## Name: SOLUTION

## MATH 4377/6308-Advanced linear algebra I - Summer 2024

## Homework 6

## Exercises:

(1) Mark each statement True or False. Justify each answer. If true, cite appropriate facts or theorems. If false, explain why or give a counterexample that shows why the statement is not true in every case.
a) If $B$ is a matrix obtained from a square matrix $A$ by interchanging any two rows, then $\operatorname{det}(B)=$ $-\operatorname{det}(A)$.
b) If $B$ is a matrix obtained from a square matrix $A$ by multiplying a row of $A$ by a scalar, then $\operatorname{det}(B)=\operatorname{det}(A)$.
c) If $B$ is a matrix obtained from a square matrix $A$ by adding $k$ times row $i$ to row $j$, then $\operatorname{det}(B)=k \operatorname{det}(A)$.
d) If $A \in M^{n, n}(F)$ has $\operatorname{rank} n$, then $\operatorname{det}(A)=0$.
e) The determinant of a square matrix may be computed by expanding the matrix along any row or column.
f) If two rows or columns of $A$ are identical, then $\operatorname{det}(A)=0$.
g) The determinant of a lower triangular $n \times n$ matrix is the product of its diagonal entries.
h) A matrix $A$ is invertible if and only if $\operatorname{det}(A)=0$.
(a) True. By a result presented in class.
(b) False. By a result presented in class, if $B$ is a matrix obtained from a square matrix $A$ by multiplying a row of $A$ by a scalar $k$, then $\operatorname{det}(B)=k \operatorname{det}(A)$.
(c) False. By a result presented in class, if $B$ is a matrix obtained from a square matrix $A$ by adding $k$ times row $i$ to row $j$, then $\operatorname{det}(B)=\operatorname{det}(A)$.
(d) False. By a result presented in class, if $A \in M^{n, n}(F)$ has rank $n$, then $\operatorname{det}(A) \neq 0$.
(e) True. By a result presented in class, the determinant of a square matrix may be computed by expanding the matrix along any row or column.
(f) True. If two rows or columns of $A \in M^{n, n}(F)$ are identical, then the matrix has rank less than $n$ and $\operatorname{det}(A)=0$.
(g) True. The determinant of a lower triangular $n \times n$ matrix is the product of its diagonal entries.
( $h$ ) False. A matrix $A$ is invertible if and only if it is full rank which is equivalent to $\operatorname{det}(A) \neq 0$.
(2) Prove that if $A, B \in M^{n, n}(F)$ are similar, then $\operatorname{det}(A)=\operatorname{det}(B)$.

Let $A, B$ be similar matrices, that is, there exists an invertible matrix $Q$ such that

$$
B=Q^{-1} A Q
$$

It follows that

$$
\operatorname{det}(B)=\operatorname{det}\left(Q^{-1} A Q\right)=\operatorname{det}\left(Q^{-1}\right) \operatorname{det}(A) \operatorname{det}(Q)=(\operatorname{det}(Q))^{-1} \operatorname{det}(A) \operatorname{det}(Q)=\operatorname{det}(A)
$$

