==

det

(
u
v

)
∣∣∣∣det

(
u
v

)∣∣∣∣
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4.1

Determinant and Left/Right-Handed Coordinate System

Note that Orient

(
u
v

)
= ±1, and Orient

(
u
v

)
= 1 if and only if

{u, v} forms a right-handed coordinate system (u can be rotated
in a counterclockwise direction through an angle θ, with
0 < θ < π, to coincide with v).

Math 4377/6308, Advanced Linear Algebra



4.1

Determinant and Area of a Parallelogram

The area of the parallelogram determined by u and v :

Area

(
u
v

)
= Orient

(
u
v

)
· det

(
u
v

)
=

∣∣∣∣det

(
u
v

)∣∣∣∣
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4.2

4.2 Determinants of Order n

Definition

Linearity

Cofactor Expansions

Elementary Row Operations

Triangulation
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4.2

Determinants of Order n: Definition

For A ∈ Mn×n(F ), for n ≥ 2, denote the (n − 1)× (n − 1) matrix
obtained from A by deleting row i and column j by Ãij .

Example

A =


1 2 3 4
5 6 7 8
9 10 11 12

13 14 15 16

 Ã23 =
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4.2

Determinants of Order n: Definition

Recall that det

[
a b
c d

]
= ad − bc and we let det [a] = a.

Definition

Let A = (aij) ∈ Mn×n(F ). If n = 1, define det(A) = a11. For
n ≥ 2, define

det(A) =
n∑

j=1

(−1)1+ja1j · det(Ã1j)

= a11 · det(Ã11)− a12 · det(Ã12) + · · ·+ (−1)1+na1n · det(Ã1n),

where det(A) or |A| is the determinant of A.
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4.2

Determinants: Example

Example

Compute the determinant of A =

 1 2 0
3 −1 2
2 0 1


Solution

detA = 1 det

[
−1 2
0 1

]
− 2 det

[
3 2
2 1

]
+ 0 det

[
3 −1
2 0

]
= =

Common notation: det

[
3 2
2 1

]
=

∣∣∣∣ 3 2
2 1

∣∣∣∣ .
So ∣∣∣∣∣∣

1 2 0
3 −1 2
2 0 1

∣∣∣∣∣∣ = 1

∣∣∣∣ −1 2
0 1

∣∣∣∣− 2

∣∣∣∣ 3 2
2 1

∣∣∣∣+ 0

∣∣∣∣ 3 −1
2 0

∣∣∣∣
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4.2

Determinants and Cofactor Expansion

Cofactor

The (i, j)-cofactor of A is the number Cij where

Cij = (−1)i+j det Ãij .

Note that

det(A) = a11C11 + a12C12 + + a1nC1n,

the cofactor expansion along the first row of A.

Example (Cofactor Expansion)∣∣∣∣∣∣
1 2 0
3 −1 2
2 0 1

∣∣∣∣∣∣ = 1C11 + 2C12 + 0C13

(cofactor expansion across row 1)
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4.2

Determinants: Linearity
Theorem (4.3)

det : Mn×n(F )→ F is an n-linear function

det



a1
·

ai−1

u + kv
ai+1

·
an


= det



a1
·

ai−1

u
ai+1

·
an


+ k det



a1
·

ai−1

v
ai+1

·
an


By induction on n. If n = 1 or r = 1, trivial ?. For n ≥ 2, r > 1,

det(A)
?
=

n∑
j=1

(−1)1+ja1j · det(Ã1j)
?
=

n∑
j=1

(−1)1+ja1j · det(B̃1j + kC̃1j)

=
n∑

j=1

(−1)1+ja1j · det(B̃1j) + k
n∑

j=1

(−1)1+ja1j · det(B̃1j)

?
= det(B) + det(C )
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4.2

Determinant of Matrices with a Row of Zeros

Corollary

If A ∈ Mn×n(F ) has a row consisting entirely of zeros, then
det(A) = 0.

det(A) = det



a1
·

ai−1

0
ai+1

·
an


?
= det



a1
·

ai−1

0
ai+1

·
an


+ k det



a1
·

ai−1

0
ai+1

·
an


= det(A) + k det(A), ∀k ∈ F ,

?
=⇒ det(A) = 0.
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4.2

Determinant and Cofactor Expansions
Lemma

Let B ∈ Mn×n(F ) with n ≥ 2. If row i of B equals ek for some k,
1 ≤ k ≤ n, then det(B) = (−1)i+k det(B̃ik).

