Name: SOLUTION

MATH 4377/6308-Advanced linear algebra I - Summer 2024

Test 1

You must show your work and justify your steps to receive credit.

Problems:

(1) [4Pts] Let $x, y \in \mathbb{Z}$. Prove that the following relation is a equivalence relations or show that it is not: $x \sim y$ if and only if $x-y$ is a multiple of 3

SOLUTION:
Yes. (i) $x-x=0$ is a multiple of 3 with multiplicative constant 0 ;
(ii) if $x-y=5 m$, then $y-x=5(-m)$, which is also a multiple of 5;
(iii) if $x-y=5 m$ and if $y-z=5 n$, then $x-z=5(m+n)$
(2) [6Pts] For each one of the statements below, construct an example or explain why such example does not exist.
a) A subspace of \mathbb{R}^{3} of dimension 1 .
b) A non-trivial subset of \mathbb{R}^{3} that is not a subspace (non-trivial means it should not be the empty set).
c) A linearly independent set of 2 vectors in \mathbb{R}^{3}.
d) A linearly independent set of 4 vectors in \mathbb{R}^{3}.
e) A spanning set of \mathbb{R}^{3} that is not a basis.
f) An infinite dimensional vector space (that is, a vector spaces with no basis of finite cardinality).

SOLUTION.

(a) The set $\{(a, a, a): a \in \mathbb{R}\}$
(b) The set $\{(1,1,1)\}$.
(c) The set $\{(1,0,0),(0,1,0)\}$
(d) Not possible since a basis in \mathbb{R}^{3} has dimension 3 and any set of more than 3 elements is linearly dependent.
(e) The set $\{(1,0,0),(0,1,0),(0,0,1),(2,0,0)\}$.
(f) The space of continuous function with domain in \mathbb{R}.
(3) [6Pts] Determine if the following subsets of the vector space of 2×2 matrices with real entries are subspaces:
a) $S=\left\{\left[\begin{array}{ll}a & b \\ 0 & \frac{1}{a}\end{array}\right]: a \in \mathbb{R} \backslash\{0\}, b \in \mathbb{R}\right\}$
b) $R=\left\{\left[\begin{array}{cc}a & b-a \\ a-b & b\end{array}\right]: a, b \in \mathbb{R}\right\}$

SOLUTION.

(a) This is not a subspace. Note that:

$$
\left[\begin{array}{cc}
a & b \\
0 & \frac{1}{a}
\end{array}\right]+\left[\begin{array}{cc}
a^{\prime} & b^{\prime} \\
0 & \frac{1^{\prime}}{a}
\end{array}\right]=\left[\begin{array}{cc}
a+a^{\prime} & b+b^{\prime} \\
0 & \frac{1}{a}+\frac{1^{\prime}}{a}
\end{array}\right] \neq\left[\begin{array}{cc}
a+a^{\prime} & \left(a+a^{\prime}\right)\left(b+b^{\prime}\right) \\
0 & \frac{1}{a+a^{\prime}}
\end{array}\right]
$$

This shows that the matrix resulting from adding two matrices in S does not belong to S.
(b) This is a subspace.
(i) For any $\alpha \in \mathbb{R}, \alpha\left[\begin{array}{cc}a & b-a \\ a-b & b\end{array}\right]=\left[\begin{array}{cc}\alpha a & \alpha(b-a) \\ \alpha(a-b) & \alpha b\end{array}\right]=\left[\begin{array}{cc}\tilde{a} & \tilde{b}-\tilde{a} \\ \tilde{a}-\tilde{b} & \tilde{b}\end{array}\right]$, for $\tilde{a}, \tilde{b} \in \mathbb{R}$.
(ii) $\left[\begin{array}{cc}a & b-a \\ a-b & b\end{array}\right]+\left[\begin{array}{cc}a^{\prime} & b^{\prime}-a^{\prime} \\ a^{\prime}=b^{\prime} & b^{\prime}\end{array}\right]=\left[\begin{array}{cc}a+a^{\prime} & \left(b+b^{\prime}\right)-\left(a+a^{\prime}\right) \\ \left(a+a^{\prime}-\left(b+b^{\prime}\right)\right) & \left.b+b^{\prime}\right)\end{array}\right]=\left[\begin{array}{cc}\tilde{a} & \tilde{b}-\tilde{a} \\ \tilde{a}-\tilde{b} & \tilde{b}\end{array}\right]$,
for $\tilde{a}, \tilde{b} \in \mathbb{R}$.
(4) $[6 \mathrm{Pts}]$ Let $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ be given by

$$
T\left(a_{1}, a_{2}, a_{3}, a_{4}\right)=\left(a_{1}+a_{2}+a_{3},-a_{1}+2 a_{2}+a_{4}, 3 a_{2}+a_{3}+a_{4}\right)
$$

(a) Find the nullity and the rank of T.
(b) Find bases for the null space and the range of T.

