MATH 4377/6308 - Advanced linear algebra I - Summer 2024

 Quiz 4
Exercises:

(1) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be given by

$$
T\left(a_{1}, a_{2}\right)=\left(a_{1}+a_{2}, a_{1}-a_{2}, 2 a_{2}-a_{1}\right)
$$

Write $[T]_{\beta}^{\tilde{\gamma}}$ with $\beta=\{(1,0),(0,1)\}$ and $\tilde{\gamma}=\{(1,2,0),(1,1,0),(1,0,1)\}$.
Let $v_{1}=(1,0), v_{2}=(0,1)$. then

$$
\begin{aligned}
& T\left(v_{1}\right)=(1,1,-1)=-(1,2,0)+3(1,1,0)-(1,0,1), \rightarrow\left[T\left(v_{1}\right)\right]_{\tilde{\gamma}}=\left(\begin{array}{c}
-1 \\
3 \\
-1
\end{array}\right) \\
& T\left(v_{2}\right)=(1,-1,2)=0(1,2,0)-(1,1,0)+2(1,0,1), \rightarrow\left[T\left(v_{2}\right)\right] \tilde{\gamma}=\left(\begin{array}{c}
0 \\
-1 \\
2
\end{array}\right)
\end{aligned}
$$

Hence $[T]_{\beta}^{\tilde{\gamma}}=\left(\begin{array}{cc}-1 & 0 \\ 3 & -1 \\ -1 & 2\end{array}\right)$
(2) Let $T: P_{1}(\mathbb{R}) \rightarrow P_{1}(\mathbb{R})$ and $U: P_{1}(\mathbb{R}) \rightarrow \mathbb{R}^{2}$ be the linear transformations defined by

$$
T(p(x))=p^{\prime}(x)+2 p(x), \quad U(a+b x)=(a+b, a)
$$

Let β and γ be the standard ordered bases of $P_{1}(\mathbb{R})$ and \mathbb{R}^{2}), respectively. Find $[T]_{\beta},[U]_{\beta}^{\gamma}$ and $[U \circ T]_{\beta}^{\gamma}$.
The standard ordered bases are $\beta=\{1, x\}, \gamma=\{(1,0),(0,1)\}$. We have

$$
T(1)=2=2(1)+0(x) \rightarrow\left[T\left(v_{1}\right)\right]_{\beta}=\binom{2}{0}, \quad T(x)=1+2 x=1(1)+2(x) \rightarrow\left[T\left(v_{2}\right)\right]_{\beta}=\binom{1}{2}
$$

Hence $[T]_{\beta}=\left(\begin{array}{ll}2 & 1 \\ 0 & 2\end{array}\right)$.
Similarly, we have
$U(1)=(1,1)=1(1,0)+1(0,1) \rightarrow\left[U\left(v_{1}\right)\right]_{\beta}=\binom{1}{1}, \quad U(x)=(1,0)=1(1,0)+0(0,1) \rightarrow\left[U\left(v_{2}\right)\right]_{\beta}=\binom{1}{0}$
Hence $[U]_{\beta}^{\gamma}=\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)$.
It follows that $[U \circ T]_{\beta}^{\gamma}=[U]_{\beta}^{\gamma}[T]_{\beta}=\left(\begin{array}{ll}2 & 3 \\ 2 & 1\end{array}\right)$.