By induction on n. If n = 1, 2 or i = 1, trivial ?. For n ≥ 3, i > 1,

det(B)
?
=

n∑
j=1

(−1)1+jb1j · det(B̃1j)

?
=
∑
j<k

(−1)1+jb1j · det(B̃1j) +
∑
j>k

(−1)1+jb1j · det(B̃1j)

?
=
∑
j<k

(−1)1+jb1j ·
[
(−1)(i−1)+(k−1) det(C1j)

]
+
∑
j>k

(−1)1+jb1j ·
[
(−1)(i−1)+(k) det(C1j)

]
?
= (−1)i+k

∑
j<k

(−1)1+jb1j · det(C1j) +
∑
j>k

(−1)1+(j−1)b1j · det(C1j)


?
= (−1)i+k det(B̃ik)
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4.2

Determinant and Cofactor Expansions (cont.)

Theorem (4.4)

The determinant of a square matrix A = (aij) can be evaluated by
cofactor expansion along any row i , 1 ≤ i ≤ n:

det(A) =
n∑

j=1

(−1)i+jaij · det(Ãij),

For i = 1, trivial. For i > 1, let row i of A be ai =
∑n

j=1 aijej , let
Bj be the matrix obtained from A by replacing row i of A by ej .

det(A)
?
=

n∑
j=1

aij det(Bj)
?
=

n∑
j=1

(−1)i+jaij · det(Ãij).
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4.2

Cofactor Expansion: Theorem

Cofactor Expansion

The determinant of an n × n matrix A can be computed by a
cofactor expansion across any row or down any column:

detA = ai1Ci1 + ai2Ci2 + · · ·+ ainCin

(expansion across row i)

detA = a1jC1j + a2jC2j + · · ·+ anjCnj

(expansion down column j)

Use a matrix of signs to determine (−1)i+j
+ − + · · ·
− + − · · ·
+ − + · · ·
...

...
...

. . .
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4.2

Cofactor Expansion: Example

Example

Compute the determinant of A =

 1 2 0
3 −1 2
2 0 1

 using cofactor

expansion down column 3.

