Name: SOLUTION

MATH 4377/6308 - Advanced linear algebra I - Summer 2024

Quiz 5

Exercises:

(1) Mark each statement True or False. Justify each answer. (If true, cite appropriate facts or theorems. If false, explain why or give a counterexample that shows why the statement is not true in every case).
a) If B is a matrix that can be obtained by performing an elementary row operation on a matrix A, then A can be obtained by performing an elementary row operation on B.
b) The rank of a matrix is equal to the number of its nonzero columns.
(a) True. Since $B=E A$ with E an elementary matrix, it follows that $A=E^{-1} B$ where the inverse V is also an elementary matrix.
(b) False. For example, the rank of $A=\left(\begin{array}{ll}1 & 1 \\ 2 & 2\end{array}\right)$ is 1, which is not equal to the number of its nonzero columns.
(2) Determine the values of the parameter k such that the following system of equations has unique solution, no solution or infinitely many solutions.

$$
\begin{aligned}
x+z & =k \\
k x+2 y & =1 \\
-3 x+y & =-k
\end{aligned}
$$

Row reduce: :
$\left(\begin{array}{ccc|c}1 & 0 & 1 & k \\ k & 2 & 0 & 1 \\ -3 & 1 & 0 & -k\end{array}\right) \rightarrow\left(\begin{array}{ccc|c}1 & 0 & 1 & k \\ 0 & 2 & -k & 1-k^{2} \\ 0 & 1 & 3 & 2 k\end{array}\right) \rightarrow\left(\begin{array}{ccc|c}1 & 0 & 1 & k \\ 0 & 1 & 3 & 2 k \\ 0 & 2 & -k & 1-k^{2}\end{array}\right) \rightarrow\left(\begin{array}{ccc|c}1 & 0 & 1 & k \\ 0 & 1 & 3 & 2 k \\ 0 & 0 & -k-6 & 1-k^{2}-4 k\end{array}\right)$ This shows that the system has no solution if $k=-6$. If $k \neq-6$, the system has unique solution.
(3) Consider the following matrices and determine if they are invertible or not. Justify your answer.
(a) $\left(\begin{array}{ccc}0 & -1 & -1 \\ 1 & 3 & 2 \\ 1 & 0 & -1\end{array}\right) \quad$ (b) $\left(\begin{array}{ccc}0 & -1 & 0 \\ 3 & 0 & 0 \\ 0 & 0 & -2\end{array}\right)$
(a) NOT INVERTIBLE since the second row is linearly dependent with the other rows, namely $r 2=$ $r 3-2 r 1$.
(b) INVERTIBLE since the matrix can be transformed into a diagonal matrix (with non-zero diagonal entries) by changing the order of row 2 and row 1.

