Name:

MATH 4377/6308 - Advanced linear algebra I - Summer 2024

Homework 1

Exercises:

1. Let $A=\{1,2,5\}, B=\{4,5\}, C=\{4,6\}$. Explicitly write down the sets:

$$
A \cup B, A \cap(B \cup C), B \cap(A \backslash B), A \times C
$$

2. Let $x, y \in \mathbb{Z}$. Prove if the following relations are equivalence relations or not:
a) $x \sim y$ if and only if $x-y<10$.
b) $x \sim y$ if and only if $x \cdot y \geq 0$.
c) $x \sim y$ if and only if $x-y$ is even.
3. Give an example of a set A and a relation on A which is reflexive and transitive but not symmetric.
4. Let $f:\{0,1,2,3,4\} \rightarrow \mathbb{N}, n \rightarrow n^{3}+n$.
a) Find domain, codomain, and range of f.
b) Is f one-to-one?
c) Is f onto?
5. Let $f:[0,2 \pi] \rightarrow[-1,1]$ be defined by $f(x)=\sin (x)$.
a) Is f one-to-one? Is f onto?
b) Find an interval S, such that $\left.f\right|_{S}$ is both one-to-one and onto.
6. Let $z=1+i 2, w=1-i 3$. Write: $\bar{z}, z+w, z w, \frac{1}{w}$ in the form $a+i b$. Finally write $|z|$.
7. Let $x, y \in \mathbb{Z}$. Let $x \sim y$ if and only if $y+4 x$ is an integer multiple of 5 . Prove that \sim is an equivalence relation.
