Name: SOLUTION

MATH 4377/6308 - Advanced linear algebra I - Summer 2024

Quiz 6

(1) Prove that if $A, B \in M^{n,n}(F)$ are similar, then $\det(A) = \det(B)$.

Let A, B be similar matrices, that is, there exists an invertible matrix Q such that

$$B = Q^{-1}AQ$$

It follows that

 $\det(B) = \det(Q^{-1}AQ) = \det(Q^{-1})\det(A)\det(Q) = (\det(Q))^{-1}\det(A)\det(Q) = \det(A)$

(2) Mark each statement True or False. If true, cite appropriate facts or theorems. If false, give a counterexample that shows why the statement is not true.

- a) Every 2×2 matrix has 2 distinct eigenvalues.
- b) The sum of two eigenvalues of a matrix A is also an eigenvalue of A.
- c) The sum of two eigenvectors of a matrix A is always an eigenvector of A
- d) Two distinct eigenvectors corresponding to the same eigenvalue are always linearly dependent.
- (a) False. For instance, the matrix $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ acting on \mathbb{R}^2 has only the eigenvalue $\lambda = 1$. (b) False. For instance, the matrix $\begin{pmatrix} 3 & 0 \\ 0 & 2 \end{pmatrix}$ has two eigenvalues 3 and 2 but the sum 5 is not an eigenvalue of the same matrix. (c) False. For instance, the matrix $\begin{pmatrix} 3 & 0 \\ 0 & 2 \end{pmatrix}$ has eigenvectors $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ but their sum $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ is not an eigenvector of the same matrix. (d) False. For instance, the matrix $\begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$ has linearly independent eigenvectors $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ corresponding to the same eigenvalue.

(3) The matrix
$$A = \begin{pmatrix} -1 & 2 \\ 3 & -2 \end{pmatrix}$$
 has eigenvalues $\lambda_1 = -4, \lambda_2 = 1$. Find a matrix Q such that
$$Q^{-1}AQ = \begin{pmatrix} -4 & 0 \\ 0 & 1 \end{pmatrix}$$

For $\lambda_1 = -4$, we have $\det(A + 4I)x = \begin{pmatrix} 3 & 2 \\ 3 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = 0$ so that we have the eigenvector $u_1 = \begin{pmatrix} 1 \\ -\frac{3}{2} \end{pmatrix}$. For $\lambda_2 = 1$, we have $\det(A + 4I)x = \begin{pmatrix} -2 & 2 \\ 3 & -3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = 0$ so that we have the eigenvector $u_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$. NOTE: This implies that, choosing $Q = \begin{pmatrix} 1 & 1 \\ -\frac{3}{2} & 1 \end{pmatrix}$, then

$$Q^{-1}AQ = \begin{pmatrix} -4 & 0\\ 0 & 1 \end{pmatrix}$$