Name:

MATH 4377/6308 - Advanced linear algebra I - Summer 2024

Homework 4

Exercises:

(1) Consider the linear transformation:

$$
T: P_{2}(\mathbb{R}) \rightarrow P_{3}(\mathbb{R}), T(p(x))=2 p^{\prime}(x)+\int_{0}^{x} p(t) d t
$$

Prove that T is one-to-one but not onto.
(2) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be given by

$$
T\left(a_{1}, a_{2}\right)=\left(a_{1}+a_{2}, a_{1}-a_{2}\right) .
$$

(a) Write $[T]_{\beta}^{\gamma}$ with $\beta=\{(1,0),(0,1)\}$ and $\gamma=\{(1,0),(0,1)\}$.
(b) Write $[T]_{\beta}^{\tilde{\gamma}}$ with $\beta=\{(1,0),(0,1)\}$ and $\tilde{\gamma}=\{(1,2),(1,1)\}$.
(3) Let $T: P_{1}(\mathbb{R}) \rightarrow P_{1}(\mathbb{R})$ and $U: P_{1}(\mathbb{R}) \rightarrow \mathbb{R}^{2}$ be the linear transformations defined by

$$
T(p(x))=p^{\prime}(x)+2 p(x), \quad U(a+b x)=(a+b, a)
$$

Let β and γ be the standard ordered bases of $P_{1}(\mathbb{R})$ and \mathbb{R}^{2}, respectively. Find $[T]_{\beta},[U]_{\beta}^{\gamma}$ and $[U \circ T]_{\beta}^{\gamma}$.
(4) For the following pairs of vector spaces V and W, define an explicit isomorphism or explain why no isomorphism exists between such spaces.
(a) $V=\mathbb{R}^{2}, W=M^{1,1}$
(b) $V=\mathbb{R}^{4}, W=M^{2,2}$
(c) $V=\mathbb{R}^{4}, W=P_{4}(\mathbb{R})$
(d) $V=\mathbb{R}^{4}, W=P_{3}(\mathbb{R})$
(e) $V=\mathbb{R}^{2}, W=\mathbb{C}$ (space of complex numbers)
(5) Let $\beta^{\prime}=\{(3,1),(2,4)\}, \beta=\{(1,1),(1,-1)\}$. Find the change of coordinates matrix $Q=\left[I_{V}\right]_{\beta^{\prime}}^{\beta}$.