(3) Compute the determinant of each of the following matrices
(a) $\quad A=\left(\begin{array}{cccc}1 & 2 & 3 & 4 \\ 0 & 5 & 0 & 0 \\ 2 & 7 & 6 & 10 \\ 2 & 9 & 7 & 11\end{array}\right) \quad$ (b) $\quad B=\left(\begin{array}{cccc}1 & 0 & 3 & 4 \\ 2 & 2 & 1 & 5 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 3 & 5\end{array}\right) \quad$ (c) $\quad C=\left(\begin{array}{cccc}1 & 2 & 3 & 4 \\ 0 & 2 & 1 & 5 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & -5\end{array}\right) \quad$ (d) $\quad D=\left(\begin{array}{cccc}0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 5 \\ 1 & 0 & 0 & 0 \\ 0 & -2 & 0 & 0\end{array}\right)$
$\operatorname{det}(A)=5 \operatorname{det}\left(\begin{array}{ccc}1 & 3 & 4 \\ 2 & 6 & 10 \\ 2 & 7 & 11\end{array}\right)=5 \operatorname{det}\left(\begin{array}{lll}1 & 3 & 4 \\ 0 & 0 & 2 \\ 0 & 1 & 3\end{array}\right)=-5 \operatorname{det}\left(\begin{array}{lll}1 & 3 & 4 \\ 0 & 1 & 3 \\ 0 & 0 & 2\end{array}\right)=-(5)(2)=-10$
$\operatorname{det}(B)=\operatorname{det}\left(\begin{array}{cccc}1 & 0 & 3 & 4 \\ 2 & 2 & 1 & 5 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 3 & 5\end{array}\right)=\operatorname{det}\left(\begin{array}{cccc}1 & 0 & 3 & 4 \\ 0 & 2 & -5 & -3 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 3 & 5\end{array}\right)=2 \operatorname{det}\left(\begin{array}{cccc}1 & 0 & 3 & 4 \\ 0 & 2 & -5 & -3 \\ 0 & 0 & 1 & \frac{1}{2} \\ 0 & 0 & 3 & 5\end{array}\right)=2 \operatorname{det}\left(\begin{array}{cccc}1 & 0 & 3 & 4 \\ 0 & 2 & -5 & -3 \\ 0 & 0 & 1 & \frac{1}{2} \\ 0 & 0 & 0 & \frac{7}{2}\end{array}\right)=14$
$\operatorname{det}(C)=(1)(2)(2)(-5)=-20$
$\operatorname{det}(D)=(1) \operatorname{det}\left(\begin{array}{ccc}0 & 3 & 0 \\ 0 & 0 & 5 \\ -2 & 0 & 0\end{array}\right)=(1)(-2) \operatorname{det}\left(\begin{array}{ll}3 & 0 \\ 0 & 5\end{array}\right)=(1)(-2)(3)(5)=-30$
(4) Mark each statement True or False. Justify each answer. If true, cite appropriate facts or theorems. If false, explain why or give a counterexample that shows why the statement is not true in every case.
a) Every linear operator on an $n$-dimensional vector space has $n$ distinct eigenvalues.
b) The sum of two eigenvalues of a linear operator $T$ is also an eigenvalue of $T$.
c) The sum of two eigenvectors of a linear operator $T$ is always an eigenvector of $T$.
d) Any linear operator on an $n$-dimensional vector space that has fewer than $n$ distinct eigenvalues is not diagonalizable.
e) Two distinct eigenvectors corresponding to the same eigenvalue are always linearly dependent.
f) If $\lambda$ is an eigenvalue of a linear operator $T$, then each vector in $E_{\lambda}$ is an eigenvector of $T$.
g) If $\lambda_{1}$ and $\lambda_{2}$ are distinct eigenvalues of a linear operator $T$, then $E_{\lambda_{1}} \cap E_{\lambda_{1}}=\{0\}$.
h) A linear operator $T$ on a finite-dimensional vector space is diagonalizable if and only if the multiplicity of each eigenvalue $\lambda$ equals the dimension of $E_{\lambda}$.
i) Every diagonalizable linear operator on a nonzero vector space has at least one eigenvalue.
(a) False. A linear operator on an n-dimensional vector space does not need to have $n$ distinct eigenvalues. For instance, the matrix $I_{2}$ acting on $\mathbb{R}^{2}$ has only the eigenvalue $\lambda=1$.
(b) False. For instance, the matrix $\left(\begin{array}{ll}3 & 0 \\ 0 & 2\end{array}\right)$ has two eigenvalues 3 and 2 but the sum 5 is not an eigenvalue of the same matrix.
(c) False. For instance, the matrix $\left(\begin{array}{ll}3 & 0 \\ 0 & 2\end{array}\right)$ has eigenvectors $\binom{1}{0}$ and $\binom{0}{1}$ but their sum $\binom{1}{1}$ is not an eigenvector of the same matrix.
(d) False. For instance, the matrix $\left(\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right)$ has only one (distinct) eigenvalue but it is diagonalizable.
(e) False. For instance, the matrix $\left(\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right)$ has linearly independent eigenvectors $\binom{1}{0}$ and $\binom{0}{1}$ corresponding to the same eigenvalue.
(f) False. The zero vector 0 in $E_{\lambda}$ is not an eigenvector.
(g) True. If $v \in E_{\lambda_{1}} \cap E_{\lambda_{2}}$ with $\lambda_{1} \neq \mid$ lambda , then $T(v)=\lambda_{1} v=\lambda_{2} v$, so that $\left(\lambda_{1}-\lambda_{2}\right) v=0$, implying that $v=0$.
(h) False. The test for diagonalization requires that the characteristic polynomial of $T$ splits.
(i) True. Let $T$ be a diagonalization linear operator on a nonzero vector space. The characteristic polynomial of $T$ has a degree greater than or equal to one and splits, thus has at least one root. Hence $T$ has at least one eigenvalue.
(5) Find eigenvalues and eigenvectors of $A=\left(\begin{array}{cc}-1 & 2 \\ 3 & -2\end{array}\right)$.

