Name:

MATH 4377/6308-Advanced linear algebra I - Summer 2024

Homework 2

Exercises:

1. Mark each statement True or False. Justify each answer.
a) A subset H of a vector space V is a subspace of V if the zero vector is in H .
b) A subspace is also a vector space.
c) If u is a vector in a vector space V , then $(-1) u$ is the same as the negative of u.
d) A vector space is also a subspace.
e) \mathbb{R}^{2} is a subspace of \mathbb{R}^{3}.
f) If f is a function in the vector space V of all real-valued functions on \mathbb{R} and if $f(t)=0$ for some t , then f is the zero vector in V .
g) If S is a linearly dependent set, then each vector in S is a linear combination of other vectors in S .
h) Any set containing the zero vector is linearly dependent.
i) Subsets of linearly dependent sets are linearly dependent.
(a) False. $\{0,1\} \subset \mathbb{R}$ is a subset of \mathbb{R} but it is not a subspace of $i t$.
(b) True. A subspace is also a vector space in its own right.
(c) True. If u is a vector in a vector space V, then, $(-1) u=-u \in V$.
(d) True. A vector space is also a subspace of itself.
(e) False. \mathbb{R}^{2} is not a subset of \mathbb{R}^{3}.
(f) False. If The function $f(t)=0$ for some t, then $g+f \neq g$, in general, so f is not the zero vector in V.
(g) False. The $S=\{v, 0\}$ is linear dependent, but v is not a linear combination of 0 . If S is a linearly dependent set of two or more vectors, then at least one of the vectors in S is a linear combination of other vectors in S.
(h) True. The zero vector is contained in the span of any vector
(i) False. $\{(1,0),(0,1)\}$ is a linearly independent subset of the linearly dependent set $\{(1,0),(0,1),(1,1)\}$.
2. (2 points) Determine if the following subsets of \mathbb{R}^{3} are subspaces:
a) $\left\{(a, b, c) \in \mathbb{R}^{3}: 2 a-3 c=0\right\}$
b) $\left\{(a, b, c) \in \mathbb{R}^{3}: a-2 b+c=1\right\}$
c) $\left\{(a, b, c) \in \mathbb{R}^{3}: 2 a=c\right\}=\left\{(a, b, c) \in \mathbb{R}^{3}: 2 a-c=0\right\}$
d) $\left\{(a, b, c) \in \mathbb{R}^{3}: 2 a=5 c\right.$ and $\left.4 b=a+c\right\}=\left\{(a, b, c) \in \mathbb{R}^{3}: 2 a-5 c=0\right.$ and $\left.4 b-a-c=0\right\}$
(a) This is a subspace. Let $v=(a, b, c)$ and α be a scalar. For $v^{\prime}=\alpha v$, we have $2 \alpha a-3 \alpha c=$ $\alpha(2 a-3 c)=0$. Also, for $w=(a, b, c)+\left(a^{\prime}, b^{\prime}, c^{\prime}\right)=\left(a+a^{\prime}, b+b^{\prime}, c+c^{\prime}\right)$, we have

$$
2\left(a+a^{\prime}\right)-3\left(c+c^{\prime}\right)=2 a-3 c+2 a^{\prime}-3 c^{\prime}=0
$$

(a) This is not a subspace. Let $v=(a, b, c)$ and α be a scalar. For $v^{\prime}=\alpha v$, we have $\alpha a-2 \alpha b+$ $\alpha c=\operatorname{alpha}(a-2 b+c)=\alpha$. This shows the set is not closed under scalar multiplication.
(c) This is a subspace. Argument is very similar to (a). Let $v=(a, b, c)$ and α be a scalar. For $v^{\prime}=\alpha v$, we have $2 \alpha a-\alpha c=\alpha(2 a-c)=0$. Also, for $w=(a, b, c)+\left(a^{\prime}, b^{\prime}, c^{\prime}\right)=\left(a+a^{\prime}, b+b^{\prime}, c+c^{\prime}\right)$, we have

$$
2\left(a+a^{\prime}\right)-\left(c+c^{\prime}\right)=2 a-c+2 a^{\prime}-c^{\prime}=0
$$

