Math 4377/6308 Advanced Linear Algebra 1.2 Vector Spaces

1.2 Vector Spaces

- Vector Spaces
- Introduction
- Definition and Axioms
- Vector Spaces: Examples
- Row vectors, column vectors
- 2×2 matrices, $m \times n$ matrices
- Sequences, c_{0}, I^{∞}, I^{p}.
- Functions, polynomials
- Properties and Theorems

Vector Spaces: Introduction

Properties of \mathbb{R}^{n}

Many concepts concerning vectors in \mathbb{R}^{n} can be extended to other mathematical systems.

- Parallelogram law for vector addition.
- Reading: §1.1.

Vector Spaces: Introduction (cont.)

We can think of a vector space in general, as a collection of objects that behave as vectors do in \mathbb{R}^{n}. The objects of such a set are called vectors.

Field

Let F be a field, whose elements are referred to as scalars.

- \mathbb{R} (real numbers), \mathbb{C} (complex numbers), \mathbb{Q} (rational numbers), etc.
- Reading: Appendix C.

Vector Spaces: Definition

Vector Space

A vector space over F is a nonempty set V, whose elements are referred to as vectors, together with two operations.

- The first operation, called addition and denoted by + , assigns to each pair (\mathbf{u}, \mathbf{v}) of vectors in V a vector $\mathbf{u}+\mathbf{v}$ in V (Axiom 1).
- The second operation, called scalar multiplication and denoted by juxtaposition, assigns to each pair $(a, \mathbf{u}) \in F \times V$ a vector au in V (Axiom 6).
Furthermore, the following properties must be satisfied:
(VS 1) (Commutativity of addition) (Axiom 2) For all vectors $\mathbf{u}, \mathbf{v} \in V$,

$$
\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}
$$

Vector Spaces: Definition (cont.)

Vector Space (cont.)

(VS 2) (Associativity of addition) (Axiom 3) For all vectors $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$,

$$
(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w})
$$

(VS 3) (Existence of a zero) (Axiom 4) There is a vector (called the zero vector) $\mathbf{0}$ in V such that

$$
\mathbf{u}+\mathbf{0}=\mathbf{u} .
$$

for all vectors $\mathbf{u} \in V$.
(VS 4) (Existence of additive inverses) (Axiom 5) For each vector \mathbf{u} in V, there is a vector in V (called the additive inverse of \mathbf{u}), denoted by $-\mathbf{u}$, satisfying

$$
\mathbf{u}+(-\mathbf{u})=\mathbf{0}
$$

Vector Spaces: Definition (cont.)

Vector Space (cont.)

(VS 5-8) (Properties of scalar multiplication) (Axioms 7-10) For all scalars $a, b \in F$ and for all vectors $\mathbf{u}, \mathbf{v} \in V$,

$$
\begin{aligned}
1 \mathbf{u} & =\mathbf{u} . \\
(a b) \mathbf{u} & =a(b \mathbf{u}) . \\
a(\mathbf{u}+\mathbf{v}) & =a \mathbf{u}+a \mathbf{v} . \\
(a+b) \mathbf{u} & =a \mathbf{u}+b \mathbf{u} .
\end{aligned}
$$

A vector space over a field F is sometimes called an F-space. A vector space over the real field is called a real vector space and a vector space over the complex field is called a complex vector space.

Vector Spaces: Row and Column Vectors

Example

The set F^{n} of all ordered n-tuples whose components lie in a field F, is a vector space over F, with addition and scalar multiplication defined componentwise:

$$
\left(a_{1}, \cdots, a_{n}\right)+\left(b_{1}, \cdots, b_{n}\right)=\left(a_{1}+b_{1}, \cdots, a_{n}+b_{n}\right)
$$

and

$$
c\left(a_{1}, \cdots, a_{n}\right)=\left(c a_{1}, \cdots, c a_{n}\right)
$$

When convenient, we will also write the elements of F^{n} in column form

$$
\left(\begin{array}{c}
a_{1} \\
\vdots \\
a_{n}
\end{array}\right)
$$

Vector Spaces: 2×2 Matrices

Example

Let $M_{2 \times 2}=\left\{\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]: a, b, c, d\right.$ are real $\}$
In this context, note that the $\mathbf{0}$ vector is [\quad.

Vector Spaces: $m \times n$ Matrices

Example

The set $\mathcal{M}_{m, n}(F)$ of all $m \times n$ matrices with entries in a field F of the form:

$$
\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \cdots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right)
$$

with $a_{i j} \in F$ for $1 \leq i \leq m, 1 \leq j \leq n$, is a vector space over F, under the operations of matrix addition and scalar multiplication:

$$
\begin{aligned}
(A+B)_{i j} & =A_{i j}+B_{i j} \\
(c A)_{i j} & =c A_{i j}
\end{aligned}
$$

for $1 \leq i \leq m, 1 \leq j \leq n$.

Vector Spaces: Sequences

Example

Many sequence spaces are vector spaces. The set $\operatorname{Seq}(F)$ of all infinite sequences with members from a field F is a vector space under the componentwise operations

$$
\left\{s_{n}\right\}+\left\{t_{n}\right\}=\left\{s_{n}+t_{n}\right\}
$$

and

$$
a\left\{s_{n}\right\}=\left\{a s_{n}\right\}
$$

Example (c_{0})

In a similar way, the set c_{0} of all sequences of complex numbers that converge to 0 is a vector space.

Example ($/^{\infty}$)

The set I^{∞} of all bounded complex sequences is a vector space.

Vector Spaces: Sequences (cont.)