SOLUTION.

(a) The null space is determined by the equations

$$
a_{1}+a_{2}+a_{3}=0,-a_{1}+2 a_{2}+a_{4}=0,3 a_{2}+a_{3}+a_{4}=0
$$

This gives

$$
\left(\begin{array}{rrrr|r}
1 & 1 & 1 & 0 & 0 \\
-1 & 2 & 0 & 1 & 0 \\
0 & 3 & 1 & 1 & 0
\end{array}\right) \rightarrow\left(\begin{array}{llll|l}
1 & 1 & 1 & 0 & 0 \\
0 & 3 & 1 & 1 & 0 \\
0 & 3 & 1 & 1 & 0
\end{array}\right) \rightarrow\left(\begin{array}{llll|l}
1 & 1 & 1 & 0 & 0 \\
0 & 3 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

The solution is: $a_{3}=-a_{1}-a_{2}, a_{4}=a_{1}-2 a_{2}$, with $a_{1}, a_{2} \in \mathbb{R}$. This shows that nullity $=2$. By the dimension theorem, we also derive that $\operatorname{rank}(T)=2$
(b) From the equations of the nullspace, choosing the free parameters as $\left(a_{1}, a_{2}\right)=(1,0)$ and $\left(a_{1}, a_{2}\right)=(0, a)$ we have that a basis for the null space is

$$
B=\{(1,0,-1,1),(0,1,-1,-2)\}
$$

The range is determined by the equations

$$
a_{1}+a_{2}+a_{3}=x_{1},-a_{1}+2 a_{2}+a_{4}=x_{2}, 3 a_{2}+a_{3}+a_{4}=x_{3}
$$

This gives

$$
\left(\begin{array}{rlll|l}
1 & 1 & 1 & 0 & x_{1} \\
-1 & 2 & 0 & 1 & x_{2} \\
0 & 3 & 1 & 1 & x_{3}
\end{array}\right) \rightarrow\left(\begin{array}{llll|l}
1 & 1 & 1 & 0 & x_{1} \\
0 & 3 & 1 & 1 & x_{1}+x_{2} \\
0 & 3 & 1 & 1 & x_{3}
\end{array}\right) \rightarrow\left(\begin{array}{llll|l}
1 & 1 & 1 & 0 & x_{1} \\
0 & 3 & 1 & 1 & x_{1}+x_{2} \\
0 & 0 & 0 & 0 & x_{3}-x_{1}-x_{2}
\end{array}\right)
$$

Hence the range of T satisfies the condition $x_{3}-x_{1}-x_{2}=0$ A basis for the range is

$$
D=\{(1,0,1),(0,1,1)\}
$$

(5) [5Pts] Let $L=\left\{\left(\begin{array}{cc}0 & 0 \\ 1 & -1\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 1 & 2\end{array}\right)\right\}$. Let $G=\left\{\left(\begin{array}{ll}0 & 0 \\ 2 & 1\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 3 & 3\end{array}\right),\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right)\right\}$. You can assume without proof that G spans $M^{2 \times 2}$. Find a subset $H \subset G$ such that $H \cup L$ spans $M^{2 \times 2}$. You need to justify that the set you build spans $M^{2 \times 2}$.

Note that the first two matrices of G are already in the span of L since

$$
\left(\begin{array}{ll}
0 & 0 \\
2 & 1
\end{array}\right)=\left(\begin{array}{cc}
0 & 0 \\
1 & -1
\end{array}\right)+\left(\begin{array}{ll}
0 & 0 \\
1 & 2
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{ll}
0 & 0 \\
3 & 3
\end{array}\right)=\left(\begin{array}{cc}
0 & 0 \\
1 & -1
\end{array}\right)+2\left(\begin{array}{ll}
0 & 0 \\
1 & 2
\end{array}\right)
$$

Because G spans $M^{2 \times 2}$, and the first two matrices are already in the span of L, then we need to choose the other two matrices of G to form the set H, that is $H=\left\{\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right)\right\}$ so that $H \cup L$ spans $M^{2 \times 2}$.
(6) $[5 \mathrm{Pts}]$ Let V be a finite-dimensional vector space and V_{0} be a proper subspace of V (where proper means that $\left.V_{0} \neq V\right)$. Prove that $\operatorname{dim} V_{0}<\operatorname{dim} V$.
SOLUTION.
Suppose that $\operatorname{dim} V_{0}=m$ and that $B=\left\{v_{1}, \ldots, v_{m}\right\}$ be a basis of V_{0}. Since $V_{0} \subset V$, we also have that $S \subset V$.
Since $V_{0} \neq V$ and $V_{0} \subset V$, it follows that there is a vector $u \in V$ that is not in spanB. Hence the set $E=\left\{u, v_{1}, \ldots, v_{m}\right\} \subset V$ is linearly independent. It follows that $\operatorname{dim} V \geq m+1$.