(d) This is a subspace. Argument is very similar to (a). Let $v=(a, b, c)$ and α be a scalar. For $v^{\prime}=\alpha v$, we have $2 \alpha a-5 \alpha c=\alpha(2 a-5 c)=0$; we also have $4 \alpha b-\alpha a-\alpha c=\alpha(4 b-a-c)=0$. Also, for $w=(a, b, c)+\left(a^{\prime}, b^{\prime}, c^{\prime}\right)=\left(a+a^{\prime}, b+b^{\prime}, c+c^{\prime}\right)$, we have

$$
2\left(a+a^{\prime}\right)-5\left(c+c^{\prime}\right)=2 a-5 c+2 a^{\prime}-5 c^{\prime}=0
$$

and

$$
4\left(b+b^{\prime}\right)-\left(a+a^{\prime}\right)-\left(c+c^{\prime}\right)=4 b-a-c+4 b^{\prime}-a^{\prime}-c^{\prime}=0
$$

3. Determine if the following subsets of the vector space of 2×2 matrices with real entries are subspaces:
a) $\left\{\left[\begin{array}{ll}a & b \\ c & 0\end{array}\right]: a, b, c \in \mathbb{R}\right\}$
b) $\left\{\left[\begin{array}{ll}a & b^{2} \\ b & a^{2}\end{array}\right]: a, b \in \mathbb{R}\right\}$
(a) This is a subspace. Scalar multiplication preserves the properties of the set and the sum of two triangular matrices is a triangular matrix of the same type.
(b) This is not a subspace. Scalar multiplication does not preserve the properties of the matrix since a negative scalar will change the sign of the (1,2) and (2,2) entries.
4. A real-valued function f defined on the real line is called an even function if $f(t)=f(-t)$ for each real number t. Prove that the set of even functions is a subspace with the usual addition and scalar multiplication for functions. (You may assume as true that the set of real-valued functions f defined on the real line is a vector space with the usual addition and scalar multiplication for functions.)

Clearly multiplication of an even function by a scalar does not affect the event property.
Also, if f and g are even functions, then $(f+g)(t)=f(t)+g)(t)=f(-t)+g)(-t)=(f+g)(-t)$, so the sum is also an even function.
5. Suppose u_{1}, \ldots, u_{p} and v_{1}, \ldots, v_{p} are vectors in a vector space V , and let

$$
H=\operatorname{span}\left(u_{1}, \ldots, u_{p}\right), \quad K=\operatorname{span}\left(v_{1}, \ldots, v_{p}\right)
$$

Prove that $H+K=\operatorname{span}\left(u_{1}, \ldots, u_{p}, v_{1}, \ldots, v_{p}\right)$
Let $x=h+k \in H+K$. Since $h \in H$, then there are scalars a_{1}, \ldots, a_{p} such that $h=\sum_{i=1}^{p} a_{i} u_{i}$; similarly, since $k \in K$, then there are scalars b_{1}, \ldots, b_{p} such that $k=\sum_{i=1}^{p} b_{i} v_{i}$. It follows
that $h+k=\sum_{i=1}^{p}\left(a_{i} u_{i}+b_{i} v_{i}\right) \in \operatorname{span}\left(u_{1}, \ldots, u_{p}, v_{1}, \ldots, v_{p}\right)$. This shows that $H+K \subset$ $\operatorname{span}\left(u_{1}, \ldots, u_{p}, v_{1}, \ldots, v_{p}\right)$.
Conversely, $\operatorname{span}\left(u_{1}, \ldots, u_{p}, v_{1}, \ldots, v_{p}\right)$ consists of all $x=\sum_{i=1}^{p} a_{i} u_{i}+\sum_{i=1}^{p} b_{i} v_{i}$ for some scalars $a_{1}, \ldots, a_{p}, b_{1}, \ldots, b_{p}$. This shows that $\operatorname{span}\left(u_{1}, \ldots, u_{p}, v_{1}, \ldots, v_{p}\right) \subset H+K$.

