Name: SOLUTION

MATH 4377/6308 - Advanced linear algebra I - Summer 2024 Homework 3

Exercises:

(1) Decide if each of the following statements is True or False. Justify each answer. If true, cite appropriate facts or theorems. If false, explain why or give a counterexample that shows why the statement is not true in every case.

Let v_1, \ldots, v_p be vectors in a non-zero finite-dimensional vector space V, and let $S = \{v_1, \ldots, v_p\}$.

- a) The set of all linear combinations of v_1, \ldots, v_p is a vector space.
- b) If $\{v_1, \ldots, v_{p-1}\}$ spans V, then S spans V.
- c) If $\{v_1, \ldots, v_{p-1}\}$ is linearly independent, then so is S.
- d) If S is linearly independent, then S is a basis for V.
- e) If S is linearly independent, then dimV = p.
- f) If V = spanS, then some subset of S is a basis for V.
- g) If V = spanS, then dimV = p.
- h) If dimV = p and V = spanS, then S cannot be linearly dependent.
- i) A plane in \mathbb{R}^3 is a two-dimensional subspace.

(a) True. The set of all linear combinations of v_1, \ldots, v_p is the span of S and is a vector space as proved in class.

(b) True. If $\{v_1, \ldots, v_{p-1}\}$ spans V, then the span S, which is contains the spans of $\{v_1, \ldots, v_{p-1}\}$ will also span V.

(c) False. If $\{v_1, \ldots, v_{p-1}\}$ is l.i., then $\{v_1, \ldots, v_{p-1}\} \cup \{v_p\}$ does not need to be l.i. This is only true if $v_p \notin span\{v_1, \ldots, v_{p-1}\}$.

(d) False. If S is l.i., then it is a basis of V only if it spans S.

(e) False. If S is linearly independent, then, by the Replacement Theorem $\dim V \ge p$. One can construct examples where $\dim V > p$.

(f) True. If $V = span\{S\}$, then by a result stated in class there is a subset of S that is a basis of V.

(g) False. If $V = span\{S\}$, then by a result stated in class there is a subset of S that is a basis of V, hence $dimV \leq p$. One can construct examples where dimV < p.

(h) True. If $\dim V = p$ and V = spanS, then, by a consequence of the Replacement theorem, S is a basis for V, therefore, S cannot be linearly dependent.

(i) False. A plane in \mathbb{R}^3 is a not a subspace unless it is a plane through the origin, since the 0 vector must be contained in the subspace.

(2) The vectors $u_1 = (1, 1, 1, 1)$, $u_2 = (0, 1, 1, 1)$, $u_3 = (0, 0, 1, 1)$, and $u_4 = (0, 0, 0, 1)$ form a basis for \mathbb{R}^4 . Find a unique representation of an arbitrary vector $(a, b, c, d) \in \mathbb{R}^4$ as a linear combination of u_1 , u_2 , u_3 , and u_4 .

We solve the linear system

$$x_1u_1 + x_2u_2 + x_3u_3 + x_4u_4 = (a, b, c, d), \quad a, b, c, d \in \mathbb{R}$$

We write the augmented matrix and next reduce the matrix in row-echelon form:

$$\begin{pmatrix} 1 & 0 & 0 & 0 & | & a \\ 1 & 1 & 0 & 0 & | & b \\ 1 & 1 & 1 & 0 & | & c \\ 1 & 1 & 1 & 1 & | & d \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 0 & | & a \\ 0 & 1 & 0 & 0 & | & b-a \\ 0 & 1 & 1 & 0 & | & c-a \\ 0 & 1 & 1 & 1 & | & d-a \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 0 & | & a \\ 0 & 1 & 0 & 0 & | & b-a \\ 0 & 0 & 1 & 0 & | & c-b \\ 0 & 0 & 1 & 1 & | & d-c \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 0 & | & a \\ 0 & 1 & 0 & 0 & | & b-a \\ 0 & 0 & 1 & 0 & | & c-b \\ 0 & 0 & 0 & 1 & | & d-c \end{pmatrix}$$

