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AND LIGHTCONE PEDAL SURFACES OF SPACELIKE
CURVES IN MINKOWSKI 4-SPACE
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Communicated by Min Ru

ABSTRACT. The main goal of this paper is to study singularities of generic
lightcone Gauss maps and lightcone pedal surfaces of spacelike curves in
Minkowski 4-space. To do this, we first construct lightcone height functions
and extended lightcone height functions, and then show the relations be-
tween singularities of generic lightcone Gauss maps(resp. lightcone pedal
surfaces) and that of lightcone height functions(resp. extended lightcone
height functions). In addition some geometric properties of the spacelike
curves are studied from geometrical point of view.

1. INTRODUCTION

The study of Minkowski 4-space has produced fruitful results, see for example
[5, 6, 7, 8]. Motivated by the study of generic lightcone Gauss maps of space-
like curves in Minkowski 4-space, and completing the study of submanifolds in
Minkowski 4-space from the singularity theory point of view, we develop the study
of singularities of generic lightcone Gauss maps and lightcone pedal surfaces of
spacelike curves in Minkowski 4-space. To do this we need to work out local
differential geometry tools for the spacelike curves similar to those of curves in
Euclidean space[l, 2, 3, 4]. As it was expected, the situation presents certain
peculiarities when it is compared with the Euclidean space and the Minkowski
3-space. For instance, the dimension of lightlike normal vector space is 2, then

2000 Mathematics Subject Classification. 58 K05, 53B30, 57R70.
Key words and phrases. Spacelike curve; lightcone Gauss map; lightcone height function;
lightcone pedal surface.
Work partially supported by NSF of China No.10871035 and NSFC of China No.10801028 .
*Corresponding author.
697



698 L.L. KONG, R.M. GAO, D.H. PEI, AND J. H. ZHANG

there exist many lightcone Gauss maps and lightcone pedal curves. For some
basic notions in Lorentzian geometry, see [9].

The paper is organized as follows:

The rest of this section introduces the basic notions of Minkowski 4-space, after
these basic notions, we give the local differential geometry of spacelike curves and
the main results of this paper. Section 2 first constructs the lightcone height
functions, which are useful tools for the study of singularities of lightcone Gauss
maps, and then shows the relations between singularities of lightcone Gauss maps
and that of lightcone height functions. Sections 3 and 4 give the proofs of the
main results of this paper.

Let R* = {(x1, 72,23, 24)|71, 72, 73,24 € R} be a 4-dimensional vector space.
For any two vectors © = (x1,%2,23,24), ¥ = (Y1,%2,¥3,%4) in R*, the pseudo
scalar product of @ and y is defined by (x,y) = —x1y1 + x2ys + T3y3 + 4y4. We
call (R*,(,)) a Minkowski 4-space and denote it by R}.

We say that a vector « in Ri\{0} is a spacelike vector, a lightlike vector or
a timelike vector if (@, x) is positive, zero, negative respectively. For a vector
n € R} and a real number ¢, a hyperplane with pseudo normal n is defined by
LHP(n,c) = {z € Ri|(z,n) = c}. The norm of a vector z € R} is defined
by ||z|| = /|{x, z)|. For any two vectors , y in R}, we say that x is pseudo-
perpendicular to y if (z,y) = 0.

An orientation and a timelike orientation of R} are fixed(i.e., a 4-volume form
dV, and future time-like vector field, have been chosen). Let v : I — R} be a
smooth regular curve in R} (i.e.,(t) # 0 for any ¢ € I), where I is an open interval.
We say that a smooth regular curve 7 is a spacelike curve if (¥(t),¥(t)) > 0 for
any t € I. The arclength of a spacelike curve v, measured from ~(t9)(to € I), is

t
s(t) = [ [A(®)] dt.
to
Then a parameter s is determined such that ||7/(s)|| = 1, where v/(s) = dvy/ds(s).
Consequently we say that a spacelike curve v is parameterized by arclength if
|7/ (s)]| = 1. Throughout the rest of this paper s is assumed arclength parameter.
Let t(s) denote 7'(s). We call £(s) a unit tangent vector of v at s. The signature
of x is defined to be

