SOLUTION

<u>HW 2</u>

Please, write clearly and justify your arguments using the theory covered in class to get credit for your work.

(1) [3Pts] Let S, T be nonempty subsets of \mathbb{R} and suppose that $S \subset T$. Prove that

$$\inf T \le \inf S \le \sup S \le \sup T$$

Proof. By definition, for every $t \in T$, it is $\inf T \leq t$.

Since $S \subset T$, then for every $s \in S$, it is $\inf T \leq s$. This shows that $\inf T$ is a lower bond of S, hence $\inf T \leq \inf S$.

Since for every $s \in S$, it is $\inf S \leq s$, then $\inf S \leq \sup S$.

For every $t \in T$, by definition it is $t \leq \sup T$. Since $S \subset T$ then $s \leq \sup T$ for all $S \in S$. This shows that $\sup T$ is an upper bound of S, hence $\sup S \leq \sup T$.

Combining these observations, we conclude that

$$\inf T \le \inf S \le \sup S \le \sup T.$$

(2) [3Pts] Let S be a nonempty and bounded subset of \mathbb{R} . Prove that $M = \sup S$ is unique.

<u>Proof.</u> Since the set is nonempty and bounded, it has an upper bound and a supremum M. Suppose that there exists another number $M_1 = \sup S$ with $M_1 \neq M$. Then either $M_1 > M$ or $M_1 < M$. If $M_1 > M$ then M_1 would not be $\sup S$ since it could not be the least upper bound of S. Similarly, if $M_1 < M$ then M would not be $\sup S$ since it could not be the least upper bound of S. Thus it must be $M = M_1$

(3) [3Pts] Let $S = \{1 - \frac{1}{n} : n \in \mathbb{N}\}$. Prove that $\sup S = 1$ and find the accumulation points of S is any. Justify your answer.

<u>Proof.</u> $1 - \frac{1}{n} \leq 1$, for all n, hence 1 is an upper bound of S. To show that 1 is the least upper bound, observe that, if $M = 1 - \epsilon$, for some $\epsilon > 0$, by the Archimedean property there exists some $n \in \mathbb{N}$ such that $1 - \frac{1}{n} > 1 - \epsilon$, so that M cannot be an upper bound. Hence $\sup S = 1$.

1 is an accumulation point of S since, for any interval of the form $(1 - \epsilon, 1 + \epsilon)$, with $\epsilon > 0$, the Archimedean property implies that there exists some $n \in \mathbb{N}$ such that $\frac{1}{n} < \epsilon$ so that $1 + \epsilon > 1 - \frac{1}{n} > 1 - \epsilon$. S has no other accumulation points. For any point $x_n = 1 - \frac{1}{n}$, the distance to the closest point is $\frac{1}{n(n+1)}$, so that the deleted neighborhood $N(x_n, r_n)$ with $r_n < \frac{1}{n(n+1)}$ has empty intersection with the set S.

(4) [3Pts] Let $X \in \mathbb{R}$ be nonempty and f, g be bounded functions defined on X. Prove that

 $\sup\{f(x) + g(x) : x \in X\} \le \sup\{f(x) : x \in X\} + \sup\{g(x) : x \in X\}.$

Give examples to show that the inequality can be either an equality or a strict inequality.

Proof. For any $x \in X$, $f(x) \leq \sup\{f(y) : y \in X\}$ and $g(x) \leq \sup\{g(y) : y \in X\}$. Hence for any $x \in X$,

 $f(x) + g(x) \le \sup\{f(y) : y \in X\} + g(x) \le \sup\{g(y) : y \in X\}.$

This shows that the right hand side is an upper bound of the set $\{f(x)+g(x): x \in X\}$. Hence

 $\sup\{f(x) + g(x) : x \in X\} \le \sup\{f(x) : x \in X\} + \sup\{g(x) : x \in X\}.$

<u>Example (equality)</u>. Set f(x) = x, g(x) = 1, for $x \in [0, 1]$ Then
 $2 = \sup\{f(x) + g(x) : x \in [0, 1]\}$

$$2 = \sup\{f(x) + g(x) : x \in [0, 1]\} \\= \sup\{f(x) : x \in [0, 1]\} + \sup\{g(x) : x \in [0, 1]\} \\= 1 + 1.$$

Example (inequality). Set f(x) = x, g(x) = -x, for $x \in [0, 1]$ Then

$$0 = \sup\{f(x) + g(x) : x \in [0, 1]\}$$

= $\sup\{f(x) : x \in [0, 1]\} + \sup\{g(x) : x \in [0, 1]\}$
= 1 + 0.

(5) [3Pts] Let $S \subset \mathbb{R}$ be nonempty. Show that S is bounded if and only if there exists a closed bounded interval I such that $S \subset I$.

<u>Proof.</u> Since the set is nonempty and bounded, it has upper and lower bounds, a supremum M and an infimum m. It follows that, for any $x \in S$, $x \leq M$ and $x \geq m$. Thus S is contained in the interval I = [m, M].

Conversely, suppose that $S \subset I = [a, b]$, where $a, b \in \mathbb{R}$. It follows that $a \leq \inf S$ and $\sup S \leq b$. Hence S is bounded.