Solution∣∣∣∣∣∣
1 2 0
3 −1 2
2 0 1

∣∣∣∣∣∣ = 0

∣∣∣∣ 3 −1
2 0

∣∣∣∣− 2

∣∣∣∣ 1 2
2 0

∣∣∣∣+ 1

∣∣∣∣ 1 2
3 −1

∣∣∣∣ = 1.
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4.2

Cofactor Expansion: Example

Example

Compute the determinant of A =


1 2 3 4
0 2 1 5
0 0 2 1
0 0 3 5


Solution: ∣∣∣∣∣∣∣∣

1 2 3 4
0 2 1 5
0 0 2 1
0 0 3 5

∣∣∣∣∣∣∣∣
= 1

∣∣∣∣∣∣
2 1 5
0 2 1
0 3 5

∣∣∣∣∣∣− 0

∣∣∣∣∣∣
2 3 4
0 2 1
0 3 5

∣∣∣∣∣∣+ 0

∣∣∣∣∣∣
2 3 4
2 1 5
0 3 5

∣∣∣∣∣∣− 0

∣∣∣∣∣∣
2 3 4
2 1 5
0 2 1

∣∣∣∣∣∣
= 1 · 2

∣∣∣∣ 2 1
3 5

∣∣∣∣ = 14
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4.2

Triangular Matrices

Method of cofactor expansion is not practical for large matrices

Triangular Matrices
∗ ∗ · · · ∗ ∗
0 ∗ · · · ∗ ∗

0 0
. . . ∗ ∗

0 0 0 ∗ ∗
0 0 0 0 ∗




∗ 0 0 0 0
∗ ∗ 0 0 0

∗ ∗ . . . 0 0
∗ ∗ · · · ∗ 0
∗ ∗ · · · ∗ ∗


(upper triangular) (lower triangular)

Theorem

If A is a triangular matrix, then det A is the product of the main
diagonal entries of A.
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4.2

Triangular Matrices: Example

Example ∣∣∣∣∣∣∣∣
2 3 4 5
0 1 2 3
0 0 −3 5
0 0 0 4

∣∣∣∣∣∣∣∣ = = −24
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4.2

Determinant: Properties

Corollary

If A ∈ Mn×n(F ) has two identical rows, then det(A) = 0.

By induction on n. If n = 2, trivial. For n ≥ 2, choose i other than
r and s.

det(A) =
n∑

j=1

(−1)i+jaij · det(Ãij) = 0,

since the induction hypothesis implies det(Ãij)
?
= 0 for ∀j .
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4.2

Determinant and Elementary Row Operations
Theorem (4.5)

If A ∈ Mn×n(F ) and B is obtained from A by interchanging any
two rows of A, then det(B) = − det(A).

0 = det



a1
·

ar + as
·

ar + as
·
an


?
= det



a1
·
ar
·

ar + as
·
an


+ det



a1
·
as
·

ar + as
·
an



?
= det



a1
·
ar
·
ar
·
an


+ det



a1
·
ar
·
as
·
an


+ det



a1
·
as
·
ar
·
an


+ det



a1
·
as
·
as
·
an


=

0+
det(A) + det(B)
+0
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4.2

Determinant and Elementary Row Operations (cont.)

Theorem (4.6)

If A ∈ Mn×n(F ) and B is obtained from A by adding a multiple of
one row of A to another row of A, then det(B) = det(A).
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4.2

Determinant and Elementary Row Operations (cont.)

Theorem (4.7)

If A ∈ Mn×n(F ) has rank less than n, then det(A) = 0.
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4.2

Evaluating Determinants by Elementary Row Operations

Effect of elementary row operations on the determinant of
A ∈ Mn×n(F ):

(a) If B is obtained by interchanging any two rows of A, then
det(B) = − det(A)

(b) If B is obtained by multiplying a row of A by nonzero scalar
k, then det(B) = k det(A)

(c) If B is obtained by adding a multiple of one row of A to
another row of A, then det(B) = det(A)

Theorem still holds if the word row is replaced

with .
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4.2

Evaluating Determinants by Elementary Row Operations

Evaluate the determinant using row operations:

Transform the matrix into an upper triangular form (row
operations of types 1 and 3)

The determinant of an upper triangular matrix is the product
of its diagonal entries
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4.2

Properties of Determinants: Example

Example

Compute

∣∣∣∣∣∣∣∣
1 2 3 4
0 5 0 0
2 7 6 10
2 9 7 11

∣∣∣∣∣∣∣∣.

