Name: SOLUTION

MATH 4377/6308-Advanced linear algebra I - Summer 2024

Homework 1

Exercises:

1. Let $A=\{1,2,5\}, B=\{4,5\}, C=\{4,6\}$. Explicitly write down the sets:

$$
A \cup B, A \cap(B \cup C), B \cap(A \backslash B), A \times C
$$

SOLUTION:
$A \cup B=\{1,2,4,5\}, A \cap(B \cup C)=\{5\}, B \cap(A \backslash B)=\emptyset, A \times C=\{(1,4),(1,6),(2,4),(2,6),(5,4),(5,6)\}$
2. Let $x, y \in \mathbb{Z}$. Prove if the following relations are equivalence relations or not:
a) $x \sim y$ if and only if $x-y<10$.
b) $x \sim y$ if and only if $x \cdot y \geq 0$.
c) $x \sim y$ if and only if $x-y$ is even.

SOLUTION:
(a) No. Symmetry fails
(b) No. Transitivity fails. There are $x, y, z \in \mathbb{Z}$ s.t. $x \cdot y \geq 0$ and $y \cdot z \geq 0$, but $x \cdot z<0$
(c) Yes. (i) $x-x$ is even; (ii) if $x-y=2 m$, then $y-x=2(-m)$; (iii) if $x-y=2 m$ and if $y-z=2 n$, then $x-z=2(m+n)$
3. Give an example of a set A and a relation on A which is reflexive and transitive but not symmetric.

SOLUTION:
$x, y \in \mathbb{Z}$, with $x \sim y$ if and only if $x \leq y$
In this case, $x \leq x$ holds, $x \leq y$ and $y \leq z$ implies $x \leq z$. However $x \leq y$ does not imply $y \leq x$
4. Let $f:\{0,1,2,3,4\} \rightarrow \mathbb{N}, n \rightarrow n^{3}+n$.
a) Find domain, codomain, and range of f.
b) Is f one-to-one?
c) Is f onto?

SOLUTION:
(a) domain: $\{0,1,2,3,4\}$, codomain: \mathbb{N}, range: $\left\{0,2,2^{2}+2,3^{3}+3+, 4^{4}+4\right\}$
(b) yes. $n^{3}+n=m^{3}+m$ implies $n=m$
(c) no. There is no n in the domain of f such that $f(n)=1$
5. Let $f:[0,2 \pi] \rightarrow[-1,1]$ be defined by $f(x)=\sin (x)$.
a) Is f one-to-one? Is f onto?
b) Find an interval S, such that $\left.f\right|_{S}$ is both one-to-one and onto.

SOLUTION:
(a) f is not 1-1 since $f(0)=f(\pi) . f$ is onto.
(b) f one-to-one and onto in the interval $[\pi / 2,3 \pi / 2]$
6. Let $z=1+i 2, w=1-i 3$. Write: $\bar{z}, z+w, z w, \frac{1}{w}$ in the form $a+i b$. Finally write $|z|$.

SOLUTION:
$\bar{z}=1-i 2, z+w=2-i, z w=7-3, \frac{1}{w}=\frac{1}{10}(1+3 i),|z|^{2}=5,|z|=\sqrt{5}$
7. Let $x, y \in \mathbb{Z}$. Let $x \sim y$ if and only if $y+4 x$ is an integer multiple of 5 . Prove that \sim is an equivalence relation.

SOLUTION:

(i) $x+4 x=5 x$ is an integer multiple of 5; (ii) if $y+4 x=5 m$, then $y=5 m-4 x$, hence $x+4 y=x+20 m-16 x=20 m-15 x=5(4 m-3 x)$ which is also a multiple of 5 ; (iii) if $y+4 x=5 m$ and if $z+4 y=5 n$, then (using these two equations to express z and $4 x$) $z+4 x=(5 n-4 y)+(5 m-y)=5(n+m)-5 y=5(n+m-y)$, which is a multiple of 5 .

