Math 4377/6308 Advanced Linear Algebra

1.2 Vector Spaces

1.2 Vector Spaces

- Vector Spaces
 - Introduction
 - Definition and Axioms
- Vector Spaces: Examples
 - Row vectors, column vectors
 - 2×2 matrices, $m \times n$ matrices
 - Sequences, c_0 , I^{∞} , I^p .
 - Functions, polynomials
- Properties and Theorems

Vector Spaces: Introduction

Properties of \mathbb{R}^n

Many concepts concerning vectors in \mathbb{R}^n can be extended to other mathematical systems.

- Parallelogram law for vector addition.
- Reading: §1.1.

Vector Spaces: Introduction (cont.)

We can think of a **vector space** in general, as a collection of objects that behave as vectors do in \mathbb{R}^n . The objects of such a set are called **vectors**.

Field

Let F be a **field**, whose elements are referred to as **scalars**.

- ullet (real numbers), $\Bbb C$ (complex numbers), $\Bbb Q$ (rational numbers), etc.
- Reading: Appendix C.

Vector Spaces: Definition

Vector Space

A **vector space** over F is a nonempty set V, whose elements are referred to as **vectors**, together with two operations.

- The first operation, called addition and denoted by +, assigns to each pair (u, v) of vectors in V a vector u + v in V (Axiom 1).
- The second operation, called scalar multiplication and denoted by juxtaposition, assigns to each pair (a, u) ∈ F × V a vector au in V (Axiom 6).

Furthermore, the following properties must be satisfied:

(VS 1) (Commutativity of addition) (Axiom 2) For all vectors $\mathbf{u}, \mathbf{v} \in V$,

$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$
.

Vector Spaces: Definition (cont.)

Vector Space (cont.)

(VS 2) (Associativity of addition) (Axiom 3) For all vectors $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$,

$$(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$$

(VS 3) (Existence of a zero) (Axiom 4) There is a vector (called the zero vector) $\mathbf{0}$ in V such that

$$\mathbf{u} + \mathbf{0} = \mathbf{u}$$
.

for all vectors $\mathbf{u} \in V$.

(VS 4) (Existence of additive inverses) (Axiom 5) For each vector u in V, there is a vector in V (called the additive inverse of u), denoted by -u, satisfying

$$\mathbf{u} + (-\mathbf{u}) = \mathbf{0}.$$

Vector Spaces: Definition (cont.)

Vector Space (cont.)

(VS 5-8) (Properties of scalar multiplication) (Axioms 7-10) For all scalars $a, b \in F$ and for all vectors $\mathbf{u}, \mathbf{v} \in V$,

$$1u = u.$$

$$(ab)u = a(bu).$$

$$a(u + v) = au + av.$$

$$(a + b)u = au + bu.$$

A vector space over a field *F* is sometimes called an *F*-space. A vector space over the real field is called a **real vector space** and a vector space over the complex field is called a **complex vector space**.

Vector Spaces: Row and Column Vectors

Example

The set F^n of all ordered *n*-tuples whose components lie in a field F, is a vector space over F, with addition and scalar multiplication defined componentwise:

$$(a_1, \dots, a_n) + (b_1, \dots, b_n) = (a_1 + b_1, \dots, a_n + b_n)$$

and

$$c(a_1,\cdots,a_n)=(ca_1,\cdots,ca_n)$$

When convenient, we will also write the elements of F^n in column form

$$\begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix}$$
.

Vector Spaces: 2×2 Matrices

Example

Let
$$M_{2\times 2} = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : a, b, c, d \text{ are real} \right\}$$

In this context, note that the **0** vector is

Vector Spaces: $m \times n$ Matrices

Example

The set $\mathcal{M}_{m,n}(F)$ of all $m \times n$ matrices with entries in a field F of the form:

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$

with $a_{ij} \in F$ for $1 \le i \le m$, $1 \le j \le n$, is a vector space over F, under the operations of matrix addition and scalar multiplication:

$$(A+B)_{ij} = A_{ij} + B_{ij},$$

$$(cA)_{ij} = cA_{ij},$$

for 1 < i < m, 1 < j < n.

Vector Spaces: Sequences

Example

Many sequence spaces are vector spaces. The set Seq(F) of all infinite sequences with members from a field F is a vector space under the componentwise operations

$${s_n} + {t_n} = {s_n + t_n}$$

and

$$a\{s_n\}=\{as_n\}$$

Example (c_0)

In a similar way, the set c_0 of all sequences of complex numbers that converge to 0 is a vector space.

Example (I^{∞})

The set I^{∞} of all bounded complex sequences is a vector space.

Vector Spaces: Sequences (cont.)