1 x : spacelike;
0(x) =sign(x) =<0 =« :lightlike;

—1 o : timelike .
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For any @1, x2, x3 € R‘ll, we define a vector @y A o A x3 by

—€1, €2, €3, €4

1 2 3 4
.’131/\:132/\:332 .’E}7 mé’ x%’ 1'411
T3, Ty, T, T
of, af, @il ey, af, @y |ey, af, @) oy, wd, af
= —:Z?%, Ig? ‘T% 7_9:%7 IE%, x%,x%, ‘T%’ I% ,—.T%, I%, ‘T%
o3, x§, w5l |y, af, af| [z, 23, ag]  |zi, 23, 2§

where x; = (z}, 22,23, 2}).

For a unit speed spacelike curve v : I — R} with [|[7’(s)| # 0 and
[|n](s) + d1k1(s)t(s)|| # 0, then we can construct a pseudo-orthogonal frame
{t(s),n1(s), n2(s), nz(s)}, which satisfies the following Frenet-Serret type formu-

lae, of R} along .

ts) = (s);
t'(s) = ki(s)ni(s);
ni(s) = —=061k1(s)t(s) + ka(s)na(s);
nhy(s) = dzka(s)ni(s) + kz(s)ns(s);
ny(s) = diks(s)na(s),
where ils) = Bl mls) = P mals) = MmOl

ns3(s) = t(s) Ani(s) Ana(s), and §; = §(n;(s)) (i = 1,2, 3). This is the fundamen-
tal formula for the study of generic curves in R$; It is, however, useless at the point
~(s) with ||n] (s)+01k1(s)t(s)|| = 0. We now denote A(s) = n(s)+d1k1(s)t(s)(s)
and C(s) = t(s) Ani(s) A A(s). If ka(s) = 0, then A(s) is a lightlike vector, so
that any pseudo perpendicular vector in the plane normal to t and n; is parallel
to A(s).

On the other hand, there exists a lightlike vector B(s) such that (A(s), B(s)) =
1, (t(s), B(s)) = 0, (ni(s), B(s)) = 0 and {t(s),n1(s), A(s), B(s)} is a basis of
RY.

Let

4

LCP = {w = ($1,$2,$37x4) c Rzll‘ — (.%1 —p1)2 + Z(:I,‘Z —pi)Q = O}
=2

and

S? ={x € LCylx = (1,22, 23,24)},
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where p = (p1, p2, p3, pa) € R}. We call LCY = LC, \ {p} a lightcone at the vertex
p and S’JQr a lightlike unite sphere. If © = (x1, 22, x3,24) is in LCE, we then have
z = (1,22/x1,23/21,24/31) € S7.
If ko(s) # 0, for any vector v = (A\inq + ping +mng)(s) € Si N N,v, then
{ ST + dapf + danf = 0;
A1na1(s) + pangi(s) +mmnsi(s) = 1.
Thus locally there exist f1 and g1 such that v = (£A1n1 + f(A1)n2+g(A1)ns)(s).
where A1 € R, ng = (a1, Ma2, Ma3, Naa)( @ = 1,2,3).
If ko(s) = 0, for any vector v = (Aany + p2A + 12 B)(s) € S3 N Ny, we have
{ A3 + 2p9m = 0;
Aoni1(s) + p2Ai(s) +n2Bi(s) = 1.
Thus locally there exist fo and g such that v = (£Aan1 + fa(A2) A+ g2(A2) B)(s),
Where AQ € R; ny = (n117 ni2,M13, n14)7 A = (A17 A23 A3a A4) B - (B17 B27 B3a B4)
When n; is a spacelike vector, for any vector
o = { (Xom1 + fi(Ao)mz + g1(Ao)ms)(s),  ka(s) # 0;
(0Aom1 + f2(Ao) A + g2(Ao) B)(s),  ka(s) = 0.
in S N Nyv, there exists a rotation map p : S2 N Nyy — 52 N Nyy such that
p(vg) = A+ C(s).
We define surface
LGS : 1 xR — 5%,
by
LG (s, A) = { (eAng + fi(A)n2 4+ g1 (M)ns)(s),  ka(s) # 0
v (J/\n1 + fQ()\)A + gg(A)B)(S), kQ(S) =0

and surface

LPJ : I xR — LCj,
by
LPJ(s,A) = (7(s), p(v(s, A)))v(s, ),
where
_ { (eAn1 + fi(M)n2 + g1(M)ns)(s),  ka(s) # 0;
v(s,\) =
(cAng + fo(N) A+ g2(A\)B)(s), ka(s) =0.

