Name:

MATH 4377/6308 - Advanced linear algebra I - Summer 2024 Homework 2

Exercises:

1. Mark each statement True or False. Justify each answer.

- a) A subset H of a vector space V is a subspace of V if the zero vector is in H.
- b) A subspace is also a vector space.
- c) If u is a vector in a vector space V, then (-1)u is the same as the negative of u.
- d) A vector space is also a subspace.
- e) \mathbb{R}^2 is a subspace of \mathbb{R}^3 .
- f) If f is a function in the vector space V of all real-valued functions on \mathbb{R} and if f(t) = 0 for some t, then f is the zero vector in V.
- g) If S is a linearly dependent set, then each vector in S is a linear combination of other vectors in S.
- h) Any set containing the zero vector is linearly dependent.
- i) Subsets of linearly dependent sets are linearly dependent.
- 2. (2 points) Determine if the following subsets of \mathbb{R}^3 are subspaces:
 - a) $\{(a, b, c) \in \mathbb{R}^3 : 2a 3c = 0\}$
 - b) $\{(a, b, c) \in \mathbb{R}^3 : a 2b + c = 1\}$
 - c) $\{(a, b, c) \in \mathbb{R}^3 : 2a = c\}$
 - d) $\{(a, b, c) \in \mathbb{R}^3 : 2a = 5c \text{ and } 4b = a + c\}$
- 3. Determine if the following subsets of the vector space of 2×2 matrices with real entries are subspaces:

a)	$\left\{ \left[\begin{array}{c} a \\ c \end{array} \right] \right.$	$\left. \begin{matrix} b \\ 0 \end{matrix} \right] : a, b, c \in \mathbb{R} \bigg\}$
b)	$\left\{ \left[\begin{array}{c} a \\ b \end{array} \right] \right.$	$\left. \begin{matrix} b^2 \\ a^2 \end{matrix} \right] : a, b \in \mathbb{R} \bigg\}$

- 4. A real-valued function f defined on the real line is called an *even function* if f(t) = f(-t) for each real number t. Prove that the set of even functions is a subspace with the usual addition and scalar multiplication for functions. (You may assume as true that the set of real-valued functions f defined on the real line is a vector space with the usual addition and scalar multiplication for functions.)
- 5. Suppose u_1, \ldots, u_p and v_1, \ldots, v_p are vectors in a vector space V, and let

$$H = span(u_1, \dots, u_p), \quad K = span(v_1, \dots, v_p)$$

Prove that $H + K = span(u_1, \ldots, u_p, v_1, \ldots, v_p)$