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1.2 Vector Spaces

Vector Spaces

Introduction
Definition and Axioms

Vector Spaces: Examples

Row vectors, column vectors
2× 2 matrices, m × n matrices
Sequences, c0, l∞, lp.
Functions, polynomials

Properties and Theorems
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Vector Spaces: Introduction

Properties of Rn

Many concepts concerning vectors in Rn can be extended to other
mathematical systems.

Parallelogram law for vector addition.

Reading: §1.1.

Math 4377/6308, Advanced Linear Algebra Spring, 2015 3 / 22
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Vector Spaces: Introduction (cont.)

We can think of a vector space in general, as a collection of
objects that behave as vectors do in Rn. The objects of such a set
are called vectors.

Field

Let F be a field, whose elements are referred to as scalars.

R (real numbers), C (complex numbers), Q (rational
numbers), etc.

Reading: Appendix C.
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Vector Spaces: Definition

Vector Space

A vector space over F is a nonempty set V , whose elements are
referred to as vectors, together with two operations.

The first operation, called addition and denoted by +, assigns
to each pair (u, v) of vectors in V a vector u + v in V (Axiom
1).

The second operation, called scalar multiplication and
denoted by juxtaposition, assigns to each pair (a,u) ∈ F × V
a vector au in V (Axiom 6).

Furthermore, the following properties must be satisfied:

(VS 1) (Commutativity of addition) (Axiom 2) For all vectors
u, v ∈ V ,

u + v = v + u.
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1.2 Vector Spaces Vector Spaces

Vector Spaces: Definition (cont.)

Vector Space (cont.)

(VS 2) (Associativity of addition) (Axiom 3) For all vectors
u, v,w ∈ V ,

(u + v) + w = u + (v + w)

(VS 3) (Existence of a zero) (Axiom 4) There is a vector (called the
zero vector) 0 in V such that

u + 0 = u.

for all vectors u ∈ V .

(VS 4) (Existence of additive inverses) (Axiom 5) For each vector
u in V , there is a vector in V (called the additive inverse of
u), denoted by −u, satisfying

u + (−u) = 0.
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Vector Spaces: Definition (cont.)

Vector Space (cont.)

(VS 5-8) (Properties of scalar multiplication) (Axioms 7-10) For all
scalars a, b ∈ F and for all vectors u, v ∈ V ,

1u =u.

(ab)u =a(bu).

a(u + v) =au+av.

(a + b)u =au + bu.

A vector space over a field F is sometimes called an F -space. A
vector space over the real field is called a real vector space and a
vector space over the complex field is called a complex vector
space.
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Vector Spaces: Row and Column Vectors

Example

The set F n of all ordered n-tuples whose components lie in a field
F , is a vector space over F , with addition and scalar multiplication
defined componentwise:

(a1, · · · , an) + (b1, · · · , bn) = (a1 + b1, · · · , an + bn)

and
c(a1, · · · , an) = (ca1, · · · , can)

When convenient, we will also write the elements of F n in column
form a1

...
an

 .
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1.2 Vector Spaces Vector Spaces

Vector Spaces: 2× 2 Matrices

Example

Let M2×2 =

{[
a b
c d

]
: a, b, c , d are real

}

In this context, note that the 0 vector is

[ ]
.
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1.2 Vector Spaces Vector Spaces

Vector Spaces: m × n Matrices

Example

The set Mm,n(F ) of all m × n matrices with entries in a field F of
the form: 

a11 a12 · · · a1n
a21 a22 · · · a2n

...
... · · ·

...
am1 am2 · · · amn


with aij ∈ F for 1 ≤ i ≤ m, 1 ≤ j ≤ n, is a vector space over F ,
under the operations of matrix addition and scalar multiplication:

(A + B)ij =Aij + Bij ,

(cA)ij =cAij ,

for 1 ≤ i ≤ m, 1 ≤ j ≤ n.
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Vector Spaces: Sequences

Example

Many sequence spaces are vector spaces. The set Seq(F ) of all
infinite sequences with members from a field F is a vector space
under the componentwise operations

{sn}+ {tn} = {sn + tn}

and
a{sn} = {asn}

Example (c0)

In a similar way, the set c0 of all sequences of complex numbers
that converge to 0 is a vector space.

Example (l∞)

The set l∞ of all bounded complex sequences is a vector space.
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1.2 Vector Spaces Vector Spaces

Vector Spaces: Sequences (cont.)