We call LGY the lightcone Gauss surface of v, LPJ the lightcone pedal surface
of 7. In fact, for any fixed 1o € R, LGF(—,m0), denoted by LGY , " is a lightcone
Gauss map and LPJ(—,no), denoted by LPY, is a lightcone pedal curve of .

The study of lightcone Gauss surface of «y is of course a very interesting aspect
of the situation, from which one may deduce deep results concerning the curve
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~. In the next step, we shall study that surface. Classically, starting with curve
theory, we shall consider the lightcone Gauss map in this paper.

Let F : R} — R be a submersion and v a unit speed spacelike curve. We say
that v and F~1(0) have k-point contact at sy provided the function g(s) = Fo~y(s)
satisfies g(so) = ¢'(s0) = --- = g*V(s9) = 0 and g*)(s0) # 0. Dropping the
condition g(®)(s9) # 0 we say that there is at least k-point contact.

Let v : ST — R} be a spacelike curve with k1 (s) # 0. We consider the following
properties of ~.

(A1) The number of points at which 4 and hyperplane have 4-point contact is
finite.

(A2) There is no point at which v and hyperplane have at least 5-point contact.

Our main results are the following.

Theorem A Let Im(S*,R}) be a space of spacelike curves equipped with Whit-
ney C*°-topology. Then the set of spacelike curves that satisfy (A1) and (As) is
a residual set in Im(S1, RY).

cusp cuspidal edge swallowtail

Theorem B Under the assumptions of (A1) and (Az),

(a) The lightcone Gauss map LGS, of v has a cusp point at so if and only if
]CQ(S()) =0.

(b) The lightcone pedal surface LPYJ is locally diffeomorphic to the cuspidal
edage if and only if v and hyperplane LH P(p(v§),c§) have 3-point contact.

(c) The lightcone pedal surface LPY is locally diffeomorphic to the swallowtail
if and only if ka(sg) = 0 (or v and hyperplane LHP(p(vg),cq) have 4-point
contact).
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Here

07 — { (cAng + fi(A)n2 + g1(M)ns)(so),  ka(so) # 0;
0 (Any + f2(AN) A+ g2(N)B)(s0),  ka(so) =0,

¢ = (1(s0), p(v§)) and o = + or —.

2. LIGHTCONE HEIGHT FUNCTION ON SPACELIKE CURVE IN R}
We first define a function
. 2
H:IxSSNNy—R

by H(s,v) = (v(s), p(v)). We call it the lightcone height function of ~. For any
fixed vy € 52 N N7, we let h,,(s) denote H(s,vg). Then we have the following
proposition.

Proposition 2.1. Let v : I — R} be a unit speed spacelike curve with ki(s) # 0.
Then:

(1) Ny (so) = 0 if and only if p(vo) € Ny

(2) hi,, (s0) = hiy, (s0) = 0 if and only if

o — { (0Aom1 + fi(Ao)nz + g1(Ao)ns)(so),  ka(so) # 0;
’ (@Xom1 + f2(Ao)A + g2(Xo) B)(s0),  k2(s0) = 0.

or p(vo) = E(So)-
J(s0) = hi (s0) = W) (s0) = 0 if and only if

o — { (0Xom1 + fi(Xo)n2 + g1(Ao)ms)(s0),  k2(so) # 0;
0 (chom1 + fa(Ao)A + g2(Mo)B)(s0), ka(so) = 0.
and ka(so) = 0.
(4) kL (s0) = h (s0) = -+~ = hit) (s0) = 0 if and only if

. :{ (@Xom1 + f1(Ao)nz + g1(Ao)ns)(so),  ka(so) # 0;
"7 (@hona + f2(00)A + g2(A0)B)(s0).  ka(s0) = 0.

and ko (so) = (A’ (s0), A(so)) = 0.