The characteristic polynomial is

$$
p(\lambda)=\operatorname{det}(A-\lambda I)=(1+\lambda)(2+\lambda)-6=\lambda^{2}+3 \lambda-4
$$

Hence the eigenvalues are $\lambda_{1}=-4, \lambda_{2}=1$.
For $\lambda_{1}=-4$, we have $\operatorname{det}(A+4 I) x=\left(\begin{array}{ll}3 & 2 \\ 3 & 2\end{array}\right)\binom{x_{1}}{x_{2}}=0$ so that we have the eigenvector $u_{1}=\binom{1}{-\frac{3}{2}}$.
For $\lambda_{2}=1$, we have $\operatorname{det}(A+4 I) x=\left(\begin{array}{cc}-2 & 2 \\ 3 & -3\end{array}\right)\binom{x_{1}}{x_{2}}=0$ so that we have the eigenvector $u_{2}=\binom{1}{1}$.
NOTE: This implies that, choosing $Q=\left(\begin{array}{cc}1 & 1 \\ -\frac{3}{2} & 1\end{array}\right)$, then

$$
Q^{-1} A Q=\left(\begin{array}{cc}
-4 & 0 \\
0 & 1
\end{array}\right)
$$

(6) Prove that similar matrices have the same characteristic polynomial and hence the same eigenvalues. Let $A, B$ be similar matrices, that is, there exists an invertible matrix $Q$ such that

$$
B=Q^{-1} A Q
$$

The characteristic polynomial of $B$ is $p_{B}(\lambda)=\operatorname{det}(B-\lambda I)$. We have that

$$
\begin{aligned}
\operatorname{det}(B-\lambda I) & =\operatorname{det}\left(Q^{-1} A Q-\lambda I\right) \\
& =\operatorname{det}\left(Q^{-1} A Q-\lambda Q^{-1} I Q\right) \\
& =\operatorname{det}\left(Q^{-1}(A-\lambda I) Q\right) \\
& =\operatorname{det}\left(Q^{-1}\right) \operatorname{det}(A-\lambda I) \operatorname{det}(Q) \\
& =\operatorname{det}\left(Q^{-1}\right) \operatorname{det}(Q) \operatorname{det}(A-\lambda I) \\
& =(\operatorname{det}(Q))^{-1} \operatorname{det}(Q) \operatorname{det}(A-\lambda I) \\
& =\operatorname{det}(A-\lambda I)
\end{aligned}
$$

This proves that $A$ and $B$ have the same characteristic polynomial and, consequently, the same eigenvalues.
(7) Prove that the eigenvalues of an upper triangular matrix $A$ are the diagonal entries of $A$.

Let $A \in M^{n, n}$, with $A=\left(a_{i j}\right)$. If $A$ is upper triangular then $A-\lambda I$ is also upper triangular. Now the determinant $\operatorname{det}(A-\lambda I)$ of a triangular matrix is the product of the diagonal entries so that the characteristic polynomial is

$$
p(\lambda)=\left(a_{11}-\lambda\right)\left(a_{22}-\lambda\right) \ldots\left(a_{n n}-\lambda\right)
$$

The roots of the characteristic polynomial are: $a_{11}, a_{22}, \ldots, a_{n n}$.