Example (lp)

If 1 ≤ p <∞, then the set lp of all complex sequences {sn} for
which

∞∑
n=1

|sn|p <∞

is a vector space under componentwise operations. To see that
addition is a binary operation on lp, one verifies Minkowski’s
inequality( ∞∑

n=1

|sn + tn|p
)1/p

≤

( ∞∑
n=1

|sn|p
)1/p

+

( ∞∑
n=1

|tn|p
)1/p

which we will not do here.
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Vector Spaces: Functions

Example

Let F(S ,F ) denote the set of all functions from a nonempty set S
to a field F . This is a vector space over F , under the operations of
ordinary addition and scalar multiplication of functions:

(f + g)(s) = f (s) + g(s),

and
(af )(s) = a[f (s)],

for each s ∈ S .
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1.2 Vector Spaces Vector Spaces

Vector Spaces: Polynomials

Example

Let n ≥ 0 be an integer and let

Pn = the set of all polynomials of degree at most n ≥ 0.

Members of Pn have the form

p(t) = a0 + a1t + a2t
2 + · · ·+ ant

n

where a0, a1, . . . , an are real numbers and t is a real variable. The
set Pn is a vector space.

We will just verify 3 out of the 10 axioms here.

Let p(t) = a0 + a1t + · · ·+ ant
n and q(t) = b0 + b1t + · · ·+ bnt

n

(set higher coefficients to zero if different degrees). Let c be a
scalar.
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Vector Spaces: Polynomials (cont.)

Axiom 1:

The polynomial p + q is defined as follows:

(p + q) (t) = p(t)+q(t). Therefore,

(p + q) (t) = p(t)+q(t)

= ( ) + ( ) t + · · ·+ ( ) tn

which is also a of degree at most . So

p + q is in Pn.
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Vector Spaces: Polynomials (cont.)

Axiom 4:

0 =0 + 0t + · · ·+ 0tn

(zero vector in Pn)

(p + 0) (t)= p(t)+0 = (a0 + 0) + (a1 + 0)t + · · ·+ (an + 0)tn

= a0 + a1t + · · ·+ ant
n = p(t)

and so p + 0 = p
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1.2 Vector Spaces Vector Spaces

Vector Spaces: Polynomials (cont.)

Axiom 6:

(cp) (t) = cp(t) = ( ) + ( ) t + · · ·+ ( ) tn

which is in Pn.

The other 7 axioms also hold, so Pn is a vector space.
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1.2 Vector Spaces Vector Spaces

Vector Spaces: True or False

1. Every vector space contains a zero vector.

2. A vector space may have more than one zero vector.

3. In any vector space, ax = bx implies that a = b.

4. In any vector space, ax = ay implies that x = y .

5. A vector in F n may be regarded as a matrix in Mn×1(F ).

6. An m × n matrix has m columns and n rows.

7. In P(F ), only polynomials of the same degree may be added.

8. In f and g are polynomials of degree n, then f + g is a
polynomial of degree n.

9. If f is a polynomial of degree n and c is nonzero scalar, then
cf is a polynomial of degree n.

10. A nonzero scalar of F may be considered to be a polynomial
in P(F ) having degree zero.

11. Two functions in F (S ,F ) are equal if and only if they have
the same value at each element of S .
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1.2 Vector Spaces Vector Spaces

Vector Spaces: Properties

Theorem (1.1 Cancellation Law for Vector Addition)

If x, y, z are vectors in a vector space V such that x + z = y + z,
then x = y.
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Vector Spaces: Properties (cont.)

Corollary 1 (Uniqueness of the Zero Vector)

The vector 0 described in (VS 3) is unique (the zero vector).
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1.2 Vector Spaces Vector Spaces

Vector Spaces: Properties (cont.)

Corollary 2 (Uniqueness of the Additive Inverse)

The vector −u described in (VS 4) is unique (the additive inverse).
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Vector Spaces: Properties (cont.)

Theorem (1.2)

In any vector space V , the following statements are true:

(a) 0x = 0 for each x ∈ V .

(b) (−a)x = −(ax) = a(−x) for each a ∈ F and x ∈ V

(c) a0 = 0 for each a ∈ F

Math 4377/6308, Advanced Linear Algebra Spring, 2015 22 / 22


	1.2  Vector Spaces
	Vector Spaces