PrOOF. (1) h), (s0) = 0 if and only if (v (s0), p(v0)) = (t(s0), p(vo)) = 0, which
is equivalent to p(vg) € Ngy7.

(2) Ay (s0) = hy,(s0) = 0'if and only if (v'(s0), p(vo)) = (¥"(s0), p(v0)) = 0,
which is equivalent to p(vo) € (t(s0),m1(s0))g- If m1 is a timelike vector, then
ny and ng are spacelike vector. On the other hand, p(vy) € S N N, this is a
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contradiction. So n; is not a timelike vector. Thus hj, (so) = A, (so) = 0 if and
only if

o — { (0Aom1 + fi(Ao)nz + g1(Ao)ns)(so),  k2(so) # 0;
0 (oXom1 + f2(Ao)A + g2(Mo)B)(s0), ka2(s0) = 0.

or (o) = Bso).

(3) If ky # 0, then A(sg) is not a lightlike vector. On the other hand, h;, (so) =
e (s0) = W (s0) = 0 if and only if (812 + Fn'my — Kykama)(s0). p(v0)) —
k1koda(s0) = 0, it’s a contradiction. So ka(sg) = 0. Thus h;, (so) = hy (s0) =
hyr (s0) = 0 if and only if

o — { (0Aom1 + fi(Ao)nz + g1(Ao)ns)(so),  k2(so) # 0;
0 (U)\O”l + f2(>\Q)A + gg()\o)B)(So), ]{12(80) =0.

and ks (sg) = 0.

(4) h$D(s0) = 0 if and only if (v® (s0), p(vo)) = ((361k1k1't + (613 + k" +
Ssk1k3)my + (—2k kg — kiky)ng + kikoksns)(so), p(vo)) = 0, by (1), (2) and (3),
R (s0) = Bl (s0) = --- = hiy)(s0) = 0 if and only if

o — { (@Aon1 + fi(Ao)n2 + g1(Ao)ns)(so),  k2(so0) # 0;
’ (GXom1 + f2(Ao) A+ g2(Ao) B)(s0),  k2(s0) = 0.

and ka(so) = (A’(s0), A(s0)) = 0. O

Proposition 2.2. Let v : I — R} be a unit speed spacelike curve. If H is the
lightcone height function of v. Then the following conditions are equivalent:

(1) so is a singularity of the lightcone Gauss map LG,ﬁnU.

(2) hyi(s0) =0 for vg = LG'ij,no(SO)'

(3) ]{32(50) =0 and Vo = LG:E (So).

Y>"Mo

PROOF. Let By = {v € 53 | hl(s) = h!)(s) = 0}. By Proposition 2.1. Then By
can be written as By = {v € 53 | v}, where

v — { (eXom1 + fi(Xo)na + g1 (Ao)m3)(s), ka(s) # 0;
(0’)\0"’1,1 + fg()\o)A + gg()\o)B)(S), ]{32(8) =0.

or p(v) = B(s). Thus By can be identified with LG,ﬁnO from singularity theory
viewpoint, which means (1) is equivalent to (2).
By Proposition 2.1, (2) is equivalent to (3). O

Proposition 2.3. Let v : I — R} be a unit speed spacelike curve. Then:

(1) The lightcone Gauss map LGS, is constant if and only if v C LHP(v?,¢7).
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(2) Both maps, LGT, and LG, , are constant if and only if v is a plane

7>Mo Ysno?
curve.
Here
07 — { (@Aom1 + fi(Ao)nz + g1(Ao)ns)(s),  ka(s) # 0;
(0)\077/1 + fQ(AO)A + gg()\o)B)(S), kQ(S) =0.
¢ = (v(s),v%) is constant, and o = + or —.

Proor. (1) If LGY ,  is constant, then

d{v,LG?, ) = (dv,LGZ, )+ (v,d(LGZ, )) =0.

Y:Mo Y-Mo >"Mo

Therefore (vy,LGY, ) = ¢ is constant, which means that v C LHP(v?,c7).

