Name: SOLUTION

MATH 4377/6308 - Advanced linear algebra I - Summer 2024

Homework 4

Exercises:

(1) Consider the linear transformation:

$$
T: P_{2}(\mathbb{R}) \rightarrow P_{3}(\mathbb{R}), T(p(x))=2 p^{\prime}(x)+\int_{0}^{x} p(t) d t
$$

Prove that T is one-to-one but not onto.
The map T cannot be onto because the dimension of the co-domain is larger than the dimension of the domain
To show T is 1-1, we will show that $N(T)=\{0\}$. Let $p(x)=a_{0}+a_{1} x+a_{2} x^{2} \in N(T)$, Then

$$
2 p^{\prime}(x)+\int_{0}^{x} p(t) d t=2 a_{1}+4 a_{2} x+a_{0} x+a_{1} \frac{x^{2}}{2}+a_{2} \frac{x^{3}}{3}=0
$$

The equation above implies that $a_{0}=a_{1}=a_{2}=0$ so that $N(T)=\{0\}$.
(2) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be given by

$$
T\left(a_{1}, a_{2}\right)=\left(a_{1}+a_{2}, a_{1}-a_{2}\right) .
$$

(a) Write $[T]_{\beta}^{\gamma}$ with $\beta=\{(1,0),(0,1)\}$ and $\gamma=\{(1,0),(0,1)\}$.
(b) Write $[T]_{\beta}^{\tilde{\gamma}}$ with $\beta=\{(1,0),(0,1)\}$ and $\tilde{\gamma}=\{(1,2),(1,1)\}$.
(a) Let $v_{1}=(1,0), v_{2}=(0,1)$. then

$$
\begin{gathered}
T\left(v_{1}\right)=(1,1)=1(1,0)+1(0,1), \rightarrow\left[T\left(v_{1}\right)\right]_{\gamma}=\binom{1}{1} \\
T\left(v_{2}\right)=(1,-1)=1(1,0)-1(0,1), \rightarrow\left[T\left(v_{2}\right)\right]_{\gamma}=\binom{1}{-1}
\end{gathered}
$$

Hence $[T]_{\beta}^{\gamma}=\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right)$
(b) Let $v_{1}=(1,0), v_{2}=(0,1)$. then

$$
\begin{gathered}
T\left(v_{1}\right)=(1,1)=0(1,2)+1(1,1), \rightarrow\left[T\left(v_{1}\right)\right]_{\tilde{\gamma}}=\binom{0}{1} \\
T\left(v_{2}\right)=(1,-1)=-2(1,2)+3(1,1), \rightarrow\left[T\left(v_{2}\right)\right] \tilde{\gamma}=\binom{-2}{3}
\end{gathered}
$$

Hence $[T]_{\beta}^{\tilde{\gamma}}=\left(\begin{array}{cc}1 & -2 \\ 1 & 3\end{array}\right)$
(3) Let $T: P_{1}(\mathbb{R}) \rightarrow P_{1}(\mathbb{R})$ and $U: P_{1}(\mathbb{R}) \rightarrow \mathbb{R}^{2}$ be the linear transformations defined by

$$
T(p(x))=p^{\prime}(x)+2 p(x), \quad U(a+b x)=(a+b, a)
$$

Let β and γ be the standard ordered bases of $P_{1}(\mathbb{R})$ and $\left.\mathbb{R}^{2}\right)$, respectively. Find $[T]_{\beta},[U]_{\beta}^{\gamma}$ and $[U \circ T]_{\beta}^{\gamma}$.
The standard ordered bases are $\beta=\{1, x\}, \gamma=\{(1,0),(0,1)\}$. We have

$$
T(1)=2=2(1)+0(x) \rightarrow\left[T\left(v_{1}\right)\right]_{\beta}=\binom{2}{0}, \quad T(x)=1+2 x=1(1)+2(x) \rightarrow\left[T\left(v_{2}\right)\right]_{\beta}=\binom{1}{2}
$$

Hence $[T]_{\beta}=\left(\begin{array}{ll}2 & 1 \\ 0 & 2\end{array}\right)$.
Similarly, we have
$U(1)=(1,1)=1(1,0)+1(0,1) \rightarrow\left[U\left(v_{1}\right)\right]_{\beta}=\binom{1}{1}, \quad U(x)=(1,0)=1(1,0)+0(0,1) \rightarrow\left[U\left(v_{2}\right)\right]_{\beta}=\binom{1}{0}$
Hence $[U]_{\beta}^{\gamma}=\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)$.
It follows that $[U \circ T]_{\beta}^{\gamma}=[U]_{\beta}^{\gamma}[T]_{\beta}=\left(\begin{array}{ll}2 & 3 \\ 2 & 1\end{array}\right)$.
(4) For the following pairs of vector spaces V and W, define an explicit isomorphism or explain why no isomorphism exists between such spaces.
(a) $V=\mathbb{R}^{2}, W=M^{1,1}$
(b) $V=\mathbb{R}^{4}, W=M^{2,2}$
(c) $V=\mathbb{R}^{4}, W=P_{4}(\mathbb{R})$
(d) $V=\mathbb{R}^{4}, W=P_{3}(\mathbb{R})$
(e) $V=\mathbb{R}^{2}, W=\mathbb{C}$ (space of complex numbers)
(a) Since $\operatorname{dim}(V)=2$ and $\operatorname{dim}(W)=1$, there is no isomorphism between V and W.
(b) For $(a, b, c, d) \in \mathbb{R}^{4}$, let $T(a, b, c, d)=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ This map is linear and invertible.
(c) Since $\operatorname{dim}(V)=4$ and $\operatorname{dim}(W)=5$, there is no isomorphism between V and W.
(d) For $(a, b, c, d) \in \mathbb{R}^{4}$, let $T(a, b, c, d)=a+b x+c x^{2}+d x^{3}$. This map is linear and invertible.
(e) For $(a, b) \in \mathbb{R}^{2}$, let $T(a, b)=a+i b$. This map is linear and invertible.
(5) Let $\beta^{\prime}=\{(3,1),(2,4)\}, \beta=\{(1,1),(1,-1)\}$. Find the change of coordinates matrix $Q=\left[I_{V}\right]_{\beta^{\prime}}^{\beta}$.

Let $\beta^{\prime}=\{(3,1),(2,4)\}:=\left\{v_{1}, v_{2}\right\}$. Hence

$$
I\left(v_{1}\right)=(3,1)=a_{1}(1,1)+a_{2}(1,-1)=\left(a_{1}+a_{2}, a_{1}-a_{2}\right)
$$

Solving the system, one finds $a_{1}=2, a_{2}=1$ Similarly we have

$$
I\left(v_{2}\right)=(2,4)=b_{1}(1,1)+b_{2}(1,-1)=\left(b_{1}+b_{2}, b_{1}-b_{2}\right)
$$

Solving the system, one finds $b_{1}=3, b_{2}=-1$
Thus, we have that $Q=\left(\begin{array}{cc}2 & 3 \\ 1 & -1\end{array}\right)$