Example (I^p)

If $1 \le p < \infty$, then the set l^p of all complex sequences $\{s_n\}$ for which

$$\sum_{n=1}^{\infty} |s_n|^p < \infty$$

is a vector space under componentwise operations. To see that addition is a binary operation on I^p , one verifies Minkowski's inequality

$$\left(\sum_{n=1}^{\infty} |s_n + t_n|^p\right)^{1/p} \le \left(\sum_{n=1}^{\infty} |s_n|^p\right)^{1/p} + \left(\sum_{n=1}^{\infty} |t_n|^p\right)^{1/p}$$

which we will not do here.

Vector Spaces: Functions

Example

Let $\mathcal{F}(S,F)$ denote the set of all functions from a nonempty set S to a field F. This is a vector space over F, under the operations of ordinary addition and scalar multiplication of functions:

$$(f+g)(s)=f(s)+g(s),$$

and

$$(af)(s) = a[f(s)],$$

for each $s \in S$.

Vector Spaces: Polynomials

Example

Let $n \ge 0$ be an integer and let

 \mathbf{P}_n = the set of all polynomials of degree at most $n \geq 0$.

Members of \mathbf{P}_n have the form

$$\mathbf{p}(t) = a_0 + a_1 t + a_2 t^2 + \dots + a_n t^n$$

where a_0, a_1, \ldots, a_n are real numbers and t is a real variable. The set P_n is a vector space.

We will just verify 3 out of the 10 axioms here.

Let $\mathbf{p}(t) = a_0 + a_1 t + \cdots + a_n t^n$ and $\mathbf{q}(t) = b_0 + b_1 t + \cdots + b_n t^n$ (set higher coefficients to zero if different degrees). Let c be a scalar.

Vector Spaces: Polynomials (cont.)

Axiom 1:

The polynomial $\mathbf{p} + \mathbf{q}$ is defined as follows:

$$(\mathbf{p} + \mathbf{q})(t) = \mathbf{p}(t) + \mathbf{q}(t)$$
. Therefore,

$$\left(\mathsf{p}+\mathsf{q}
ight)(t)=\mathsf{p}(t)+\mathsf{q}(t)$$

$$= (-----) + (------) t + \cdots + (--------) t^n$$

which is also a _____ of degree at most _____ So

$$\mathbf{p} + \mathbf{q}$$
 is in \mathbf{P}_n .

Vector Spaces: Polynomials (cont.)

Axiom 4:

$$\mathbf{0} = 0 + 0t + \dots + 0t^n$$
(zero vector in \mathbf{P}_n)

$$(\mathbf{p} + \mathbf{0})(t) = \mathbf{p}(t) + \mathbf{0} = (a_0 + 0) + (a_1 + 0)t + \dots + (a_n + 0)t^n$$

= $a_0 + a_1t + \dots + a_nt^n = \mathbf{p}(t)$
and so $\mathbf{p} + \mathbf{0} = \mathbf{p}$

Vector Spaces: Polynomials (cont.)

Axiom 6:

$$(c\mathbf{p})(t) = c\mathbf{p}(t) = (\underline{}) + (\underline{}) + (\underline{}) t + \cdots + (\underline{}) t^n$$

which is in \mathbf{P}_n .

The other 7 axioms also hold, so P_n is a vector space.

Vector Spaces: True or False

- Every vector space contains a zero vector.
- 2. A vector space may have more than one zero vector.
- 3. In any vector space, ax = bx implies that a = b.
- 4. In any vector space, ax = ay implies that x = y.
- 5. A vector in F^n may be regarded as a matrix in $M_{n\times 1}(F)$.
- 6. An $m \times n$ matrix has m columns and n rows.
- 7. In P(F), only polynomials of the same degree may be added.
- 8. In f and g are polynomials of degree n, then f + g is a polynomial of degree n.
- 9. If f is a polynomial of degree n and c is nonzero scalar, then cf is a polynomial of degree n.
- 10. A nonzero scalar of F may be considered to be a polynomial in P(F) having degree zero.
- 11. Two functions in F(S, F) are equal if and only if they have the same value at each element of S.

Vector Spaces: Properties

Theorem (1.1 Cancellation Law for Vector Addition)

If $\mathbf{x}, \mathbf{y}, \mathbf{z}$ are vectors in a vector space V such that $\mathbf{x} + \mathbf{z} = \mathbf{y} + \mathbf{z}$, then $\mathbf{x} = \mathbf{y}$.

Vector Spaces: Properties (cont.)

Corollary 1 (Uniqueness of the Zero Vector)

The vector $\mathbf{0}$ described in (VS 3) is unique (the zero vector).

Vector Spaces: Properties (cont.)

Corollary 2 (Uniqueness of the Additive Inverse)

The vector $-\mathbf{u}$ described in (VS 4) is unique (the additive inverse).

Vector Spaces: Properties (cont.)

Theorem (1.2)

In any vector space V, the following statements are true:

- (a) 0x = 0 for each $x \in V$.
- (b) (-a)x = -(ax) = a(-x) for each $a \in F$ and $x \in V$
- (c) $a\mathbf{0} = \mathbf{0}$ for each $a \in F$