Conversely, If v C LHP(v?,¢7), then (y,dLGY ) =0, thus LGS, is constant.
(2) Since v and v~ are linearly independent, LHP(v~,c¢™) and LHP(v*t,ct)
intersect transversally. By (1), both maps, LG:‘/‘J70 and LG, . are constant if

and only if y(s) C LHP(v*,ct)N LHP(v~,c™) is a plane curve. O

For a unit speed spacelike curve 7 : I — R}, we now define extended lightcone
height function H : I x LC;NNy — R by H(s,v) = H(s,®) —vy = (y(s), p(®)) —
vy, where H is the lightcone height function of . For any vy in LCG N N+, let
T, (s) denote H(s,vp). Then we have the following lemma.

Lemma 2.4. Lety: I — R} be a unit speed spacelike curve with ki(s) # 0. Then
~y and the hyperplane LHP(p(vE),cE) have 4-point contact at sy if and only if
ka(so) = 0 and (A'(so), A(so)) # 0, where

oF — { (@Aom1 + f1(Ao)n2 4+ 91(Xo)ns)(s0),  ka(so) # 0;
0 (0Aom1 + f2(Ao)A + g2(Xo) B)(s0),  k2(s0) = 0.

and ¢ = (1(s0), p(v7)).
3. UNFOLDINGS OF FUNCTIONS OF ONE-VARIABLE

In this section we use some general results of the singularity theory for function
germs. Details can be found in [3]. Let F : (R x R", (sg, o)) — R be a function
germ. We call F' an r-parameter unfolding of f where f(s) = F(s,z0). We say
that f has Ay-singularity at sg if f®)(sg) = 0forall1 < p < kand 5+ (s9) # 0.
Let j(k_l)(g—i(s,xo))(so) = Zf;ll aj;s? for i =1,...,r, where j*~1 denotes the
(k—1)-jet. Fis called a (p) versal unfolding (resp. versal) if the (k—1) xr (resp.
k x r) matrix of coefficients (a;;) (resp. (i, o)) has rank k—1(k—1 < r)(resp.
k(k <)), where ag; = %(so, xgo). Before proceeding further, it is convenient to
introduce two important sets concerning the unfoldings. The bifurcation set of
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F is the set Bp = {z € R"|% = %if = 0 at (s,z)}. The discriminant set of
F is the set Dp = {z € R"|F = 2 = 0 at (s,2)}. Then we have the following

well-known result[4].

Theorem 3.1. Let F': (RxR", (s9,20)) — R be a r-parameter unfolding of f(s),
which has Ag-singularity at sg.
(1) Suppose that F is a (p) versal unfolding.

(a) If k =2, then Br is locally diffeomorphic to {0} x R"~L.

(b) If k = 3, then By is locally diffeomorphic to C' x R"—2,
(2) Suppose that F is a versal unfolding.

(a) If k = 1, then Dp is locally diffeomorphic to {0} x R™~1.

(b) If k =2, then Dg is locally diffeomorphic to C x R™=2,

(c) If k =3, then D is locally diffeomorphic to SW x R"~3.
Here, SW = {(z1, 72, 73)|71 = 3u® + v?v, 29 = 4u® + 2uv, 23 = v} is the swal-
lowtail and C = {(x1,22)|z1? = 223} is the ordinary cusp.

Theorem 3.2. Let v: I — R} be a unit speed spacelike curve with ki(s) # 0, H
the lightcone height function of v and H the extended lightcone height function.

(1) If h(s) has Ay-singularity (k = 2,3) at sq, then H is the (p) versal unfolding
of h.

We consider the point (s,v) € I x LC§ N Ny such that H(s,v) =0.

(2) Ifﬁ(s) has Ag-singularity (k = 1,2,3) at so, then H s the versal unfolding

of h.

