MATH 4377/6308 - Advanced linear algebra I - Summer 2024

Quiz 2

(1) [6 Pts] Determine if the following subsets of the vector space of 2×2 matrices with real entries are subspaces. You must justify your answer.
a) $\left\{\left[\begin{array}{cc}a & b \\ c & -a\end{array}\right]: a, b, c \in \mathbb{R}\right\}$
b) $\left\{\left[\begin{array}{cc}a & a b \\ a b & b\end{array}\right]: a, b \in \mathbb{R}\right\}$

SOLUTION.
(a) This is a subspace. (i) For any $\alpha \in \mathbb{R},\left[\begin{array}{cc}a & b \\ c & -a\end{array}\right]=\left[\begin{array}{cc}\alpha a & \alpha b \\ \alpha c & -\alpha a\end{array}\right]=\left[\begin{array}{cc}\tilde{a} & \tilde{b} \\ \tilde{c} & -\tilde{a}\end{array}\right]$, for $\tilde{a}, \tilde{b}, \tilde{c} \in \mathbb{R}$.
(ii) $\left[\begin{array}{cc}a & b \\ c & -a\end{array}\right]+\left[\begin{array}{cc}a^{\prime} & b^{\prime} \\ c^{\prime} & -a^{\prime}\end{array}\right]=\left[\begin{array}{cc}a+a^{\prime} & b+b^{\prime} \\ c+c^{\prime} & -\left(a+a^{\prime}\right)\end{array}\right]=\left[\begin{array}{cc}\tilde{a} & \tilde{b} \\ \tilde{c} & -\tilde{a}\end{array}\right]$, for $\tilde{a}, \tilde{b}, \tilde{c} \in \mathbb{R}$.
(b) This is not a subspace. Note that:
$\left[\begin{array}{cc}a & a b \\ a b & b\end{array}\right]+\left[\begin{array}{cc}a^{\prime} & a^{\prime} b^{\prime} \\ a^{\prime} b^{\prime} & b^{\prime}\end{array}\right]=\left[\begin{array}{cc}a+a^{\prime} & a b+a^{\prime} b^{\prime} \\ a b+a^{\prime} b^{\prime} & b+b^{\prime}\end{array}\right] \neq\left[\begin{array}{cc}a+a^{\prime} & \left(a+a^{\prime}\right)\left(b+b^{\prime}\right) \\ \left(a+a^{\prime}\right)\left(b+b^{\prime}\right) & b+b^{\prime}\end{array}\right]$
(2) [4 Pts] Mark each statement True or False. If True, justify your answer, if False, show a counter-example.
a) A subset of a linearly dependent sets are is linearly dependent.
b) A subset of a linearly independent sets are is linearly independent.

SOLUTION.
(a) FALSE. Let $S=\{(1,0),(2,0)\} \subset \mathbb{R}^{2}$. S is l.d., but $S_{1}=\{(1,0)\} \subset S$ is l.i.
(b) TRUE. If $S \in V$ is a l.i. subset of a vector space V and subset of it is l.i. since no vector is in the linear combination of the other vectors.

