Name:

MATH 4377/6308 - Advanced linear algebra I - Summer 2024 Homework 2

Exercises:

1. Mark each statement True or False. Justify each answer.

- a) A subset H of a vector space V is a subspace of V if the zero vector is in H.
- b) A subspace is also a vector space.
- c) If u is a vector in a vector space V, then (-1)u is the same as the negative of u.
- d) A vector space is also a subspace.
- e) \mathbb{R}^2 is a subspace of \mathbb{R}^3 .
- f) If f is a function in the vector space V of all real-valued functions on \mathbb{R} and if f(t) = 0 for some t, then f is the zero vector in V.
- g) If S is a linearly dependent set, then each vector in S is a linear combination of other vectors in S.
- h) Any set containing the zero vector is linearly dependent.
- i) Subsets of linearly dependent sets are linearly dependent.
- (a) False. $\{0,1\} \subset \mathbb{R}$ is a subset of \mathbb{R} but it is not a subspace of it.
- (b) True. A subspace is also a vector space in its own right.
- (c) True. If u is a vector in a vector space V, then, $(-1)u = -u \in V$.
- (d) True. A vector space is also a subspace of itself.
- (e) False. \mathbb{R}^2 is not a subset of \mathbb{R}^3 .

(f) False. If The function f(t) = 0 for some t, then $g + f \neq g$, in general, so f is not the zero vector in V.

(g) False. The $S = \{v, 0\}$ is linear dependent, but v is not a linear combination of 0. If S is a linearly dependent set of two or more vectors, then at least one of the vectors in S is a linear combination of other vectors in S.

(h) True. The zero vector is contained in the span of any vector

(i) False. $\{(1,0), (0,1)\}$ is a linearly independent subset of the linearly dependent set $\{(1,0), (0,1), (1,1)\}$.

2. (2 points) Determine if the following subsets of \mathbb{R}^3 are subspaces:

- a) $\{(a, b, c) \in \mathbb{R}^3 : 2a 3c = 0\}$
- b) $\{(a, b, c) \in \mathbb{R}^3 : a 2b + c = 1\}$
- c) $\{(a, b, c) \in \mathbb{R}^3 : 2a = c\} = \{(a, b, c) \in \mathbb{R}^3 : 2a c = 0\}$
- d) $\{(a,b,c) \in \mathbb{R}^3 : 2a = 5c \text{ and } 4b = a + c\} = \{(a,b,c) \in \mathbb{R}^3 : 2a 5c = 0 \text{ and } 4b a c = 0\}$

(a) This is a subspace. Let v = (a, b, c) and α be a scalar. For $v' = \alpha v$, we have $2\alpha a - 3\alpha c = \alpha(2a - 3c) = 0$. Also, for w = (a, b, c) + (a', b', c') = (a + a', b + b', c + c'), we have

$$2(a + a') - 3(c + c') = 2a - 3c + 2a' - 3c' = 0.$$

(a) This is not a subspace. Let v = (a, b, c) and α be a scalar. For $v' = \alpha v$, we have $\alpha a - 2\alpha b + \alpha c = alpha(a - 2b + c) = \alpha$. This shows the set is not closed under scalar multiplication.

(c) This is a subspace. Argument is very similar to (a). Let v = (a, b, c) and α be a scalar. For $v' = \alpha v$, we have $2\alpha a - \alpha c = \alpha(2a - c) = 0$. Also, for w = (a, b, c) + (a', b', c') = (a + a', b + b', c + c'), we have

$$2(a + a') - (c + c') = 2a - c + 2a' - c' = 0$$

(d) This is a subspace. Argument is very similar to (a). Let v = (a, b, c) and α be a scalar. For $v' = \alpha v$, we have $2\alpha a - 5\alpha c = \alpha(2a - 5c) = 0$; we also have $4\alpha b - \alpha a - \alpha c = \alpha(4b - a - c) = 0$. Also, for w = (a, b, c) + (a', b', c') = (a + a', b + b', c + c'), we have

$$2(a + a') - 5(c + c') = 2a - 5c + 2a' - 5c' = 0$$

and

$$4(b+b') - (a+a') - (c+c') = 4b - a - c + 4b' - a' - c' = 0$$

3. Determine if the following subsets of the vector space of 2×2 matrices with real entries are subspaces:

a)
$$\left\{ \begin{bmatrix} a & b \\ c & 0 \end{bmatrix} : a, b, c \in \mathbb{R} \right\}$$

b)
$$\left\{ \begin{bmatrix} a & b^2 \\ b & a^2 \end{bmatrix} : a, b \in \mathbb{R} \right\}$$

(a) This is a subspace. Scalar multiplication preserves the properties of the set and the sum of two triangular matrices is a triangular matrix of the same type.

(b) This is not a subspace. Scalar multiplication does not preserve the properties of the matrix since a negative scalar will change the sign of the (1,2) and (2,2) entries.

4. A real-valued function f defined on the real line is called an *even function* if f(t) = f(-t) for each real number t. Prove that the set of even functions is a subspace with the usual addition and scalar multiplication for functions. (You may assume as true that the set of real-valued functions f defined on the real line is a vector space with the usual addition and scalar multiplication for functions.)

Clearly multiplication of an even function by a scalar does not affect the event property. Also, if f and g are even functions, then (f+g)(t) = f(t)+g(t) = f(-t)+g(-t) = (f+g)(-t), so the sum is also an even function.

5. Suppose u_1, \ldots, u_p and v_1, \ldots, v_p are vectors in a vector space V, and let

$$H = span(u_1, \dots, u_p), \quad K = span(v_1, \dots, v_p)$$

Prove that $H + K = span(u_1, \ldots, u_p, v_1, \ldots, v_p)$

Let $x = h + k \in H + K$. Since $h \in H$, then there are scalars a_1, \ldots, a_p such that $h = \sum_{i=1}^p a_i u_i$; similarly, since $k \in K$, then there are scalars b_1, \ldots, b_p such that $k = \sum_{i=1}^p b_i v_i$. It follows

that $h + k = \sum_{i=1}^{p} (a_i u_i + b_i v_i) \in span(u_1, \ldots, u_p, v_1, \ldots, v_p)$. This shows that $H + K \subset span(u_1, \ldots, u_p, v_1, \ldots, v_p)$.

Conversely, $span(u_1, \ldots, u_p, v_1, \ldots, v_p)$ consists of all $x = \sum_{i=1}^p a_i u_i + \sum_{i=1}^p b_i v_i$ for some scalars $a_1, \ldots, a_p, b_1, \ldots, b_p$. This shows that $span(u_1, \ldots, u_p, v_1, \ldots, v_p) \subset H + K$.