Name: SOLUTION

MATH 4377/6308 - Advanced linear algebra I - Summer 2024

 Quiz 1(1) $[6 \mathrm{Pts}]$ Let $f:[0,2 \pi] \rightarrow[-1,1]$ be defined by $f(x)=\cos (x)$.
a) Is f one-to-one? Is f onto?
b) Find an interval S, such that $\left.f\right|_{S}$ is both one-to-one and onto. Sketch the function on S.

SOLUTION:
(a) f is not 1-1 since $f(0)=f(\pi)$. f is onto.
(b) f one-to-one and onto in the interval $[0, \pi]$ where it is monotonically decreasing.
(2) [4 Pts] Let $x, y \in \mathbb{Z}$. Let $x \sim y$ if and only if $y+4 x$ is an integer multiple of 5 . Prove that \sim is a transitive relation.

SOLUTION:
If $y+4 x=5 m$ and if $z+4 y=5 n$, then (using these two equations to express z and $4 x$) $z+4 x=$ $(5 n-4 y)+(5 m-y)=5(n+m)-5 y=5(n+m-y)$, which is a multiple of 5 .