Solution∣∣∣∣∣∣∣∣
1 2 3 4
0 5 0 0
2 7 6 10
2 9 7 11

∣∣∣∣∣∣∣∣ = 5

∣∣∣∣∣∣
1 3 4
2 6 10
2 7 11

∣∣∣∣∣∣ = 5

∣∣∣∣∣∣
1 3 4
0 0 2
2 7 11

∣∣∣∣∣∣
= 5

∣∣∣∣∣∣
1 3 4
0 0 2
0 1 3

∣∣∣∣∣∣ = −5

∣∣∣∣∣∣
1 3 4
0 1 3
0 0 2

∣∣∣∣∣∣ = = .
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4.2

Properties of Determinants: Example

Theorem (c) indicates that

∣∣∣∣∣∣
∗ ∗ ∗
−2k 5k 4k
∗ ∗ ∗

∣∣∣∣∣∣ = k

∣∣∣∣∣∣
∗ ∗ ∗
−2 5 4
∗ ∗ ∗

∣∣∣∣∣∣.
Example

Compute

∣∣∣∣∣∣
2 4 6
5 6 7
7 6 10

∣∣∣∣∣∣
Solution∣∣∣∣∣∣

2 4 6
5 6 7
7 6 10

∣∣∣∣∣∣ = 2

∣∣∣∣∣∣
1 2 3
5 6 7
7 6 10

∣∣∣∣∣∣ = 2

∣∣∣∣∣∣
1 2 3
0 −4 −8
0 −8 −11

∣∣∣∣∣∣
= 2(−4)

∣∣∣∣∣∣
1 2 3
0 1 2
0 −8 −11

∣∣∣∣∣∣ = 2(−4)

∣∣∣∣∣∣
1 2 3
0 1 2
0 0 5

∣∣∣∣∣∣ = −40
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4.2

Properties of Determinants: Example

Example

Compute

∣∣∣∣∣∣∣∣
2 3 0 1
4 7 0 3
7 9 −2 4
1 2 0 4

∣∣∣∣∣∣∣∣ by row reduction and cofac. expansion.

Solution

∣∣∣∣∣∣∣∣
2 3 0 1
4 7 0 3
7 9 −2 4
1 2 0 4

∣∣∣∣∣∣∣∣ = −2

∣∣∣∣∣∣
2 3 1
4 7 3
1 2 4

∣∣∣∣∣∣ = −2

∣∣∣∣∣∣
2 3 1
0 1 1
1 2 4

∣∣∣∣∣∣
= 2

∣∣∣∣∣∣
2 3 1
1 2 4
0 1 1

∣∣∣∣∣∣ = −2

∣∣∣∣∣∣
1 2 4
2 3 1
0 1 1

∣∣∣∣∣∣ = −2

∣∣∣∣∣∣
1 2 4
0 −1 −7
0 1 1

∣∣∣∣∣∣
= −2

∣∣∣∣∣∣
1 2 4
0 −1 −7
0 0 −6

∣∣∣∣∣∣ = −2 (1) (−1) (−6) = −12.
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4.2

Properties of Determinants: Triangulation

Suppose A has been reduced to

U =


� ∗ ∗ · · · ∗
0 � ∗ · · · ∗
0 0 � · · · ∗

0 0 0
. . .

...
0 0 0 0 �


by row replacements and row interchanges, then

detA =


(−1)r

(
product of
pivots in U

)
when A is invertible

0 when A is not invertible
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4.2

4.3 Properties of Determinants

Determinants of Products of Matrices

Determinant of Inverse of Matrix

Determinant of Transpose of Matrix

Cramer’s Rule and Solution of Linear System
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4.2

Properties of Determinants: Product

Theorem (4.7)

For A, B ∈ Mn×n(F ), det(AB) = det(A) · det(B).
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4.2

Properties of Determinants: Inverse
Corollary

A ∈ Mnn(F ) is invertible if and only if det(A) 6= 0. If A is
invertible, then det(A−1) = 1

det(A) .

Math 4377/6308, Advanced Linear Algebra



4.2

Properties of Determinants: Transpose

Theorem (4.8)

For A ∈ Mn×n(F ), det(A
t) = det(A).
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4.2

Properties of Determinants: Cramer’s Rule

Theorem (4.9 - Cramer’s Rule)

Let Ax = b be a system of n linear equations in n unknowns. If
det(A) 6= 0, it has a unique solution x = (x1, · · · , xn)t with
xk = det(Mk )

det(A) , where Mk is A with column k replaced by b.
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