PROOF. Let LCY = {v = (v1,v2,v3,v4) € LCG | v1 > 0}; p(v) = (v1,v2,v3,04) €
LC% ;5 y(s) = (21(s), 2(s), 23(s), v4(s)). We define a function H : I x LCY — R by
H(s,v) = (y(s), p(v)). Since H |IxSimN«/: H, it is sufficient to verify that H is
the (p) versal unfolding of h(s) = H(s,vo). In fact, since p(v) € LC%, H(s,v) =
—/v3 +v2 +viz1(8) + vawa(s) + vaws(s) + vaza(s). g—i = —2xi(s) + 22(s),

g—g = x3(s) — (Z—?)wl(s), g—i = x4(s) — (Z—‘l‘)xl(s), the 3-jet at sg of g—g, g—g and
oH
m are
’ 1" "’ ’ 1" "’
(s:r:/2 + %52:17/2/ + %5333/2”) — (”—2)(550/1 + %52:17/1, + %5333/1”),
(:sgci3 + %52:10% + %s xm) —( )(sgc/1 + %szx}l + %s x}”),
(szy + 2%y + :s%ay ) — () (szy + 52w, + §s52) ).

F3ks

NS

V1

h(s) has Ag-singularity at s if and only if p(vg) = A(na(se) £ n3(so)), A # 0
and ko(so) # 0. When h has Ap-singularity at sg, we require matrix (z4(s) —
(%)x;(s),xé(s) - (Z—f)x;(s),x;(s) - (Z—‘l‘)xll(s)) to have rank 1. In fact, Since
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p(v) = A(ng £ ng3), k1ke # 0, the determinant of following 3 x 3 matrix

Iy S T Sy
Ty BT T BT
%2(61;?1)551 %173 (6”51)x1 %174—(601,1)%
B A
= oo R | = S p(v), )
1201 | @1y oy @3 T4 12v,

is :tégf‘zkikZ # 0, which means that the rank of the above matrix is 3. Whence H
is the (p) versal unfolding of h(s) = H(s,vq). Similarly for others. O

By Proposition 2.1, Theorems 3.1 and 3.2, we have the following theorem.

Theorem 3.3. If h, and %w have Ay-singularity(k = 2,3). Then:

(1) When k = 2, By is locally diffeomorphic to 0 xR, D is locally diffeomor-
phic to C' x R.

(2) When k = 3, By is locally diffeomorphic to C. D is locally diffeomorphic
to SW.

By Proposition 2.1 and Theorem 3.3, we get the Theorem B.

4. GENERIC PROPERTIES OF SPACELIKE CURVES

In this section we consider the notion of Lorentzian Monge-Taylor map of
a spacelike curve in Minkowski 4-space. Let v : I — R} be a regular space-
like curve in Minkowski 4-space where I is an open connected subset of unit
circle S'. We now choose a smooth family of unit vectors m;(t), it is pseudo
perpendicular to the unit tangent vector £(t) of v at t, so |n;(t)]| = 1 and
(n;(t),t(t)) = 0 for all t € I. Such n;(t) can be obtained as following: consider
the smooth map ¢ : I — S} which takes ¢ to the unit tangent vector ¢(¢), if V
is a vector in S?, we can obtain the vector field n;(t) by pseudo-orthogonally
projecting V' onto each of the pseudo normal space and normalizing. Thus
n;(t) = % n;(t) is obtained similarly:
W — (Wym,(1))n;(t) — (W, 8(1))¢(1)
W = (W (£))m; (1) — (W, () ¢(1)]]”
where W € H3(H? = {p € Ri|{p,p) = —1}). Let nk( ) = t(t) A m(t) A n(t).

We use the pseudo perpendicular lines spanned by £(t), 7,(t), n;(t), ni(t) as axes
at y(t) with the unit points on the axes corresponding to the four given vectors.
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Note that the curve 7 is not necessarily unit speed with ~y(ty) = 0. We can
write () locally as (g¢(€), &, fi (&), 1:(€) with j'f¢(0) = j'g:(0) = j'1:(0) = 0.
If Vi, denotes the space of polynomials in £ of degree > 2 and < k, then we
have a map, the Monge-Taylor map for the spacelike curve v, py : I — Vi x
Vi X Vie by iy (t) = (5% £:(0), 7%9+(0), 5%1:(0)). Vi X Vi X Vj can be identified with
le& X lefl X R’ffl = Ri’k73 via the coordinate (ag, ..., ag,ba, ..., bk, c2, ..., Ck).
Of course p, depends rather heavily on our choice of unit normals n;(t) and

