## Name: SOLUTION

## MATH 4377/6308 - Advanced linear algebra I - Summer 2024

## Homework 3

## Exercises:

(1) Decide if each of the following statements is True or False. Justify each answer. If true, cite appropriate facts or theorems. If false, explain why or give a counterexample that shows why the statement is not true in every case.
Let $v_{1}, \ldots, v_{p}$ be vectors in a non-zero finite-dimensional vector space $V$, and let $S=\left\{v_{1}, \ldots, v_{p}\right\}$.
a) The set of all linear combinations of $v_{1}, \ldots, v_{p}$ is a vector space.
b) If $\left\{v_{1}, \ldots, v_{p-1}\right\}$ spans $V$, then $S$ spans $V$.
c) If $\left\{v_{1}, \ldots, v_{p-1}\right\}$ is linearly independent, then so is $S$.
d) If $S$ is linearly independent, then $S$ is a basis for $V$.
e) If $S$ is linearly independent, then $\operatorname{dim} V=p$.
f) If $V=\operatorname{span} S$, then some subset of $S$ is a basis for $V$.
g) If $V=\operatorname{span} S$, then $\operatorname{dim} V=p$.
h) If $\operatorname{dim} V=p$ and $V=\operatorname{span} S$, then $S$ cannot be linearly dependent.
i) A plane in $\mathbb{R}^{3}$ is a two-dimensional subspace.
(a) True. The set of all linear combinations of $v_{1}, \ldots, v_{p}$ is the span of $S$ and is a vector space as proved in class.
(b) True. If $\left\{v_{1}, \ldots, v_{p-1}\right\}$ spans $V$, then the span $S$, which is contains the spans of $\left\{v_{1}, \ldots, v_{p-1}\right\}$ will also span $V$.
(c) False. If $\left\{v_{1}, \ldots, v_{p-1}\right\}$ is l.i., then $\left\{v_{1}, \ldots, v_{p-1}\right\} \cup\left\{v_{p}\right\}$ does not need to be l.i. This is only true if $v_{p} \notin \operatorname{span}\left\{v_{1}, \ldots, v_{p-1}\right\}$.
(d) False. If $S$ is l.i., then it is a basis of $V$ only if it spans $S$.
(e) False. If $S$ is linearly independent, then, by the Replacement Theorem dimV $\geq p$. One can construct examples where dimV $>p$.
(f) True. If $V=\operatorname{span}\{S\}$, then by a result stated in class there is a subset of $S$ that is a basis of $V$.
(g) False. If $V=\operatorname{span}\{S\}$, then by a result stated in class there is a subset of $S$ that is a basis of $V$, hence $\operatorname{dim} V \leq p$. One can construct examples where $\operatorname{dimV}<p$.
(h) True. If $\operatorname{dim} V=p$ and $V=$ spanS, then, by a consequence of the Replacement theorem, $S$ is a basis for $V$, therefore, $S$ cannot be linearly dependent.
(i) False. A plane in $\mathbb{R}^{3}$ is a not a subspace unless it is a plane through the origin, since the 0 vector must be contained in the subspace.
(2) The vectors $u_{1}=(1,1,1,1), u_{2}=(0,1,1,1), u_{3}=(0,0,1,1)$, and $u_{4}=(0,0,0,1)$ form a basis for $\mathbb{R}^{4}$. Find a unique representation of an arbitrary vector $(a, b, c, d) \in \mathbb{R}^{4}$ as a linear combination of $u_{1}$, $u_{2}, u_{3}$, and $u_{4}$.

We solve the linear system

$$
x_{1} u_{1}+x_{2} u_{2}+x_{3} u_{3}+x_{4} u_{4}=(a, b, c, d), \quad a, b, c, d \in \mathbb{R}
$$

We write the augmented matrix and next reduce the matrix in row-echelon form:
$\left(\begin{array}{llll|l}1 & 0 & 0 & 0 & a \\ 1 & 1 & 0 & 0 & b \\ 1 & 1 & 1 & 0 & c \\ 1 & 1 & 1 & 1 & d\end{array}\right) \rightarrow\left(\begin{array}{llll|r}1 & 0 & 0 & 0 & a \\ 0 & 1 & 0 & 0 & b-a \\ 0 & 1 & 1 & 0 & c-a \\ 0 & 1 & 1 & 1 & d-a\end{array}\right) \rightarrow\left(\begin{array}{llll|r}1 & 0 & 0 & 0 & a \\ 0 & 1 & 0 & 0 & b-a \\ 0 & 0 & 1 & 0 & c-b \\ 0 & 0 & 1 & 1 & d-b\end{array}\right) \rightarrow\left(\begin{array}{rrrr|r}1 & 0 & 0 & 0 & a \\ 0 & 1 & 0 & 0 & b-a \\ 0 & 0 & 1 & 0 & c-b \\ 0 & 0 & 0 & 1 & d-c\end{array}\right)$
Thus: $x_{1}=a, x_{2}=b-a, x_{3}=c-b, x_{4}=d-c$.
(3) Let $L=\{(1,2,1,3),(0,0,1,1)\}$. Let $G=\{(1,2,-2,0),(1,0,0-1),(0,1,1,1),(1,2,2,4)\}$. You can assume without proof that $G$ spans $\mathbb{R}^{4}$. Find a subset $H \subset G$ such that $H \cup L$ spans $\mathbb{R}^{4}$. You need to justify that the set you build spans $\mathbb{R}^{4}$.
Note that

