MATH 4377/6308 - Advanced linear algebra I - Summer 2024

Quiz 6

(1) Prove that if $A, B \in M^{n, n}(F)$ are similar, then $\operatorname{det}(A)=\operatorname{det}(B)$.
(2) Mark each statement True or False. If true, cite appropriate facts or theorems. If false, give a counterexample that shows why the statement is not true.
a) Every 2×2 matrix has 2 distinct eigenvalues.
b) The sum of two eigenvalues of a matrix A is also an eigenvalue of A.
c) The sum of two eigenvectors of a matrix A is always an eigenvector of A
d) Two distinct eigenvectors corresponding to the same eigenvalue are always linearly dependent.
(3) The matrix $A=\left(\begin{array}{cc}-1 & 2 \\ 3 & -2\end{array}\right)$ has eigenvalues $\lambda_{1}=-4, \lambda_{2}=1$. Find a matrix Q such that

$$
Q^{-1} A Q=\left(\begin{array}{cc}
-4 & 0 \\
0 & 1
\end{array}\right)
$$