) ® 0
n;(t). Here a; = ti!(o), b, = & i!(0)7ci =k Z.!(O) (2 < i < k), that is Vi, x Vi x
Vi = {(a28? + az€® + - + a®), (0262 + b3€% + -+ + b€r), (c2€” + 38 + -+ +
cxé¥)}. Let Py, denote the set of maps v : Rf — R} of the form 9 (z,vy, 2, w) =

((¢1($7 yazaw)7¢2(x7y7 2, w)7w3(x7ya va)awﬁl(‘x’ya Z,’LU)), where %(%ya 2, ’LU) is a
polynomial in z,y,z,w of degree < k. An element ©» € Py is determined by

the coefficients of the various monomials x'y’ 2z w"™ occurring in 1,19, V3, ¥4.

(]Z'f!)! monomials 2’y z™w™ of degree < k, so that P, can

(k44)!

be thought as a Minkowski space R, **' . It is this space that will provide the
required deformations of the curve.

There are altogether

To simplify matters we now assume that the curve v is compact, that is
I = S'. The identity map lgs : R} — R is of course an element of Py(k > 1).
By using compactness of 7, it is easy to see that there is an open neighbor-
hood U of 1gs in Py with the property that if ¢ € U, then the linear map
Ty(y(t)) : R} — R};v —— Di(y(t)) - v satisfies that it takes a timelike vec-
tor(resp. a spacelike vector) to a timelike vector (resp. a spacelike vector), where
Di)(~(t)) denotes the derivative of 9 at y(t). If we deform the original curve by
the map 9, then we can also obtain the required two new smooth family of normal
vectors My (1), My () as follows. Since the map ) : R} — R} is a diffeomorphism
on some open set containing y(I), vectors n;(t), n;(t) will be sent to some new vec-
tors Di(y(t))n;(t), Dy(y(t))ni(t), which will be neither zero nor tangent to ¢ o~y
at t. Pseudo-orthogonally project Dy (y(t))n;(t), D (y(t))n,(t) onto the pseudo-
normal space to ¢ o v at ¢ and normalize, then we get
= TR 0 0 .
ooty — DECOI() = (DUG)MA) .7y 0 = (DUGOIn(0). )10
[DY(y(#))mi(t) — (DY (y(8)mi(t), mjy)njy — (DY(y(8))na(t), 80|

and (1 (t), Ny (t)) = —1, where t,, denotes the tangent vector of the curve 1o~y
at t. Assuming as before that I = S, we choose an open neighborhood U of
17 € Py consisting of polynomial maps which map an open set containing v(S*)
diffeomorphic to its image. We have now shown that there is a smooth map
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,u:Sl><[]—>Vv]€><‘/v}<;><‘/v]C
defined by p(—, %) = Monge-Taylor map for the curve 9 oy using the family of
pseudo-normal vectors 7, (t) and ny(t). By the same arguments as in the
proof of Theorem 9.9 in [4], we have the following theorem.

Theorem 4.1. Let @ be a manifold in Vi, x Vi x Vi, = Ri’k_3. For some open set
Uy C U containing identity map, the map p: S* x Uy — Vi X Vi x Vi defined by
w(t, ) = pypory(t) is transverse to Q(In fact, p is a submersion, so that () does
not enter the argument at all).

A straightforward computation shows the following lemma. The computations
are rather long and tedious, so we omit the details.

Lemma 4.2. Let v be a unit speed spacelike curve defined by

V() = (9:(€), & fe(€), 1e(€)) = (b2824b3E+ -+ , €, a2+ a3+ -+, 28+ c38+ )

with f(to) =0 and k‘1(t0) #0. We let Nij = i!j!(aiaj — blb] + CiCj). Then:

(1) fi(ag,as,ba, bz, ca,c3) = 0 at to if and only if ko(ty) = 0, where f; =
N2, + N3, — N33 Noo.