Example (I^{p})

If $1 \leq p<\infty$, then the set I^{p} of all complex sequences $\left\{s_{n}\right\}$ for which

$$
\sum_{n=1}^{\infty}\left|s_{n}\right|^{p}<\infty
$$

is a vector space under componentwise operations. To see that addition is a binary operation on I^{P}, one verifies Minkowski's inequality

$$
\left(\sum_{n=1}^{\infty}\left|s_{n}+t_{n}\right|^{p}\right)^{1 / p} \leq\left(\sum_{n=1}^{\infty}\left|s_{n}\right|^{p}\right)^{1 / p}+\left(\sum_{n=1}^{\infty}\left|t_{n}\right|^{p}\right)^{1 / p}
$$

which we will not do here.

Vector Spaces: Functions

Example

Let $\mathcal{F}(S, F)$ denote the set of all functions from a nonempty set S to a field F. This is a vector space over F, under the operations of ordinary addition and scalar multiplication of functions:

$$
(f+g)(s)=f(s)+g(s)
$$

and

$$
(a f)(s)=a[f(s)]
$$

for each $s \in S$.

Vector Spaces: Polynomials

Example

Let $n \geq 0$ be an integer and let

$$
\mathbf{P}_{n}=\text { the set of all polynomials of degree at most } n \geq 0 \text {. }
$$

Members of \mathbf{P}_{n} have the form

$$
\mathbf{p}(t)=a_{0}+a_{1} t+a_{2} t^{2}+\cdots+a_{n} t^{n}
$$

where $a_{0}, a_{1}, \ldots, a_{n}$ are real numbers and t is a real variable. The set \mathbf{P}_{n} is a vector space.

We will just verify $\mathbf{3}$ out of the $\mathbf{1 0}$ axioms here.
Let $\mathbf{p}(t)=a_{0}+a_{1} t+\cdots+a_{n} t^{n}$ and $\mathbf{q}(t)=b_{0}+b_{1} t+\cdots+b_{n} t^{n}$ (set higher coefficients to zero if different degrees). Let c be a scalar.

Vector Spaces: Polynomials (cont.)

Axiom 1:
The polynomial $\mathbf{p}+\mathbf{q}$ is defined as follows:
$(\mathbf{p}+\mathbf{q})(t)=\mathbf{p}(t)+\mathbf{q}(t)$. Therefore,

$$
\begin{aligned}
& (\mathbf{p}+\mathbf{q})(t)=\mathbf{p}(t)+\mathbf{q}(t)
\end{aligned}
$$

which is also a \qquad of degree at most \qquad . So
$\mathbf{p}+\mathbf{q}$ is in \mathbf{P}_{n}.

Vector Spaces: Polynomials (cont.)

Axiom 4:

$$
\begin{gathered}
\mathbf{0}=0+0 t+\cdots+0 t^{n} \\
\left(\text { zero vector in } \mathbf{P}_{n}\right)
\end{gathered}
$$

$$
\begin{gathered}
(\mathbf{p}+\mathbf{0})(t)=\mathbf{p}(t)+\mathbf{0}=\left(a_{0}+0\right)+\left(a_{1}+0\right) t+\cdots+\left(a_{n}+0\right) t^{n} \\
=a_{0}+a_{1} t+\cdots+a_{n} t^{n}=\mathbf{p}(t) \\
\text { and so } \mathbf{p}+\mathbf{0}=\mathbf{p}
\end{gathered}
$$

Vector Spaces: Polynomials (cont.)

Axiom 6:
which is in \mathbf{P}_{n}.

The other 7 axioms also hold, so \mathbf{P}_{n} is a vector space.

Vector Spaces: True or False

1. Every vector space contains a zero vector.
2. A vector space may have more than one zero vector.
3. In any vector space, $a x=b x$ implies that $a=b$.
4. In any vector space, $a x=a y$ implies that $x=y$.
5. A vector in F^{n} may be regarded as a matrix in $M_{n \times 1}(F)$.
6. An $m \times n$ matrix has m columns and n rows.
7. In $P(F)$, only polynomials of the same degree may be added.
8. In f and g are polynomials of degree n, then $f+g$ is a polynomial of degree n.
9. If f is a polynomial of degree n and c is nonzero scalar, then cf is a polynomial of degree n.
10. A nonzero scalar of F may be considered to be a polynomial in $P(F)$ having degree zero.
11. Two functions in $F(S, F)$ are equal if and only if they have the same value at each element of S.

Vector Spaces: Properties

> Theorem (1.1 Cancellation Law for Vector Addition)
> If $\mathbf{x}, \mathbf{y}, \mathbf{z}$ are vectors in a vector space V such that $\mathbf{x}+\mathbf{z}=\mathbf{y}+\mathbf{z}$, then $\mathbf{x}=\mathbf{y}$.

Vector Spaces: Properties (cont.)

Corollary 1 (Uniqueness of the Zero Vector)

The vector $\mathbf{0}$ described in (VS 3) is unique (the zero vector).

Vector Spaces: Properties (cont.)

Corollary 2 (Uniqueness of the Additive Inverse)
The vector $-\mathbf{u}$ described in (VS 4) is unique (the additive inverse).

Vector Spaces: Properties (cont.)

Theorem (1.2)

In any vector space V, the following statements are true:
(a) $\mathbf{0 x}=\mathbf{0}$ for each $\mathbf{x} \in V$.
(b) $(-a) \mathbf{x}=-(a \mathbf{x})=a(-\mathbf{x})$ for each $a \in F$ and $\mathbf{x} \in V$
(c) $a \mathbf{0}=\mathbf{0}$ for each $a \in F$