$$
(1,2,2,4)=(1,2,1,3)+(0,0,1,1) \quad \text { and } \quad(1,2,-2,0)=(1,2,1,3)-3(0,0,1,1)
$$

Hence, if $G$ spans $\mathbb{R}^{4}$, the other two vectors of $G$, that we denote as $L=\{(1,0,0-1),(0,1,1,1)\}$ must not belong to the span of $L$. It follows that $H \cup L$ spans $\mathbb{R}^{4}$.
(4) Let $T: \mathbb{R}^{5} \rightarrow \mathbb{R}^{3}$ be given by

$$
T\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right)=\left(a_{1}+2 a_{2}-a_{3},-a_{2}+3 a_{3},-a_{1}-a_{2}-2 a_{3}\right)
$$

(a) Verify that $T$ is linear.
(b) Find bases for the null space and the range of $T$.
(a) Direct calculation shows that, if $\alpha$ is a scalar, then

$$
T\left(\alpha a_{1}, \alpha a_{2}, \alpha a_{3}, \alpha a_{4}, \alpha a_{5}\right)=\alpha\left(a_{1}+2 a_{2}-a_{3},-a_{2}+3 a_{3},-a_{1}-a_{2}-2 a_{3}\right),
$$

and that $T\left(v_{1}+v_{2}\right)=T\left(v_{1}\right)+T\left(v_{2}\right)$ for any $v_{1}, v_{2} \in \mathbb{R}^{5}$.
(b) The null space is determined by the equations

$$
a_{1}+2 a_{2}-a_{3}=0,-a_{2}+3 a_{3}=0,-a_{1}-a_{2}-2 a_{3}=0
$$

Note that this equation are in $\mathbb{R}^{5}$ even though the variables $x_{4}$ and $x_{5}$ do not appear.

$$
\left(\begin{array}{rrrrr|r}
1 & 2 & -1 & 0 & 0 & 0 \\
0 & -1 & 3 & 0 & 0 & 0 \\
-1 & -1 & -2 & 0 & 0 & 0
\end{array}\right) \rightarrow\left(\begin{array}{lllll|l}
1 & 2 & -1 & 0 & 0 & 0 \\
0 & 1 & -3 & 0 & 0 & 0 \\
0 & 1 & -3 & 0 & 0 & 0
\end{array}\right) \rightarrow\left(\begin{array}{rrrrr|r}
1 & 2 & -1 & 0 & 0 & 0 \\
0 & 1 & -3 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

The solution is: $a_{2}=3 a_{3}, a_{1}=a_{3}-2 a_{2}=-5 a_{3}$, where $a_{3}, a_{4}, a_{5}$ can take any value in $\mathbb{R}$. Hence the null space has dimension 3 and a basis for the null space is

$$
B=\{(-5,3,1,0,0),(0,0,0,1,0),(0,0,0,0,1)\}
$$

The range is determined by the equations

$$
a_{1}+2 a_{2}-a_{3}=x_{1},-a_{2}+3 a_{3}=x_{2},-a_{1}-a_{2}-2 a_{3}=x_{3}
$$

This gives the augmented matrix

$$
\left(\begin{array}{rrr|r}
1 & 2 & -1 & x_{1} \\
0 & -1 & 3 & x_{2} \\
-1 & -1 & -2 & x_{3}
\end{array}\right) \rightarrow\left(\begin{array}{rrr|r}
1 & 2 & -1 & x_{1} \\
0 & 1 & -3 & -x_{2} \\
0 & 1 & -3 & x_{1}+x_{3}
\end{array}\right) \rightarrow\left(\begin{array}{rrr|r}
1 & 2 & -1 & x_{1} \\
0 & 1 & -3 & -x_{2} \\
0 & 0 & 0 & x_{1}+x_{2}+x_{3}
\end{array}\right)
$$

Hence the range of $T$ satisfies the condition $x_{1}+x_{2}+x_{3}=0 A$ basis for the range is

$$
D=\{(1,1,0),(1,0,-1)\}
$$