Thus: $x_1 = a, x_2 = b - a, x_3 = c - b, x_4 = d - c.$

(3) Let $L = \{(1, 2, 1, 3), (0, 0, 1, 1)\}$. Let $G = \{(1, 2, -2, 0), (1, 0, 0 - 1), (0, 1, 1, 1), (1, 2, 2, 4)\}$. You can assume without proof that G spans \mathbb{R}^4 . Find a subset $H \subset G$ such that $H \cup L$ spans \mathbb{R}^4 . You need to justify that the set you build spans \mathbb{R}^4 .

Note that

$$(1,2,2,4) = (1,2,1,3) + (0,0,1,1)$$
 and $(1,2,-2,0) = (1,2,1,3) - 3(0,0,1,1)$

Hence, if G spans \mathbb{R}^4 , the other two vectors of G, that we denote as $L = \{(1, 0, 0-1), (0, 1, 1, 1)\}$ must not belong to the span of L. It follows that $H \cup L$ spans \mathbb{R}^4 .

(4) Let $T: \mathbb{R}^5 \to \mathbb{R}^3$ be given by

$$T(a_1, a_2, a_3, a_4, a_5) = (a_1 + 2a_2 - a_3, -a_2 + 3a_3, -a_1 - a_2 - 2a_3)$$

- (a) Verify that T is linear.
- (b) Find bases for the null space and the range of T.
- (a) Direct calculation shows that, if α is a scalar, then

$$T(\alpha a_1, \alpha a_2, \alpha a_3, \alpha a_4, \alpha a_5) = \alpha(a_1 + 2a_2 - a_3, -a_2 + 3a_3, -a_1 - a_2 - 2a_3),$$

and that $T(v_1 + v_2) = T(v_1) + T(v_2)$ for any $v_1, v_2 \in \mathbb{R}^5$. (b) The null space is determined by the equations

$$a_1 + 2a_2 - a_3 = 0, -a_2 + 3a_3 = 0, -a_1 - a_2 - 2a_3 = 0$$

Note that this equation are in \mathbb{R}^5 even though the variables x_4 and x_5 do not appear.

$$\begin{pmatrix} 1 & 2 & -1 & 0 & 0 & | & 0 \\ 0 & -1 & 3 & 0 & 0 & | & 0 \\ -1 & -1 & -2 & 0 & 0 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & -1 & 0 & 0 & | & 0 \\ 0 & 1 & -3 & 0 & 0 & | & 0 \\ 0 & 1 & -3 & 0 & 0 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & -1 & 0 & 0 & | & 0 \\ 0 & 1 & -3 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & 0 & 0 & | & 0 \end{pmatrix}$$

The solution is: $a_2 = 3a_3$, $a_1 = a_3 - 2a_2 = -5a_3$, where a_3, a_4, a_5 can take any value in \mathbb{R} . Hence the null space has dimension 3 and a basis for the null space is

$$B = \{(-5, 3, 1, 0, 0), (0, 0, 0, 1, 0), (0, 0, 0, 0, 1)\}\$$

The range is determined by the equations

$$a_1 + 2a_2 - a_3 = x_1, -a_2 + 3a_3 = x_2, -a_1 - a_2 - 2a_3 = x_3$$

This gives the augmented matrix

$$\begin{pmatrix} 1 & 2 & -1 & x_1 \\ 0 & -1 & 3 & x_2 \\ -1 & -1 & -2 & x_3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & -1 & x_1 \\ 0 & 1 & -3 & -x_2 \\ 0 & 1 & -3 & x_1 + x_3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & -1 & x_1 \\ 0 & 1 & -3 & -x_2 \\ 0 & 0 & 0 & x_1 + x_2 + x_3 \end{pmatrix}$$

Hence the range of T satisfies the condition $x_1 + x_2 + x_3 = 0$ A basis for the range is

$$D = \{(1, 1, 0), (1, 0, -1)\}$$