(2) fg((lg,(13,(14,b2,b3,b4,02,03,04) =0 at to ’Lf and only Zf <A,,A>(to) =
where fo = N§2N34 — 2N32N222N33 + N22N32[3N??2 — NQQ(N42 + Ngg) - N232] —
N3y N3, Ng1 — N3y NaoNyg + 2N3y Nag — N3a Nop[3N3y — Nag(Nag + Nag) — N3,| +
N33 N33 Nat — Ny Nay + 2N32 N3 Nat — N3y Noi [3N35 — Nao(Nao + Niz) — N3] +
N32N242N11.

Here, £ is the coordinate along the t-direction, fi(§) is the coordinate along the
n;-direction, g.(§) is the coordinate along the n;-direction, l;(£) is the coordinate
along the ny-direction.

=

Lemma 4.3. We consider smooth maps p; : Va x Vu x V; = R? — R(i = 1,2)
given by
p1 = N3+ N3y — N3zNoo;
p2 = N3N3y — 2N33 N3 N33 + NogN3a[3NZ, — Nag(Nyo + Naz) — N3]
—N39N3,N31 — N3, N3 Nao + 2N3, Noo
—N32N22[3N35 — Noo(Naz + Naz) — Nip| + N5, N3, Noy
—N§2N41 + 2N33 N3, N3p — N222N21[3N§2 — Nao(Nyz + N33) — N3]
+N32 N3y N1y
Then the set Q1 = {(as,as,as,bs, b3, by, ca,c3,¢4) € R | py = pa = 0} is a
codimension two submanifold in RP.
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An ordinary(resp. degenerate) vertex is a point p = v(ty) of a spacelike curve
7, for which there exists a hyperplane having 4-(resp. at least 5-) point contact
with the curve for ¢t = ty. We say v has a vertex at tg, or at p.

We now give the proof of Theorem A.

PROOF. Suppose we are given any regular spacelike curve v : S — R}. Applying
Theorem 4.1 to the map p with @ the submanifold of degenerate vertexes proves
that a dense set of curves have only ordinary vertexes. Further taking k = 4 and
@ to be the submanifold of fi(t) = 0. Then the vertexes of ¢ o v correspond to
points ¢ with u(t,9) € Q. However, again by Theorem 4.1, we know that for a
dense set of ¥ € Uy the map u(—,1) = v is transverse to ). Consequently the
set v71(Q) of the ordinary vertexes is finite for a dense set of 1) € Uy, whence the
result.

We now have to prove that these properties are open. We first show that
this is so for the property of only having ordinary vertexes. Let @) denote the
set f1 = fo = 0in Vy x V4 x Vy(degenerate vertexes). Thus @ is closed. Let
5 : 81 x U — R{ be a family of curves with 5y = 5(—,0) having only ordinary
vertexes. Let p: S x U — Vi, x Vi x Vj, be the corresponding family of Monge-
Taylor map. Then the compactness of S!, together with the fact that pug =
u(—,0) is transverse to Q(misses @ in fact), implies by [4, Proposition 8.23] that
p(St x {u}) misses @ for u in some open neighborhood U’ of 0. Hence nearby
curves 7, in the family also possess no degenerate vertex.

It remains to show that, in fact, the property of having finitely many ordinary
vertexes and no degenerate vertex is open. First note that, if v has an ordinary
vertex at ¢t € S, then the image of the map p : S* — V4 x V4 x V4 meets the
submanifold of f; = 0 at u(¢) and is transverse to this submanifold.

Let ¥ : 8! x U — R} be a family of curves with 7 having finitely many
ordinary vertexes, and no degenerate vertex, so that u(—,0) is transverse to the
submanifold of f; = 0. Since transversality is an open condition when the source
is compact and the relevant submanifold are closed[4, Proposition 8.23], it follows
that v = p(—,u) : ST — V4 x V4 x V; will also transverse to that submanifold for
all u in some neighborhood U; of 0 € U. Consequently, if @ is that submanifold,
the set v71(Q) of ordinary vertexes of 7, is finite and there is no degenerate
vertex. This proves the result. O

The authors would like to express their deep thanks to the referee for giving
them suggestions to improve the paper.
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