Name:

MATH 4377/6308-Advanced linear algebra I - Summer 2024

Homework 3

Exercises:

(1) Decide if each of the following statements is True or False. Justify each answer. If true, cite appropriate facts or theorems. If false, explain why or give a counterexample that shows why the statement is not true in every case.
Let v_{1}, \ldots, v_{p} be vectors in a non-zero finite-dimensional vector space V, and let $S=\left\{v_{1}, \ldots, v_{p}\right\}$.
a) The set of all linear combinations of v_{1}, \ldots, v_{p} is a vector space.
b) If $\left\{v_{1}, \ldots, v_{p-1}\right\}$ spans V, then S spans V.
c) If $\left\{v_{1}, \ldots, v_{p-1}\right\}$ is linearly independent, then so is S.
d) If S is linearly independent, then S is a basis for V.
e) If S is linearly independent, then $\operatorname{dim} V=p$.
f) If $V=\operatorname{span} S$, then some subset of S is a basis for V.
g) If $V=\operatorname{span} S$, then $\operatorname{dim} V=p$.
h) If $\operatorname{dim} V=p$ and $V=\operatorname{span} S$, then S cannot be linearly dependent.
i) A plane in \mathbb{R}^{3} is a two-dimensional subspace.
(2) The vectors $u_{1}=(1,1,1,1), u_{2}=(0,1,1,1), u_{3}=(0,0,1,1)$, and $u_{4}=(0,0,0,1)$ form a basis for \mathbb{R}^{4}. Find a unique representation of an arbitrary vector $(a, b, c, d) \in \mathbb{R}^{4}$ as a linear combination of u_{1}, u_{2}, u_{3}, and u_{4}.
(3) Let $L=\{(1,2,1,3),(0,0,1,1)\}$. Let $G=\{(1,2,-2,0),(1,0,0-1),(0,1,1,1),(1,2,2,4)\}$. You can assume without proof that G spans \mathbb{R}^{4}. Find a subset $H \subset G$ such that $H \cup L$ spans \mathbb{R}^{4}. You need to justify that the set you build spans \mathbb{R}^{4}.
(4) Let $T: \mathbb{R}^{5} \rightarrow \mathbb{R}^{3}$ be given by

$$
T\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right)=\left(a_{1}+2 a_{2}-a_{3},-a_{2}+3 a_{3},-a_{1}-a_{2}-2 a_{3}\right)
$$

(a) Verify that T is linear.
(b) Find bases for the null space and the range of T.

