Name: SOLUTION

MATH 4377/6308-Advanced linear algebra I - Summer 2024

Quiz 3
(1) [5Pts] The vectors $u_{1}=(0,0,1), u_{2}=(1,1,1), u_{3}=(0,1,1)$ form a basis for \mathbb{R}^{3}. Find a unique representation of an arbitrary vector $(a, b, c) \in \mathbb{R}^{3}$ as a linear combination of u_{1}, u_{2}, u_{3}.

We solve the linear system

$$
x_{1} u_{1}+x_{2} u_{2}+x_{3} u_{3}=(a, b, c), \quad a, b, c \in \mathbb{R}
$$

We write the augmented matrix and next reduce the matrix in row-echelon form:

$$
\left(\begin{array}{lll|l}
0 & 0 & 1 & a \\
1 & 1 & 1 & b \\
0 & 1 & 1 & c
\end{array}\right) \rightarrow\left(\begin{array}{lll|l}
1 & 1 & 1 & b \\
0 & 1 & 1 & c \\
0 & 0 & 1 & a
\end{array}\right) \rightarrow\left(\begin{array}{ccc|c}
1 & 1 & 0 & b-a \\
0 & 1 & 0 & c-a \\
0 & 0 & 1 & a
\end{array}\right) \rightarrow\left(\begin{array}{ccc|c}
1 & 0 & 0 & b-c \\
0 & 1 & 0 & c-a \\
0 & 0 & 1 & a
\end{array}\right)
$$

Thus: $x_{3}=a, x_{2}=c-a, x_{3}=b-c$.
(2)[5Pts] Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be given by

$$
T\left(a_{1}, a_{2}, a_{3}\right)=\left(a_{1}+2 a_{2}-a_{3}, 2 a_{1}-a_{3}, 4 a_{2}+a_{3}\right)
$$

(a) Find bases for the null space and the range of T.
(b) Find nullity and rank of T.
(a) The null space is determined by the equations

$$
a_{1}+2 a_{2}-a_{3}=0,2 a_{1}-a_{3}=0,4 a_{2}+a_{3}=0
$$

Hence

$$
\left(\begin{array}{rrr|r}
1 & 2 & -1 & 0 \\
2 & 0 & -1 & 0 \\
0 & 4 & 1 & 0
\end{array}\right) \rightarrow\left(\begin{array}{rrr|r}
1 & 2 & -1 & 0 \\
0 & -4 & 1 & 0 \\
0 & 4 & 1 & 0
\end{array}\right) \rightarrow\left(\begin{array}{rrr|r}
1 & 2 & -1 & 0 \\
0 & -4 & 1 & 0 \\
0 & 0 & 2 & 0
\end{array}\right)
$$

The nullspace has only the solution $\{(0,0,0)\}$.
By the dimension theorem, the range has dimension 3. WE do not need to do any additional calculation since we can take any basis of \mathbb{R}^{3}, for instance $B=\{(1,0,0),(0,1,0),(0,0,1)\}$.
(b) It follows from part (a) that nullity $(T)=0$ and $\operatorname{rank}(T)=3$.

Modified version of problem (2)
(3) Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be given by

$$
T\left(a_{1}, a_{2}, a_{3}\right)=\left(a_{1}+2 a_{2}-a_{3}, 2 a_{1}-a_{3}, 4 a_{2}-a_{3}\right)
$$

(a) Find bases for the null space and the range of T.
(b) Find nullity and rank of T.
(a) The null space is determined by the equations

$$
a_{1}+2 a_{2}-a_{3}=0,2 a_{1}-a_{3}=0,4 a_{2}-a_{3}=0
$$

Hence

$$
\left(\begin{array}{rrr|r}
1 & 2 & -1 & 0 \\
2 & 0 & -1 & 0 \\
0 & 4 & 1 & 0
\end{array}\right) \rightarrow\left(\begin{array}{rrr|r}
1 & 2 & -1 & 0 \\
0 & -4 & 1 & 0 \\
0 & 4 & -1 & 0
\end{array}\right) \rightarrow\left(\begin{array}{rrr|r}
1 & 2 & -1 & 0 \\
0 & -4 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

The solution is: $x_{3}=4 x_{2}, x_{1}=-6 x_{2}$, where x_{2} is a free variable. Hence the null space has dimension 1 and a basis for the null space is

$$
B=\{(-6,1,-4)\}
$$

The range is determined by the equations

$$
a_{1}+2 a_{2}-a_{3}=x_{1}, 2 a_{1}-a_{3}=x_{2}, 4 a_{2}-a_{3}=x_{3}
$$

This gives the augmented matrix

$$
\left(\begin{array}{rrr|r}
1 & 2 & -1 & x_{1} \\
2 & 0 & -3 & x_{2} \\
0 & 4 & -1 & x_{3}
\end{array}\right) \rightarrow\left(\begin{array}{rrr|l}
1 & 2 & -1 & x_{1} \\
0 & -4 & 1 & x_{2}-2 x_{1} \\
0 & 4 & -1 & x_{3}
\end{array}\right) \rightarrow\left(\begin{array}{rrr|l}
1 & 2 & -1 & x_{1} \\
0 & -4 & -1 & x_{2}-2 x_{1} \\
0 & 0 & 0 & x_{3}+x_{2}-2 x_{1}
\end{array}\right)
$$

Hence the range of T satisfies the condition $x_{3}+x_{2}-2 x_{1}=0$. A basis for the range is

$$
D=\{(1,1,1),(0,1,-1)\}
$$

(b) It follows from part (a) that nullity $(T)=1$ and $\operatorname{rank}(T)=2$.

