Name: SOLUTION

MATH 4377/6308 - Advanced linear algebra I - Summer 2024

Quiz 6

(1) Prove that if $A, B \in M^{n, n}(F)$ are similar, then $\operatorname{det}(A)=\operatorname{det}(B)$.

Let A, B be similar matrices, that is, there exists an invertible matrix Q such that

$$
B=Q^{-1} A Q
$$

It follows that

$$
\operatorname{det}(B)=\operatorname{det}\left(Q^{-1} A Q\right)=\operatorname{det}\left(Q^{-1}\right) \operatorname{det}(A) \operatorname{det}(Q)=(\operatorname{det}(Q))^{-1} \operatorname{det}(A) \operatorname{det}(Q)=\operatorname{det}(A)
$$

(2) Mark each statement True or False. If true, cite appropriate facts or theorems. If false, give a counterexample that shows why the statement is not true.
a) Every 2×2 matrix has 2 distinct eigenvalues.
b) The sum of two eigenvalues of a matrix A is also an eigenvalue of A.
c) The sum of two eigenvectors of a matrix A is always an eigenvector of A
d) Two distinct eigenvectors corresponding to the same eigenvalue are always linearly dependent.
(a) False. For instance, the matrix $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ acting on \mathbb{R}^{2} has only the eigenvalue $\lambda=1$.
(b) False. For instance, the matrix $\left(\begin{array}{ll}3 & 0 \\ 0 & 2\end{array}\right)$ has two eigenvalues 3 and 2 but the sum 5 is not an eigenvalue of the same matrix.
(c) False. For instance, the matrix $\left(\begin{array}{ll}3 & 0 \\ 0 & 2\end{array}\right)$ has eigenvectors $\binom{1}{0}$ and $\binom{0}{1}$ but their sum $\binom{1}{1}$ is not an eigenvector of the same matrix.
(d) False. For instance, the matrix $\left(\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right)$ has linearly independent eigenvectors $\binom{1}{0}$ and $\binom{0}{1}$ corresponding to the same eigenvalue.
(3) The matrix $A=\left(\begin{array}{cc}-1 & 2 \\ 3 & -2\end{array}\right)$ has eigenvalues $\lambda_{1}=-4, \lambda_{2}=1$. Find a matrix Q such that

$$
Q^{-1} A Q=\left(\begin{array}{cc}
-4 & 0 \\
0 & 1
\end{array}\right)
$$

For $\lambda_{1}=-4$, we have $\operatorname{det}(A+4 I) x=\left(\begin{array}{ll}3 & 2 \\ 3 & 2\end{array}\right)\binom{x_{1}}{x_{2}}=0$ so that we have the eigenvector $u_{1}=\binom{1}{-\frac{3}{2}}$.
For $\lambda_{2}=1$, we have $\operatorname{det}(A+4 I) x=\left(\begin{array}{cc}-2 & 2 \\ 3 & -3\end{array}\right)\binom{x_{1}}{x_{2}}=0$ so that we have the eigenvector $u_{2}=\binom{1}{1}$.
NOTE: This implies that, choosing $Q=\left(\begin{array}{cc}1 & 1 \\ -\frac{3}{2} & 1\end{array}\right)$, then

$$
Q^{-1} A Q=\left(\begin{array}{cc}
-4 & 0 \\
0 & 1
\end{array}\right)
$$

